[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE3943322A1 - Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine - Google Patents

Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine

Info

Publication number
DE3943322A1
DE3943322A1 DE19893943322 DE3943322A DE3943322A1 DE 3943322 A1 DE3943322 A1 DE 3943322A1 DE 19893943322 DE19893943322 DE 19893943322 DE 3943322 A DE3943322 A DE 3943322A DE 3943322 A1 DE3943322 A1 DE 3943322A1
Authority
DE
Germany
Prior art keywords
bale
row
bales
removal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19893943322
Other languages
English (en)
Inventor
Thomas Gloor
Jost Aebli
Juerg Faas
Heinz Biber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Priority to DE19893943322 priority Critical patent/DE3943322A1/de
Priority to US07/565,513 priority patent/US5105507A/en
Priority to EP90115424A priority patent/EP0415156B1/de
Priority to JP2210554A priority patent/JPH03220323A/ja
Priority to DE59010412T priority patent/DE59010412D1/de
Publication of DE3943322A1 publication Critical patent/DE3943322A1/de
Priority to US07/745,837 priority patent/US5121418A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G7/00Breaking or opening fibre bales
    • D01G7/06Details of apparatus or machines
    • D01G7/10Arrangements for discharging fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan, bei dem mittels wenigstens eines auf die Ballenoberfläche gerichte­ ten Sensors das Höhenprofil einer Ballenreihe ermittelt und zur Steuerung der Lage des Abtragorganes bei der nachfolgen­ den Ballenabtragung herangezogen wird, sowie eine Vorrich­ tung zur Durchführung dieses Verfahrens.
Ein Verfahren bzw. eine Vorrichtung dieser Art ist bereits in der DE-PS 31 53 246 beschrieben. Bei der bekannten Vor­ richtung sind drei Sensoren in Form von optischen Näherungs­ schaltern auf dem das Abtragorgan tragenden Ausleger ange­ bracht. Dieser wird von Hand über den ersten Ballen der Ballenreihe gefahren. Nach Betätigung einer Starttaste sinkt der Ausleger ab. Sobald der erste Sensor ein Signal abgibt, wird der momentane Zählerstand in einen Speicher übertragen. Gleiches passiert für jeden weiteren Sensor. Wenn auch der letzte Sensor sein Signal abgegeben hat, wird die Abwärts­ bewegung gestoppt, der Turm mit dem Ausleger setzt sich mit einer langsamen Geschwindigkeit in Bewegung entlang der Ballenreihe und der Ausleger wird auf das Maß, das beim ersten ansprechenden Sensor ermittelt wurde, plus einem bestimmten Betrag nach oben gefahren. Ist er dort angekom­ men, sinkt der Ausleger wieder ab, und die Höhenermittlung erfolgt wie oben.
Auf die beschriebene Weise erhält man eine Vielzahl von Meßwerten, aus denen ein Mittelwert gebildet wird, der für den weiteren Abarbeitungsprozeß herangezogen wird. Dadurch, daß sich der Ausleger mit Abtragorgan bei der Durchführung der Messungen ständig auf und ab bewegt, geht relativ viel Zeit für die einmalige Ermittlung des Höhenprofiles der Ballenreihe verloren. Weiterhin beschreibt die Schrift nicht, wie man ausgehend vom Mittelwert die eigentliche Abtragung durchführt, die wohl wegen einer späteren Bewegung des Auslegers entlang der Ballenreihe erfolgt. Es wird ver­ mutlich ausgehend vom Mittelwert eine vorbestimmte Zustel­ lung vorgegeben, d. h. der Ausleger mit Abtragorgan wird um einen vorbestimmten Betrag unterhalb des Mittelwertes ge­ senkt und die Abtragung erfolgt mit dieser fest vorgegebenen Zustellung. Mit diesem ersten Durchgang wird darauf abge­ zielt, die Ballenreihe auf eine gleichmäßige Höhe zu brin­ gen, damit bei nachfolgenden Abtragungen immer mit fest vorgegebenen Zustelltiefen gearbeitet werden kann. Dieses Verfahren berücksichtigt nicht die unterschiedliche Härte der unterschiedlichen Ballen bzw. der unterschiedlichen Komponenten der Ballenreihe.
Die europäische Anmeldung 8 51 15 579 (Veröffentlichungsnum­ mer 1 93 647) der vorliegenden Anmelderin beschreibt ein Verfahren zum Abtragen von Faserflocken von Textilfaserbal­ len, bei dem die Zustellung für jede Abtragbewegung entlang der Ballenreihe entsprechend der Ballenhärte in den unter­ schiedlichen Bereichen der Ballen gewählt wird. Diese Ausfüh­ rung berücksichtigt die Tatsache, daß Ballen eine unter­ schiedliche Dichte, d. h. Härte aufweisen und zwar so, daß die Härte im oberen und unteren Bereich der Ballen geringer ist als im mittleren Bereich, so daß die Zustelltiefe im oberen und unteren Bereich größer sein darf als im mittleren Bereich. Auch diese Schrift beschreibt jedoch nicht die Ermittlung der Härte der Ballen. Dies ist in der Praxis aber von größerer Bedeutung, zumindest dann, wenn man eine Ballen­ abtragmaschine stets an den oberen Grenzen der Leistung betreiben möchte, um hierdurch eine maximale Produktion wirtschaftlich zu erhalten. Man kann zwar mit Erfahrungs­ werten für die Härte der einzelnen Ballen arbeiten, dies ist jedoch in vielen Fällen nicht sehr genau. Beispielsweise wird häufig bei der Erstellung einer Ballenreihe aus Ballen verschiedener Provenienzen (Komponenten genannt) etwas von den höheren Ballen einer Komponente manuell abgenommen und auf niedrigere Ballen der gleichen Komponente gelegt. Hier­ durch wird die angenommene Härteverteilung bei den einzelnen Ballen verfälscht. Weiterhin kommen Ballen unterschiedlicher Provenienzen per Definition aus unterschiedlichen Gebieten, sie werden daher mit unterschiedlichen Anlagen zusammenge­ preßt und haben unterschiedliche Fasereigenschaften, so daß die Härteverteilung bei den Ballen der unterschiedlichen Provenienzen auch unterschiedlich ausfällt.
Aufgabe der vorliegenden Erfindung ist es, das Verfahren bzw. die Vorrichtung der eingangs genannten Art so zu verbes­ sern, daß man insgesamt wirtschaftlicher arbeiten kann, und zwar unter Berücksichtigung der Härte der einzelnen Ballen bzw. Komponenten der Ballenreihe, wobei diese Härte vorzugs­ weise bereits während der Ermittlung des Höhenprofils gleichzeitig ermittelt werden soll.
Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgesehen, daß das Empfangssignal des vorzugsweise optischen, akusti­ schen oder mit Radarwellen arbeitenden Sensors zur Gewinnung eines der Ballenhärte entsprechenden Signals verarbeitet wird, und daß die Zustellung und ggf. auch die Durchgriff­ tiefe des Abtragorganes entsprechend diesem Härtesignal gesteuert oder geregelt wird.
Anstatt einen Näherungssensor zu verwenden, wird somit erfin­ dungsgemäß mit einem Meßsensor gearbeitet, der ebenfalls auf dem Ausleger oder dem den Ausleger tragenden Turm angebracht ist und bei der Höhenabtastung in einer gleichmäßigen Höhe über die Ballenreihe bewegt wird. Die so entstehenden Sig­ nale werden dann erfindungsgemäß auch zur Ermittlung der Ballenhärte in dem unmittelbar unterhalb des Meßsensors gele­ genen Oberflächenbereich ausgewertet, wobei dann die Zustel­ lung unter Verwendung dieser relativ genauen Information auch genau ermittelt werden kann, im Hinblick auf den Wunsch, eine möglichst hohe Produktion zu erreichen bzw. auf­ rechtzuerhalten. Nicht nur die Zustellung, d. h. der Betrag, um den das gesamte Abtragorgan nach unten bewegt wird für das nächste Abarbeiten der Ballenreihe, sondern auch die Durchgrifftiefe des Abtragorganes, d. h. der Betrag, um den sich die Arbeitselemente, beispielsweise Zähne des Abtragor­ ganes durch den zugeordneten Rost hindurcherstrecken, hängt von der Härte des jeweils abzutragenden Ballens ab, so daß es die vorliegende Erfindung ermöglicht, sowohl die Zustel­ lung als auch die Durchgrifftiefe jeweils optimal der jewei­ ligen Ballenhärte anzupassen.
Es bestehen verschiedene Möglichkeiten, das Sensorsignal zu einem Härtesignal zu verarbeiten. Wenn die Härte der Oberflä­ chenbereiche der Ballen hoch ist, so ist die wieder aufgefangene Schallenergiedichte größer als wenn es sich um eine weichere Ballenoberfläche handeln würde. Die Härte des Oberflächenbereiches läßt sich somit aus der Amplitude des Empfangssignals herleiten, wobei die Abnahme der Amplitude mit zunehmendem Abstand zwischen dem Meßsensor und der Ballenoberfläche berücksichtigt werden muß.
Erfindungsgemäß wird das Härtesignal aber vorzugsweise aus den Schwankungen, insbesondere aus den Amplitudenschwankun­ gen der Sensorsignale ermittelt. Dies kann beispielsweise dadurch erfolgen, daß das Härtesignal durch das Summieren der mit positiven Vorzeichen versehenen Abweichungen des Sensorsignals vom Mittelwert dieses Signals ermittelt wird. Auch sind allgemeine verwendbare mathematische Algorithmen bekannt, die es ermöglichen, die mittleren Amplitudenschwan­ kungen der Sensorsignale aus diesen Signalen zu gewinnen, wobei das Sensorsignal mit einer Häufigkeit höher als die Grundfrequenz des Signals, d. h. der Grundfrequenz der schwankenden oder Sensorsignale abgetastet wird.
Wenigstens bei Verwendung eines Abstandsmeßsensors auf Ultraschallbasis wird die Ballenoberfläche an verschiedenen nacheinanderfolgenden Punkten abgetastet. Dies ist erforderlich, weil der zeitliche Abstand zwischen aufeinanderfolgenden Messungen ausreichend lang gewählt werden muß, um die Laufzeit des Ultraschallsignals und die Laufzeit der elektronischen Signale zu berücksichtigen. Auch muß ein gewisser Sicherheitsabstand zwischen aufeinanderfolgenden Messungen gegeben sein, damit die Ultraschallschwingungen der einen Messung abklingen können bevor die nächste Messung vorgenommen wird.
Betrachtet man die Baumwolloberfläche modellhaft als Sinus, so müßte, um die Oberfläche rekonstruieren zu können, häufiger als alle 1 cm ein Meßwert aufgenommen werden.
In der Praxis genügt es aber, anhand einiger weniger Messungen schon eine Aussage über die Oberflächenbeschaffen­ heit zu erhalten (aus Gründen der statistischen Verteilung und des angewendeten Meßverfahrens).
Man geht vorzugsweise entsprechend dem Anspruch 5 vor.
Die Härte kann getrennt für jeden Ballen oder für jede Kompo­ nente der Ballenreihe ermittelt werden. Somit kann man bei dem nachfolgenden Abarbeiten der Ballen für jeden Ballen bzw. für jede Komponente eine unterschiedliche Zustelltiefe bzw. Durchgrifftiefe wählen. Das Umlegen von Teilen des einen Ballens auf andere Ballen führt hier zu keiner beson­ deren Störung des Arbeitsverfahrens, da die Härte der Ballenoberfläche immer aktuell gemessen wird. Im weiteren Gegensatz zu dem eingangs genannten Verfahren gemäß DE-PS 31 53 246 kann erfindungsgemäß bei jedem Durchgang sowohl das Höhenprofil als auch das Härteprofil ermitteln werden.
Es besteht grundsätzlich die Möglichkeit, das Höhenprofil der Ballenreihe während einer Leerfahrt des Abtragorganes oberhalb der Ballenreihe zu ermitteln. Dieses Verfahren ist weniger aufwendig als beim Stand der Technik, da ständige Auf- und Abbewegungen des Auslegers nicht erforderlich sind, wodurch Steuerungsaufwand und Zeit gespart werden kann.
Bei Ballenabtragmaschinen, bei denen Ballenreihen auf beiden Seiten der Ballenabtragmaschine angeordnet sind, besteht auch die Möglichkeit, das Höhenprofil und das Härteprofil der einen Ballenreihe während des Abtragens der anderen Ballenreihe zu ermitteln.
Bei diesem Verfahren wird das während eines ersten Durch­ ganges des Abtragorganes entlang einer Ballenreihe abgetaste­ te Höhenprofil vorzugsweise in einen Computer eingelesen, welcher aufgrund dieses Höhenprofils und des errechneten Härteprofils ein sich über die Länge der Ballenreihe ändern­ des Zustellprofil errechnet, bei dem die Produktion unter Berücksichtigung des erwünschten Mischungsverhältnisses der Provenienzen der einzelnen Ballen annähernd an einem Maximum gehalten wird.
Der Computer ist vorzugsweise so programmiert, daß er be­ strebt ist, bei mehreren Durchgängen alle Ballen entspre­ chend den jeweils gemessenen Härten und dem erwünschten Mischungsverhältnis so abzutragen, daß am Ende des Tages die ganze Reihe ohne nennenswerte Ballenreste abgetragen ist. Ein derartiges Verfahren erleichtert die nachfolgende Aufstellung einer neuen Ballenreihe und vereinfacht das nachfolgende Abtragen der neuen Ballenreihe; dadurch lassen sich unnötige Höhen- und Härtebeschränkungen der neuen Ballenreihe vermeiden.
Der Computer arbeitet so, daß er bei jedem Durchgang stets eine Zustelltiefe bzw. ein Zustelltiefenprofil anstrebt, das immer weiter einer waagrechten Linie angenähert wird. Um dies zu erreichen, müssen natürlich gewisse kleine Einbußen bei der Produktion akzeptiert werden. Diese sind jedoch insgesamt geringer als die Einbußen, die ohne das erfin­ dungsgemäße Verfahren eintreten.
Eine weitere Steigerung der Ausnutzung der Ballenabtragma­ schine läßt sich dadurch erreichen, daß das Abtragen der Ballenreihe bereits bei dem ersten Durchgang bei gleichzeiti­ gem Erfassen des Höhenprofils erfolgt, wobei das Abtragorgan im ersten Durchgang konstant der Ballenhöhe nachgesteuert wird.
Die Ermittlung der Höhe der Ballen gleichzeitig mit dem Ablösen von Faserflocken aus der Ballenoberfläche ist zwar für sich aus der DE-PS 33 35 793 bekannt. Zu diesem Zweck werden jedoch dort zwei Sensoren verwendet, welche in unter­ schiedlichen Höhen und parallel zur Oberfläche der Ballen­ reihe angeordnet sind. Diese Sensoren ermöglichen weder eine sehr genaue Bestimmung des Höhenprofils der Faserballen noch eine Ermittlung der Härte der Ballen.
Durch das Abtragen der Ballenreihe bereits beim ersten Durch­ gang entfällt die Leerzeit für eine Abtastung des Höhenpro­ fils ohne gleichzeitige Abtragung von Faserflocken. Obwohl beim ersten Durchgang das Abtragorgan konstant der Ballen­ höhe nachgesteuert wird, um zu vermeiden, daß plötzliche Höhenstufen zu einer Überbelastung der Abtragmaschine füh­ ren, gelingt es, unter Berücksichtigung des mit diesem er­ sten Durchgang ermittelten Höhenprofils und des entsprechen­ den Härteprofils für nachfolgende Durchgänge optimale Durch­ gangshöhenkurven zu ermitteln, um einerseits eine annähernd maximale Produktion zu erreichen und andererseits im letzten Durchgang auf einer minimalen Höhe angelangt zu sein.
Um den Sollwert für den Flockenstrom der Abtragmaschine vorzugeben und einzuhalten, was zugleich ein genaues Maß für die Produktion der Ballenabtragmaschine darstellt, wird vorzugsweise erfindungsgemäß so vorgegangen, daß der Istwert des Flockenstromes aufgrund der Zustelltiefe und des jewei­ ligen Härtesignals ermittelt und die Zustelltiefe zur Einhal­ tung des vorgegebenen bzw. eines maximalen Flockenstromes geregelt wird. Bei diesem Verfahren entspricht der Istwert des Flockenstromes dem Produkt der Zustelltiefe mit dem Härtesignal, wobei natürlich geometrische Konstanten, wie die Breite der Ballenreihe und die Bewegungsgeschwindigkeit der Ballenabtragmaschine entlang der Ballenreihe berück­ sichtigt werden müssen.
Dadurch, daß man mittels der Erfindung die Zustelltiefe entsprechend der jeweils vorhandenen Ballenhärte wählt, wird die Genauigkeit der aus den verschiedenen Komponenten ent­ stehenden Fasermischung verbessert, insbesondere in solchen Spinnereien, bei denen die Mischungsverhältnisse in erster Linie durch die Arbeit der Ballenabtragmaschine bestimmt ist.
Das erfindungsgemäße Verfahren bietet auch die Möglichkeit, den Anfang bzw. das Ende der Ballenreihe und ggf. das Vorhandensein und die Länge von Lücken zwischen den Ballen der Reihe durch das Sensorsignal zu ermitteln. Am Anfang und am Ende einer Ballenreihe bzw. in Lücken wird nämlich das Sensorsignal vom Boden bzw. vom Ballenträger reflektiert, der bzw. die einen bekannten Abstand vom Meßsensor aufweisen und somit durch das Sensorsignal ohne weiteres erkannt wer­ den können. Weiterhin stellen der Boden bzw. ein Ballenträ­ ger im Vergleich zu den Ballen sehr harte Gegenstände dar, so daß in diesem Bereich die Amplitudenschwankungen des Sensorsignals gering sind, wodurch das Vorhandensein des Bodens bzw. des Ballenträgers und auch die Senkrechten Ballengrenzen aus dem Sensorsignal ermittelt werden kann bzw. können.
Wenigstens bei akustischen Meßsensoren führt auch ein sehr harter Gegenstand wie beispielsweise der Boden oder ein Ballenträger zu einem doppelten Signal, da das vom Meßsensor ausgestrahlte akustische Signal mit verhältnismäßig kleinen Verlusten am Boden bzw. am Träger reflektiert, am Meßsensor oder am Ausleger erneut reflektiert und anschließend nach nochmaliger Reflexion am Boden wieder vom Meßsensor empfan­ gen wird. Das doppelte Signal, d.h. das Empfangssignal nach der ersten Reflexion und das Empfangssignal nach der zweiten Reflexion am Boden stellt ein besonderes Kennzeichen für den Boden bzw. Ballenträger dar.
Um das Höhenprofil bzw. das Härteprofil in Einklang mit der Lage des Abtragorganes entlang der Ballenreihe zu bringen, zeichnet sich das erfindungsgemäße Verfahren vorzugsweise so aus, daß ein dem Fahrweg des Abtragorganes entlang der Ballenreihe proportionales Signal erzeugt und vom Computer bei der Berechnung des hohen Profils bzw. des Zustelltiefen­ profils bzw. des Härteprofils berücksichtigt wird.
Das entsprechende, dem Fahrweg des Abtragorganes proportiona­ le Signal kann im Falle eines formschlüssigen und schlupffreien Antriebes des Turmes entlang der Ballenreihe, beispielsweise mittels Ketten und Kettenrädern, vom Antrieb selbst erzeugt werden. Beispielsweise kann ein Zahnrad oder eine Lochscheibe mit der Welle des Antriebmotors für die Fahrbewegung gekoppelt sein, wobei das Zahnrad oder die Lochscheibe als Zählrad dient und zusammen mit einem Initiator als Impulsgeber funktioniert, dessen Impulse über eine Leitung dem Mikroprozessor zugeführt werden. Diese Impulse geben dann den Fahrweg des Abtragorganes an, d. h. sie sind diesem proportional. Damit ist der Mikroprozessor bzw. die Steuerung jederzeit über die genaue Lage des Abtragorganes in Längsrichtung der Ballenabtragmaschine informiert.
Bei Ballenabtragmaschinen, die auf Rädern laufen, wo Schlupf zu befürchten ist, können die erforderlichen Signale durch eine vom Schlupf unabhängige Fahrwegermittlungseinrichtung zuverlässig festgestellt werden. Beispielsweise können hier bekannte Fahrwegmeßeinrichtungen in der Form von Magnetstreifen und Linearmeßeinrichtungen benutzt werden, wie sie bei den Führungen von Werkzeugmaschinen verwendet werden.
Solche bekannte Magnetstreifen- oder Linearmeßeinrichtungen sind jedoch relativ aufwendig, so daß ihre Anwendung bei Ballenabtragmaschinen, bei denen der Turm über einen beträchtlichen Abstand, beispielsweise 20 m oder mehr fahrbar ist, doch zu beträchtlichen Kosten führen kann. Es ist somit eine weitere Aufgabe der vorliegenden Anmeldung eine Fahrwegmeßeinrichtung zu schaffen, insbesondere für eine Ballenabtragmaschine, welche unabhängig vom allfälligen Schlupf des Antriebssystems die aktuelle Längsposition des beweglichen Teils, beispielsweise des Turms an der Ballenabtragmaschine ermittelt, wobei die Fahrwegmeßeinrichtung robust, zuverlässig, wartungsfrei und preiswert sowie unempfindlich gegen Schmutz und Störung sein soll.
Zur Lösung dieser Aufgabe sieht die vorliegende Erfindung eine Fahrwegmeßeinrichtung vor, insbesondere für eine Ballenabtragmaschine mit einem nicht schlupffreien Antriebssystem und mit einem fahrbaren Turm, der mittels des Antriebssystems entlang einer Ballenreihe verfahrbar ist, gekennzeichnet durch ein längliches, sich entlang der Ballenreihe erstreckendes Teil, das entweder fest angeordnet oder mit dem Turm verbunden ist und sich mit diesem bewegt, durch eine Abtasteinrichtung, welche je nach der Anordnung des länglichen Teils entweder am fahrbaren Turm oder an einer bestimmten Stelle entlang der Ballenreihe angeordnet ist, das längliche Teil während der Fahrbewegung des Turmes schlupffrei abtastet und jedesmal, wenn der Turm einen bestimmten Schritt zurücklegt einen Impuls abgibt, und durch eine Zähleinrichtung, welche die Impulse zählt und ein dem Fahrweg proportionales Signal erzeugt.
Bei einer Ausführung besteht das längliche Teil aus einer Schiene und die Abtasteinrichtung aus einem Rad, das am Turm angeordnet schlupffrei entlang der Schiene abrollt, wobei ein Impulsgeber zur Abgabe von Impulsen mit dem Rad gekoppelt ist. Unter Umständen genügt es hier ein einfaches Rad mit Gummireifen für die schlupffreie Abtastung der Schiene vorzusehen, da das Gummirad keine wesentlichen Drehmomente übertragen muß und somit nicht mit Schlupf behaftet ist. Diese einfache Ausführung hat den besonderen Vorteil, daß sie sehr preisgünstig herstellbar ist. Wenn man aber befürchten muß, daß auch hier evtl. Schlupf eintreten könnte, beispielsweise aufgrund von Abmessungstoleranzen der Schiene, so kann man die Schiene als Zahnstange und das Rad als ein mit dieser kämmendes Zahnrad ausbilden.
Eine weitere Möglichkeit besteht darin, das längliche Teil durch eine Kette auszubilden, die am Turm befestigt ist und während einer durch die Bewegung des Turmes entlang der Ballenreihe verursachten Umlaufbewegung um Umlenkeinrich­ tungen an beiden Enden der Ballenreihe umlenkbar ist. Hiermit wird eine Abtasteinrichtung verwendet, welche durch ein durch die Kette antreibbares Kettenrad gebildet ist, wobei ein Impulsgeber zur Abgabe von Impulsen mit dem an einer festen Stelle der Ballenreihe angeordneten Kettenrad gekoppelt ist. Eine sehr wirtschaftliche Anordnung wird dann erreicht, wenn das Kettenrad durch eine der Umlenkeinrichtungen gebildet ist.
Eine weitere Möglichkeit besteht darin, das längliche Teil durch sich regelmäßig wiederholende engere und breitere Bereiche aufweisende Struktur auszubilden, beispielsweise durch eine Lochschiene oder eine fest gespannte Kette oder ein Zähne und Lücken aufweisendes längliches Gebilde, wobei diese Struktur durch eine Lichtschranke oder induktive Abtasteinrichtung, oder durch eine mechanische Schalterein­ richtung abtastbar ist, deren Empfangskreis die Impulse abgibt. Eine längliche, das Ausgangssignal der Abtastein­ richtung modulierende Struktur dieser Art kann sich insbesondere entlang des Flockentransportkanals (Absaugka­ nals) einer Ballenabtragmaschine erstrecken und an dieser befestigt sein. Eine derartige Anbringung der länglichen Struktur spart Platz und ist im allgemeinen möglich, ohne störende Einschränkungen zu verursachen, hinsichtlich der anderen notwendigen Teile einer Ballenabtragmaschine. Insbesondere kann auf diese Weise eine erfindungsgemäße Fahrwegmeßeinrichtung an einer bestehenden Ballenabtrag­ maschine nachträglich angebracht werden.
Eine besonders bevorzugte Ausführungsform der erfindungs­ gemäßen Fahrwegmeßeinrichtung zeichnet sich dadurch aus, daß die Wiederholungslänge der Struktur relativ groß ist, bei­ spielsweise mehr als etwa 10 cm, und daß bei einer bekann­ ten, vorzugsweise konstanten Fahrgeschwindigkeit Längsmes­ sungen im Bereich zwischen zwei nacheinanderfolgenden Impulsen durch eine Interpoliereinrichtung durchführbar sind. Durch die Verwendung einer Struktur mit einer relativ großen Wiederholungslänge läßt sich diese Struktur sehr preisgünstig herstellen, die Erfindung ermöglicht jedoch die Messung von Längeneinheiten, die weitaus kleiner sind als die Wiederholungslänge.
Um die Genauigkeit bzw. Gültigkeit der einzelnen Messungen zu überwachen, wird vorzugsweise eine den Zeitabstand zwischen dem den Impuls überwachende Einrichtung vorgesehen. Wenn beispielsweise der Turm mit einer bekannten konstanten Geschwindigkeit entlang der Ballenreihe läuft, so muß diese Überwachungseinrichtung jeweils den gleichen Zeitabstand zwischen zwei nacheinanderfolgenden Impulsen feststellen. Stellt die Einrichtung fest, daß dieser Zeitabstand nicht konstant ist, so weiß man, daß die Gültigkeit von interpolierten Längsmessungen zwischen den beiden Stellen der Struktur, welche die zugeordneten Impulse erzeugt haben suspekt sind. Man kann daher diese Werte ignorieren oder je nach Verwendungszweck der Messungen anders gewichten, damit die Ungenauigkeit berücksichtigt bleibt. Eine Einrichtung dieser Art hat den Vorteil, daß die Messung erneut mit der erwarteten Genauigkeit mit den nächsten Impulsen durchgeführt werden kann, da durch die starre Zuordnung zwischen den Impulsen und den die Impulse erzeugenden Teile der Struktur das Ausmaß durch Interpolationsfehler eintretende Fehlmessungen begrenzt ist.
Selbst wenn in bestimmten Abschnitten der Ballenreihe die Ballenabtragmaschine beschleunigt oder gebremst wird bzw. mit einer langsameren Geschwindigkeit entlang der Ballen­ reihe fährt, so können diese Geschwindigkeitsänderungen von der Interpoliereinrichtung berücksichtigt werden, so daß auch während dieser Betriebsphasen genaue interpolierte Längsmessungen möglich sind.
Von besonderem Vorteil ist es, wenn die Zähleinrichtung und/oder die Interpoliereinrichtung und/oder die Überwa­ chungseinrichtung durch einen Mikroprozessor gebildet ist bzw. sind. Die Zähl- Interpolier- und Überwachungsfunktio­ nen können dann durch entsprechende Programmierung des Mikroprozessors, vorzugsweise des Mikroprozessors der für die Steuerung der gesamten Ballenabtragmaschine zuständig ist, realisiert werden, wobei die vorhandene Information bestmöglich ausgewertet werden kann. Beispielsweise wird eine durch den Mikroprozessor realisierte Interpolierein­ richtung stets wissen, ob eine Beschleunigung oder Abbrem­ sung der Turmbewegung eingeleitet ist und diese unterschied­ lichen Betriebszustände bei der Durchführung der Interpolie­ rung berücksichtigen.
Besonders bevorzugte Vorrichtungen zur Durchführung des erfindungsgemäßen Betriebsverfahrens einer Ballenabtragmaschine lassen sich den Ansprüchen 19 bis 27 entnehmen.
Die Erfindung wird nachfolgend näher erläutert anhand eines Ausführungsbeispiels und unter Bezugnahme auf die Zeichnung, in welcher zeigt:
Fig. 1 eine Endansicht einer Ballenabtragungsmaschine am Anfang einer Ballenreihe,
Fig. 2 eine Seitenansicht an der Ballenreihe der Fig. 1 im Bereich der erfindungsgemäßen Ballenabtragmaschine,
Fig. 3 eine Draufsicht auf die Ballenabtragmaschine der Fig. 1,
Fig. 4A eine graphische Darstellung eines Sensorsignals bei der Abtastung des Höhenprofils der Ballenreihe der Fig. 2,
Fig. 4B das aus dem Sensorsignal der Fig. 4A gewonnene Höhenprofil,
Fig. 4C das aus dem Sensorsignal der Fig. 4A gewonnene Härteprofil,
Fig. 4D das aus dem Härteprofil der Fig. 4C ermittelte Zustellungsprofil,
Fig. 4E das aus dem Härteprofil der Fig. 4C ermittelte Durchgrifftiefenprofil,
Fig. 5 ein stark schematisiertes Blockdiagramm zur Erläuterung der Signalauswertung bei einer Ballenabtragungsmaschine gemäß Fig. 1,
Fig. 6 eine schematische Darstellung der sukzessiven Abtragung der Ballenreihe der Fig. 2,
Fig. 7 eine schematische Darstellung eines alternativen Verfahrens zur sukzessiven Abtragung einer Ballenreihe,
Fig. 8 eine schematische Darstellung einer schlupffreien Längsmeßeinrichtung, bestehend aus einer Schiene und einem Rad,
Fig. 9 eine schematische Darstellung einer ähnlichen Ausführungsform wie die in der Fig. 8, bei der jedoch die Schiene als Zahnstange und das Rad als Zahnrad ausgebildet ist,
Fig. 10 eine alternative Ausführung einer schlupffreien Längsmeßeinrichtung, bestehend aus einer am Turm der Ballenabtragmaschine befestigten umlaufenden Kette,
Fig. 11 eine perspektivische Darstellung einer im Vergleich zu Fig. 1 abgewandelten Ausführung einer Lochschiene in einer schlupffreien Längsmeßeinrichtung, wobei auch die Verwendung von mechanischen Schaltern für die schlupffreie Längsmessung gezeigt ist, und
Fig. 12 eine weitere erfindungsgemäße schlupffreie Längsmeß­ einrichtung mit einer länglichen Meßstruktur, bestehend aus Zähnen und Lücken.
Wie vor allem in Fig. 1 gezeigt, umfaßt eine Maschine 1 zum Abttragen von Faserflocken ein Abtragorgan 2, ein Maschinen­ gestell 3 und einen Flockentransport 4.
Das Abtragorgan 2 selbst umfaßt einen Ausleger bzw. eine Gehäusekonstruktion 5, in welcher eine rotierende Abtrag­ walze 6 antreibbar gelagert ist. Durch diese Gehäusekonstruk­ tion 5 werden im weiteren die durch die Abtragwalze 6 von den Faserballen 7 abgetragenen Faserflocken aufgenommen und über nicht gezeigte Wege weiter in den Flockentransport 4 gefördert.
Die Gehäusekonstruktion 5 ist mittels drehbar daran befestig­ ter und in Führungsschienen 8 des Maschinengestells 3 geführ­ ter Rollen 9 in Pfeilrichtung A auf- und abbewegbar. In der Figur ist jedoch nur das eine Rollenpaar und nur die eine Schiene 8 gezeigt; die auf der Gegenseite in der gleichen Art vorgesehenen Rollen und vorgesehenen Schiene sind nicht sichtbar.
Im weiteren weist die Gehäusekonstruktion 5 einen Mitnehmer 10 auf, welcher mit einer Kette 11 eines Kettentriebes 12 fest verbunden ist.
Der Kettentrieb 12 umfaßt im weiteren ein oberes, drehbar gelagertes Kettenrad 13 für die Umlenkung der Kette 11 und ein unteres Kettenrad 14 für den Antrieb dieser Kette 11. Das untere Kettenrad 14 ist dabei drehfest auf einer Antriebswelle 15 eines Getriebes 16 aufgezogen. Als Leistungsquelle für das Getriebe dient ein damit verbundener Elektromotor 17, welcher als Stopmotor ausgebildet ist.
Der Kettentrieb 12, das Getriebe 16 und der Elektromotor 17 werden als Ganzes als Hubvorrichtung bezeichnet.
Auf dem in Fig. 1 oberen Wellenende 18 des Motors 17 ist ein Zahnrad 19 drehfest aufgesetzt, welches als Zählrad zusammen mit einem Initiator 20 als Impulsgeber funktioniert, dessen Impulse über eine Leitung 21 einem Mikroprozessor 22 zuge­ führt werden, was insbesondere in der Fig. 3 dargestellt ist. Der Initiator 20 ist handelsüblich und gibt bei jedem vorbeigehenden Zahn des Zahnrades 19 einen Impuls ab. Der Initiator 20 ist ortsfest vorgesehen.
Zur Abtastung der oberen und unteren Endposition des Abtrag­ organes ist am Maschinengestell 3 ein oberer Endschalter 23 und ein unterer Endschalter 24 vorgesehen.
Der obere Endschalter 23 wird von einer oberen Fläche 25 und der untere Endschalter 24 von einer unteren Fläche 26 des Mitnehmers 10 betätigt. Dabei gibt der obere Endschalter 23 seinen Impuls über eine Leitung 27 und der untere Endschal­ ter 24 über eine Leitung 28 in den Mikroprozessor 22 ein.
Auf der vorderen Seite, d. h. in Fig. 2 rechten Seite des Auslegers ist ein Abstandsmeßsensor 30 angebracht. Dieser besteht aus miteinander kombinierten Sender/Empfängerein­ heiten und funktioniert im vorliegenden Beispiel auf Ultra­ schallbasis. Bei diesem Abstandsmeßsensor kann es sich beispielsweise um einen Sensor der Firma Siemens Typ Sonar/Bero 3RG6044/3 MMOO handeln. Es kann aber auch ohne weiteres ein Sensor sein, der mit einem anderen Meßprinzip arbeitet, beispielsweise ein optischer Sensor oder ein Sensor, der mit Radarwellen arbeitet. Der Meßstrahl 31 ist auf die Oberfläche 32 der Ballensreihe 7, d. h. senkrecht dazu gerichtet, wobei der Meßstrahl einen 15 bis 20 cm breiten Streifen der Oberfläche erfaßt, der, wie in Fig. 3 dargestellt, etwa in der Mitte der Ballenreihe angeordnet ist. Es können aber auch mehrere Abstandsmeßsensoren vorgesehen sein, die unterschiedliche Streifenbereiche der Oberfläche erfassen sollen. Aus den Signalen von mehreren Sensoren können ggf. Mittelwerte für die Ballenhöhe und -härte erzeugt werden. Das im Empfängerteil des Abstandsmeßsensors erzeugte Abstandssignal wird über eine Leitung 33 dem Mikroprozessor 22 zugeführt.
Eine weitere Leitung 34 verbindet den Elektromotor 17 mit dem Mikroprozessor 22.
Das Maschinengestell 3 ist mittels daran befestigter und antreibbarer Räder 35 auf Schienen 36, welche auf dem Spinnereiboden 37 befestigt sind, der Faserballenreihe 7 entlang (nicht gezeigt) und über den Flockentransport 4 hinweg fahrbar angeordnet. Da es sich bei den Rädern 35 um nicht schlupffrei arbeitende Elemente handelt, ist in diesem Beispiel eine besondere Einrichtung vorgesehen, um die genaue Längsposition des Turmes 3 entlang der Ballenreihe 7 zu ermitteln. Es handelt sich hier um die Lichtschranke 38, welche aus Sender- und Empfängerteilen besteht, die auf entgegengesetzten Seiten an einer Lochschiene 39 angeordnet sind. Die Lochschiene 39 weist mehrere Löcher mit gleichem Abstand voneinander auf, wobei die Lichtschranke beim Passieren jedes Lochs einen Signalpuls abgibt, welcher über die Leitung 41 dem Mikroprozessor 22 zugeführt wird. Aus diesen Signalen, sowie aus Signalen, welche die Fahrrichtung des Turmes entlang der Ballenreihe ansprechen, welche beispielsweise am Antriebsmotor für die Längsbewegung abgenommen werden können, ist der Mikroprozessor 22 in der Lage, die genaue Position des Turmes entlang der Ballenreihe zu ermitteln.
Unterhalb des Auslegers 5 befindet sich weiterhin ein Rost 40 mit einzelnen sich zwischen den einzelnen gezahnten Rädern 81 des Abtragorganes 6 befindlichen Roststäben 42. Solche Roststäbe sind bestens bekannt und beispielsweise in den deutschen Patentanmeldungen P 38 20 427.4 und P 38 27 517.1 der Anmelderin beschrieben.
Wie aus Fig. 2 ersichtlich, umfaßt die Ballenreihe im vorlie­ genden Beispiel fünf Ballen 43 bis 47, welche unterschied­ liche Höhen aufweisen, wobei rein beispielsweise der höchste Ballen 47 auf der rechten Seite der Fig. 2 und der niedrig­ ste Ballen 43 auf der linken Seite der Fig. 2 angeordnet ist. Die Ballen 44 und 45 sind gleich hoch und etwas höher als der Ballen 43 und der Ballen 46 weist eine Höhe auf, welche zwischen denen der Ballen 45 und 47 liegt. Im übrigen ist zwecks dieser Darstellung eine Lücke 48 zwischen den Ballen 45 und 46 gezeigt, so daß senkrechte Ballengrenzen 49 bis 52 am Anfang der Ballenreihe, an beiden Seiten der Lücke 48 bzw. am Ende der Ballenreihe 7 vorgesehen sind.
Fig. 3 zeigt, daß eine ähnliche Ballenreihe auf der anderen Seite der Ballenabtragmaschine angeordnet sein kann, sofern es sich bei dem Turm 3 um einen drehbaren Turm handelt, der auch auf der zweiten Seite der Ballenreihe arbeiten kann.
Mit dem Bezugszeichen 30.1 wird hier außerdem klargemacht, daß ein Höhensensor auch auf der dem Ausleger 5 entgegen­ gesetzten Seite des Turms angeordnet sein kann, so daß während der Abtragung von Faserflocken von der in Fig. 3 unteren Reihe mit dem Sensor 30.1 das Höhenprofil und auch das Härteprofil der Ballen der rechten Reihe zeitsparend ermittelt werden kann.
Fig. 4A zeigt das Abstandsmeßsignal des Meßsensors 30 (bzw. 30.1) bei einem Meßdurchgang oberhalb der Reihe der aufge­ stellten Ballen. Der Meßsensor 30 ermittelt den Abstand zur gegenüberliegenden Fläche durch Messungen der Laufzeiten von Ultraschallwellen von ihm zu der gegenüberliegenden Fläche (Boden 37 oder Ballenoberfläche 32 und zurück. Bei diesem Meßvorgang befindet sich der Ausleger mit Sensor 30 in diesem Beispiel in einer konstanten Höhe H oberhalb des Bodens 37, und das Ausgangssignal des Abstandsmeßsensors ist von dieser Höhe H subtrahiert, so daß das schwankende Signal der Fig. 4A schließlich die Höhe der Ballenoberfläche oberhalb des Bodens darstellt. Es ist aber nicht unbedingt notwendig, daß der Meßvorgang bei konstanter Höhe des Auslegers oberhalb des Bodens durchgeführt wird, da die Höhe des Auslegers für sich aufgrund des Signalgebers 20 bekannt ist, so daß auch bei sich ändernder Höhe des Auslegers die Höhen der Ballen oberhalb des Bodens 37 stets vom Computer 22 aus den Abstandsmeßsignalen ermittelt werden können. Mit anderen Worten kann der Sensor 30 ohne weiteres während der Ballenabtragung das Höhenprofil der abzutragenden Ballen ermitteln. Mit 30.2 wird ein weiterer Sensor entsprechend dem Sensor 30 gekennzeichnet, der das Höhenprofil nach der Abtragung messen kann.
Fig. 4A ist im gleichen Maßstab gezeichnet wie die Fig. 2, damit die Zuordnung zwischen den einzelnen Ballen und der Amplitude des Ausgangssignals des Abstandsmeßsensors 30 (bzw. 30.1, 30.2) klar ersichtlich ist.
Zunächst befindet sich auf der linken Seite der Fig. 4A der Abstandsmeßsensor bei der Höhe H oberhalb des Bodens, und das eigentliche Ausgangssignal des Meßsensors gibt die Höhe H an. Das Ausgangssignal wird jedoch von der Höhe H subtra­ hiert, daher fängt das so korrigierte Ausganssignal des Sensors 30 im Bereich 53 bei 0 an (H-H=0). Da der Boden 37 als schallhart zu bezeichnen ist und daher einen höheren Anteil des auf ihm auftreffenden Strahles zurückreflektiert, erfolgt eine sichere Abstandsmessung, und das Meßsignal und daher auch das korrigierte Meßsignal weist im Bereich 53 keine oder nur sehr kleine Schwankungen auf. Bei 49.1 erreicht nun der Strahl des Sensors 32 die senkrechte Ballengrenze 49, wodurch der Abstand zwischen dem Sensor 32 und der reflektierenden Oberfläche, hier die Oberfläche des Ballens 43 plötzlich verkürzt ist und die Amplitude des Signals insgesamt ansteigt. Da die Oberfläche 43.1 des Ballens 43 schallweich und zudem eine rauhe Oberfläche ist, weist das Signal des Abstandssensors große Schwankungen mit relativ hoher Frequenz auf. Die Amplitudenschwankungen sind nicht alleine durch Schwankungen der Rauhigkeit der Ober­ fläche des Ballens 43 verursacht, sondern eher dadurch, daß der Meßsensor versucht, immer ein eindeutiges Meßergebnis zu liefern und aufgrund der unpräzisen Reflexion des Schall­ strahles an der schallweichen Oberfläche des Ballens 43 immer schwankende Meßergebnisse liefert. Diese Schwankungen finden mit einer Frequenz statt, die weitaus höher ist als in Fig. 4A rein darstellungshalber angedeutet.
Bei 54 hat der Meßstrahl des Sensors 30 die Grenze zwischen dem Ballen 43 und dem Ballen 44 erreicht und es erfolgt ein Amplitudensprung nach oben, während das Signal selbst ähnli­ che Amplitudenschwankungen aufweist, wie bei dem Ballen 43. Man merkt, daß bei dem Übergang zum gleich hohen Ballen 45 der Mittelwert des Signals in etwa gleich bleibt wie bei dem Ballen 44, jedoch sind die Amplituden der Schwankungen etwas kleiner sind. Diese kleineren Schwankungen, beispielsweise bei 45.1 deuten an, daß der obere Oberflächenbereich des Ballens 45 härter ist als die entsprechenden Bereiche der Ballen 43 und 44. Nach dem Vorbeilaufen am Ballens 45 trifft der Strahl des Sensor 30 auf die senkrechte Ballengrenze 50.1, d. h. der Sensor mißt noch einmal den Abstand zwischen ihm und dem Boden 37, weshalb die Amplitude des Empfangs­ signals bei 57 auf Null zurückfällt, d. h. auf ein Niveau, das dem Niveau 53 entspricht. Nach dem Vorbeilaufen der Lücke 48, d. h. bei der senkrechten Ballengrenze 51.1, steigt die Amplitude des Höhensignals noch einmal und zwar zu einem Mittelwert, der noch höher liegt als bei dem entsprechenden Mittelwert des Signals im Bereich des Ballens 45. Auch hier weist das Signal beträchtliche Amplitudenschwankungen 46.1 auf, welche darauf hinweisen, daß auch hier der Ballen 46 relativ weich ist. Bei 58 ist die Grenze zwischen dem Ballen 46 und dem Ballen 47 erreicht und die Amplitude des Abstands­ sensors steigt nochmals an, was auch richtig ist, weil der Ballen 47 der höchste der Ballenreihe 7 ist. Am Ende der Ballenreihe senkt sich die Amplitude des Höhensignals wiederum bei der senkrechten Ballengrenze 52 ab, was mit 52.1 in Fig. 4a gekennzeichnet ist.
Aus dem Abstandssignal der Fig. 4a ermittelt der Computer 22 einen Mittelwert und das Ergebnis dieser Mittelwertbildung ist in Fig. 4b dargestellt. Mittelwertbildung mittels eines Rechners ist für sich sehr gut bekannt, weshalb dies hier nicht gesondert beschrieben wird. Man sieht, daß das Mittel­ wertsignal eine sehr gute Wiedergabe des Höhenprofils der Ballenreihe 7 der Fig. 2 darstellt, was auch beabsichtigt ist.
Das Abstandssignal wird auch vom Computer 22 weiterverarbei­ tet, um das Härteprofil gemäß Fig. 4C zu gewinnen. Diese Auswertung erfolgt so, daß die algebraische Summe der Amplitudenschwankungen vom Mittelwert in mehreren aneinander angrenzenden Bereichen ermittelt wird und dann die rezipro­ ken Werte gebildet werden. Diese reziproken Werte stellen dann die Härte der einzelnen Bereiche dar. Man sieht, daß in den Bereichen 53, 57 und 59, wo das Abstandsmeßsignal kaum Schwankungen aufweist, da der Boden 37 gut reflektiert, dieser als harter Gegenstand ermittelt wird, weshalb das Härtesignal an diesen Stellen eine hohe Amplitude 53.3, 57.3 und 59.3 aufweist. Die Ballen 43 und 44 sowie 46 haben ungefähr gleich große Härte und diese Härte ist, wie bereits erläutert, niedrig, weshalb in den entsprechenden Bereichen 43.3, 44.3, 46.3 des Härteprofils nach Fig. 4C die Härte relativ niedrig liegt. Dagegen haben die Ballen 45 und 47 eine größere Härte, die in beiden Fällen vergleichbar hoch liegt, weshalb in diesen Bereichen 45.3 und 47.3 das Härtesignal eine höhere Amplitude aufweist.
Da die Härte der Ballen im Oberflächenbereich der Dichte in diesen Bereichen direkt proportional ist und die Maschine bei einer erwünschten Produktionsleistung auf eine Zustell­ tiefe, d.h. Abtragtiefe, entsprechend den Reziproken der Härte einzustellen ist, wird vom Rechner 22 unter Berück­ sichtigung der vorgesehenen Konstanten das Zustelltiefen­ profil gemäß Fig. 4D ermittelt. Man sieht, daß für die Ballenbereiche 43.4, 44.4 die Zustellung gleich groß ist (weil die Härte gleich groß ist) und einen relativ hohen Betrag von 10 mm aufweist. Auch bei dem Ballen 46 ist die Zustelltiefe bei 46.4 gleich hoch. Dagegen ist die Zustell­ tiefe in den Bereichen 45.4 und 47.4 auf etwa 5 mm redu­ ziert, da die Oberflächen dieser Ballen härter sind. Das Zustelltiefenprofil der Fig. 4D umfaßt auch Bereiche 53.4, 57.4 und 59.4, wo die Zustellung Null ist, da der Boden sehr hart ist und zudem kein Material vom Boden abgetragen werden soll.
Aus dem Mittelwert des Höhenprofils gemäß Fig. 4B und dem Zustelltiefenprofil gemäß Fig. 4D bzw. kann man aus den entsprechenden Werten einen Steuerbefehl für den Antrieb des Motors 17 erhalten, um die erwünschte Höhe des Abtragorgans beim Abtragen jedes Ballens der Ballenreihe einzustellen. D. h. die Zustelltiefe wird Punkt für Punkt von der Höhe subtrahiert. In Bereichen, wo die Zustelltiefe Null ist, wird die gleiche Höhe des Abtragorganes beibehalten.
Es kann durchaus sinnvoll sein, die Durchgrifftiefe des Abtragorganes 6, d. h. den Abstand zwischen den radial untersten Punkten der Zahnscheiben 41 und den Roststäben 42 auch entsprechend der Härte der Ballen einzustellen, wobei bei härteren Ballen die Durchgrifftiefe kleiner sein sollte und bei weicheren Ballen die Durchgrifftiefe durchaus höher sein darf. Das entsprechende Durchgrifftiefenprofil für die Ballenreihe der Fig. 2 ist in Fig. 4E gezeigt, wobei auch hier die einzelnen Segmente des Profils mit den einzelnen Ballen mittels der Numerierung der Ballenreihe und dem Zusatz .5 in Einklang gebracht worden sind.
Zur besseren Erläuterung der Arbeitsweise des Computers 22 im Zusammenhang mit der Ermittlung des Höhenprofils, des Härteprofils, des Zustelltiefenprofils und des Durchgriff­ tiefenprofils wird nun auf Fig. 5 verwiesen. Die Signale für die senkrechte Position des Abtragorganes bzw. des Auslegers 5 werden, wie bereits beschrieben, vom Computer aufgrund der Signale auf den Leitungen 27, 28 und 21 ermittelt, und der Computer schickt Steuerbefehle für die Höhe des Abtragor­ ganes an den Motor 17 über die Leitung 34. Die Signale des Längssensors 38 werden über die Leitung 41 in den Computer eingelesen. Gegebenenfalls können mehr Werte extrapolliert werden, um eine feinere Auflösung zu erreichen. Jeweils bei einem entweder eingelesenen Signal des Längssensors oder bei einem vorausextrapollierten Wert wird die Sensorik vom Computer aktiviert, um den vom Sensor unmittelbar zurückgegebenen Meßwert abzuspeichern. Der Abstandsmeßsensor 30 führt in regelmäßig wiederholten zeitlichen Abständen Abstandsmessungen durch und speichert diese Abmessungen vorübergehend in einem Zwischenspeicher 60. Der Computer 22 liest über die Leitung 33 die gespeicherten Werte zu Zeitpunkten ab, die durch die Signale des Längssensors 38 bestimmt werden. Aus den im Computer so eingelesenen Werten ermittelt dieser dann das Höhenprofil 4B durch Mittelwertbildung, das Härteprofil 4C durch die algebraische Addition der Amplitudenschwankungen, das Zustelltiefenprofil aus den reziproken Werten des Härteprofils und das Durchgrifftiefenprofil entsprechend dem Härteprofil und aufgrund von im Computer festgehaltenen Konstanten. Die Profile selbst werden dann in Speichern des Rechners 22 festgehalten und können auf Wunsch permanent gespeichert werden.
Fig. 6 zeigt schließlich, wie das Höhenprofil der Ballen­ reihe 7 aus Fig. 2 durch sukzessive Arbeiten abgetragen wird. Bei der Fig. 6 geht man davon aus, daß man gleichzei­ tig mit der Abmessung des Höhenprofils abträgt und zunächst versucht, eine konstante Abtragungshöhe einzuhalten, damit der Computer auf alle Fälle Daten richtig erfassen kann. Dieser erste Durchgang ist mit 62 bezeichnet. Die konstante Abtragtiefe wird hier so niedrig gewählt, daß es zu keiner Überlastung der Abtragmaschine kommen kann.
Danach ermittelt der Computer die erwünschte Zustelltiefe für jeden Ballen beim nächsten Durchgang und überprüft, ob bei Einhaltung dieser Zustelltiefen das Höhenprofil in unerwünschter Weise geändert wird, so daß größere senkrechte Sprünge entstehen. Wenn dies nicht der Fall ist, so wird die Ballenreihe entsprechend der ausgerechneten Zustelltiefen nach Linien 63 . . . 67 abgetragen. Wenn aber anscheinend größere Sprünge entstehen, so wird von den höheren Stellen das Maximum abgetragen und von den anderen Bereichen etwas weniger, damit das Höhenprofil allmählich glatter wird. Das Ziel ist, am unteren Ende der Ballen bei dem Enddurchgang eine waagerechte Linie 68 zu erreichen, damit alle Ballen bzw. Ballenreste gleich hoch sind, was eine gute Voraus­ setzung für die Abtragung der nächsten aufzustellenden Ballenreihe sicherstellt.
Es ist auch eine vereinfachte Ausführungsform der Maschine denkbar. Bei dieser ist es aus Gründen der Antriebstechnik nicht möglich, die Höhenverstellmotorik und den seitlichen Vorschub gleichzeitig in Betrieb zu halten (siehe Fig. 7). So wird im ersten Durchgang (Bezugszeichen 70) das Abtragorgan schrittweise der Ballenoberfläche nachgeführt. Im zweiten Durchgang (Bezugszeichen 71) und eventuell im dritten Durchgang (Bezugszeichen 72) wird nun das Abtragorgan auf eine konstante Höhe eingestellt, dessen Wert vom Computer so berechnet wird, daß einerseits eine maximale Abtragtiefe nicht überschritten wird, andererseits aber doch die Produktion schon möglichst hoch gehalten wird. Als Nachteil ist jedoch in diesem Bereich eine kleine Produktionseinbuße in Kauf zu nehmen. Jedoch ist spätestens vom vierten Durchgang (Bezugszeichen 73) an die Ballengruppe ausnivelliert. Es ist also nicht mehr nötig, den Vorschubmotor auszuschalten, um die Höhe des Abtragorganes zu verändern.
Ob man dieses Verfahren anwenden kann, hängt zum Teil damit zusammen, ob die Mischverhältnisse der Fasern mit der Ballenabtragungsmaschine selbst bestimmt werden oder ob die einzelnen Komponenten je separat abgetragen und zu einzelnen Mischschächten geführt werden, wobei die Mischungsver­ hältnisse der Flocken schließlich in der Mischstation und nicht durch die Flockenabtragung bestimmt werden. Sollten unsachgerechte Ballenhöhen vorliegen, die keineswegs eine konvergierende Abtragung ermöglichen, so kann dies vom Computer angezeigt werden, wodurch die Bedienungsperson aufgefordert wird, die Ballen teilweise manuell abzutragen bzw. umzulegen, um günstigere Verhältnisse zu schaffen.
Wie vorher erwähnt, wird ein Meßsystem bevorzugt, das für eine schlupffreie Messung der Längsposition des Turmes entlang der Ballenreihe sorgt und zwar unabhängig davon, ob im Betrieb bei dem Fahrantrieb des Turmes Schlupf eintritt. Erwähnt ist bis jetzt als konkrete Ausführung lediglich eine Lichtschranke 38, welche mit einer Lochschiene 39 zusammenarbeitet. Eine weitere Möglichkeit zeigt die Fig. 8. Hier ist die Schiene 39 durch eine Schiene 39.1 mit I-förmigem Querschnitt ersetzt worden. An einem senkrecht nach unten weisenden Schenkel 80 des Maschinengestells 3, nämlich an dem Schenkel, welcher die Laufräder 35 trägt, sind der Schiene 39.1 gegenüber zwei Flansche 82 und 84 fest angebracht, beispielsweise durch Schweißen, wobei in diesen Flanschen eine sich ebenfalls senkrecht erstreckende Welle 86 drehbar gelagert ist. Drehfest auf der Welle befindet sich ein Gummirad 88, welches leicht gegen die Längsseite 89 des einen Schenkels der I-förmigen Schiene 39.1 gedrückt wird. Bei einer Fahrbewegung des Turmes senkrecht zur Ebene der Fig. 8 rollt das Gummirad 88 daher an der Längskante 89 ab und führt somit zu einer schlupffreien Drehbewegung der Welle 86. Am oberen Ende der Welle 86 befindet sich eine Lochscheibe 90, d. h. eine Scheibe mit einer Reihe von Löchern in ihrem Umfangsbereich, so daß eine Drehung des Gummirades zu einer Umdrehung der ebenfalls mit der Welle 86 drehfest verbundenen Lochscheibe 90 fährt. Eine Lichtschranke 38.1 mit Sender- und Empfängerteilen umgreift den Umfangsbereich der Lochscheibe 90 und erzeugt somit beim Umlaufen der Lochscheibe auf der Welle 86 eine Impulsfolge entsprechend der Reihenfolgen von Löchern und Stegen in der Lochscheibe. Diese Impulsfolge wird über die Leitung 41.1 dem Mikroprozessor 22 zugeführt und dort verarbeitet, entsprechend dem Signal 41 der Fig. 1 bis 5.
Wenn bei der Ausführungsform gemäß Fig. 8 doch mit einem gewissen Schlupf gerechnet werden muß, beispielsweise aufgrund von Herstellungstoleranzen oder unzureichender Führung des Turmes entlang der Ballenreihe (eine ausreichende Führung des Turmes entlang der Ballenreihe und der Querrichtung ist normalerweise durch die Zusammenarbeit zwischen den Rädern 35 und den Schienen 36 sichergestellt), so kann man, wie in Fig. 9 dargestellt, eine etwas abgewandelte Ausführung wählen, bei der das Gummirad 88 durch ein Zahnrad 88.2 ersetzt wird. Das Zahnrad kämmt dann mit einer Zahnreihe 94 an der Schiene 39.2. Mit anderen Worten ist die Schiene 39.2 als Zahnstange ausgebildet. Entsprechend der Ausführung gemäß Fig. 8 ist hier das Zahnrad 88.2 drehfest an der Welle 86.2 angebracht, welche die ebenfalls hiermit drehfest verbundene Lochscheibe 90.2 antreibt. Wiederum in Übereinstimmung mit Fig. 8 erzeugt eine Lichtschranke 38.2 eine Impulsfolge, die über die Leitung 41.2 an den Mikroprozessor 22 angelegt wird.
Eine weitere Möglichkeit der schlupffreien Längsmessung ist in Fig. 10 dargestellt. Die Fig. 10 zeigt eine Seitenansicht einer Ballenabtragmaschine, bei der der Turm 3 zwischen zwei Endstellungen 96 und 98 läuft. Der Fahrantrieb des Turmes erfolgt wie bei den früheren Beispielen über die Räder 35. Oberhalb des Bodens 37 befindet sich eine umlaufende Kette 100, die an einer Stelle am Turm 3 befestigt ist und an ihren beiden Enden über jeweilige Umlenkräder 102, 104 läuft. Das Umlenkzahnrad 102 ist dabei auf einer Welle 106 drehfest angebracht, welche drehbar in einer C-förmigen Aufnahme 108 gelagert ist. In entsprechender Weise ist das Umlenkzahnrad 104 auf einer Welle 110 drehfest angebracht, welches drehbar in einer Aufnahme 112 gelagert ist. Um zu zeigen, daß die Kette sehr lang ist, wird sie in der Zeichnung gemäß Fig. 10 an einer Stelle 100.1 unterbrochen. Auf der Welle 106 befindet sich in Übereinstimmung mit den Fig. 8 und 9 eine Lochscheibe 90.3, welche drehfest mit der Welle 106 befestigt ist. Innerhalb der C-förmigen Aufnahme 108 befindet sich eine Lichtschranke 38.3, welche bei Umdrehung der Lochscheibe eine Impulsfolge über die Leitung 41.3 dem Mikroprozessor 22 zuführt. Man sieht, daß bei Bewegung des Turmes 3 entlang der Ballenreihe die entsprechende Bewegung der Kette zu einer Drehbewegung der Welle 106 führt, wobei diese Drehbewegung schlupffrei durch die Lichtschranke 38.3 ermittelt wird.
Fig. 11 zeigt eine weitere Ausführungsform, bei der eine Lochschiene 39.4 über Konsolen 114 am Faserabsaugkanal 4 befestigt ist. In der Lochschiene 39.4 sind mit konstantem Abstand L kreisförmige Löcher 116 angeordnet. Da dieser Faserabsaugkanal sehr lang ist, wird nur dessen Anfang in Fig. 11 gezeigt. Diese Figur zeigt auch andeutungsweise eine verschiebbare Abdeckung 4.1 des Faserabsaugkanals, welche in an sich bekannter Weise dafür sorgt, daß der Faserabsaugka­ nal, außer an der Stelle, an der der Turm die abgetragenen Faserflocken in den Kanal einspeist, geschlossen ist. Zur Abtastung der Reihe von Löchern 116 ist in der Ausführung gemäß Fig. 11 ein induktiver Näherungsschalter 38.4 vorge­ sehen, der am Maschinengestell 3 der Ballenabtragmaschine befestigt ist und so mit dem Turm der Ballenabtragmaschine entlang der Lochschiene 39.4, d. h. entlang der Ballenreihe bewegt wird. Jedesmal, wenn der induktive Näherungsschalter an einem der Löcher 116 vorbeifährt, erzeugt er einen Im­ puls, und diese Impulsfolge wird entsprechend den anderen Ausführungsformen über die Leitung 41.4 an den Mikroprozes­ sor 22 angelegt.
Die Fig. 11 zeigt auch eine alternative Ausführung, bei der eine Stange 118 mit voneinander einen regelmäßigen, d. h. konstanten Abstand aufweisenden Vertiefungen 120 ebenfalls an den Konsolen 114 befestigt ist. Oberhalb der im Querschnitt quadratischen Stange befindet sich ein mechanischer Taster 122, der am Maschinengestell 3 des Turmes der Ballenabtragmaschine befestigt ist und so mit diesem entlang der Stange 114 und entlang der Ballenreihe fährt. Der mechanische Taster 122 hat einen Stößel mit einem hemisphärischen Ende (nicht gezeigt), welcher beim Passieren der Vertiefungen 120 jedesmal durch Federvorspannung in die jeweilige Vertiefung hineingedrückt und aufgrund der Relativbewegung und hermisphärischen Oberfläche dann wieder herausgedrückt wird. Jedesmal, wenn der Stößel sich in eine Vertiefung hineinbewegt, wird ein mechanischer Schaltvorgang ausgelöst, der elektrische Schaltkontakte bewegt und über die Leitung 41.5 eine entsprechende Impulsfolge an den Mikroprozessor 22 anlegt.
Schließlich zeigt die Fig. 12 eine noch einfachere Anordn­ ung, bei der am Faserabsaugkanal 4 rechteckige Blechteile 124 in regelmäßigen Abständen bei 126 angeschweißt werden, so daß die Blechteile Zähne 128 und dazwischen befindliche Lücken 130 bilden. Obwohl in dieser Zeichnung die Zähne und Lücken die gleiche Breite aufweisen, ist dies nicht zwingend vorgeschrieben. Am Maschinengestell 3 des Turmes (in Fig. 12 nicht gezeigt) ist eine als Lichtschranke ausgebildete Abtasteinrichtung 39.6 über eine C-förmige Halterung 132 befestigt, wobei die Lichtschranke auch hier aus Sende- und Empfangsteilen besteht und der sich zwischen diesen beiden Teilen erstreckende Lichtstrahl aufgrund der relativen Bewegung durch die senkrechten Kanten der Zähne 128 perio­ disch unterbrochen und wieder freigegeben wird. Dies erzeugt eine Impulsfolge, welche über die Leitung 41.6 an den Mikroprozessor 22 wie bisher angelegt wird.
Alle Ausführungen haben gemeinsam, daß der Computer auch weiß, in welche Richtung sich der Turm bewegt, beispiels­ weise aufgrund der an den Antriebsmotor angelegten Antriebs­ signale. Somit ist der Mikroprozessor in der Lage, die Längsposition der Ballenabtragmaschine entlang des Turmes je nach Laufrichtung desselben durch Aufaddieren bzw. Subtra­ hieren der ankommenden Impulse zu ermitteln. Es kann auch vorteilhaft sein, ein besonderes Kennzeichen am Anfang und am Ende der Ballenreihe anzubringen, damit diese Stellen einwandfrei markiert sind. Solche Markierungen können auch durch besondere Ausbildung der Lochreihen bzw. der Zahn­ reihen selbst gebildet werden. Beispielsweise können an beiden Enden der Lochschiene zwei benachbarte Löcher zu einem Längsloch ausgebildet werden, wodurch das Ausgangs­ signal der entsprechenden Abtasteinrichtung auf einem konstanten Niveau liegt und nicht mehr ein- und ausschaltet, wie während einer Bewegung entlang der Ballenreihe.
Wie früher erwähnt, kann die durch die Zahn- oder Lochreihe gebildete Struktur eine sehr grobe Rastung aufweisen, wobei die Längsmessung in Bereichen zwischen den einzelnen Markierungen durch Interpolation erfolgt. Dieses Verfahren ist schematische in Fig. 5 eingezeichnet. Der Kasten 140 stellt eine Interpoliereinrichtung dar, welche aus den über die Leitung 41, 41.1, 41.2, 41.3, 41.4, 41.5 oder 41.6 eingelesenen Signalen und aus den im Computer 22 vorhandenen Informationen über die Geschwindigkeit bzw. Beschleunigung oder Verzögerung der Bewegung des Turmes entlang der Ballenreihe die Zeitabstände zwischen nachfolgenden Impulsen so unterteilt, daß die entstehenden Zeitsignale auch als Maß für die Längsposition des Turmes entlang der Ballenreihe dienen. Ist die Geschwindigkeit der Bewegung konstant, so ist die Unterteilung der Zeitabstände in konstanten Einheiten vorzunehmen.
Wenn beispielsweise die Geschwindigkeit der Bewegung 1 m/sec beträgt und die Löcher der Schiene voneinander einen Abstand von 20 cm aufweisen, so entstehen über die Leitung 41 Signale mit einem Zeitabstand zwischen den einzelnen Impulsen von 0.2 sec. Bei konstanter Geschwindigkeit entspricht eine Zeiteinheit von 0.01 sec daher 0.01 m=1 cm. Somit können beispielsweise Sensormessungen nach jedem cm Vorschub durchgeführt werden, wenn die Interpoliereinrich­ tung nach jedem Impuls von der Leitung 41-41.6 dem Meßsensor 30 in zeitlichen Abständen von 0.01 sec Leseimpulse über die Zähleinrichtung 144 und die Leitung 33 schickt.
Weiterhin kann der Computer 22 eine Überwachungseinrichtung 142 aufweisen, welche prüft, daß beim Eintreffen des näch­ sten Impulses über die Leitung 41-41.6 die von der Interpo­ liereinrichtung errechnete Längsposition mit der durch diese Impulse einwandfrei markierten Position übereinstimmt. Sollte dies nicht zutreffen, so sind die zwischen den zwei letzten Impulsen von der Leitung 41-41.6 errechneten Längspositionen als fehlerhaft zu betrachten und daher zu ignorieren. Mit dem Kasten 144 ist die Zähleinrichtung gezeigt, welche die Impulse über die Leitung 41-41.6 und/oder von der Interpoliereinrichtung 142 aufzählt und hierdurch ein dem Fahrweg proportionales Signal erzeugt. Hier sind die Interpoliereinrichtung 140, die Überwachung­ seinrichtung 142 und die Zähleinrichtung 144 in den Computer 22 integriert, d. h. in Software realisiert. Sie können aber auch getrennte Einheiten darstellen, d. h. als Hardware realisiert werden.

Claims (37)

1. Verfahren zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan, bei dem mittels wenigstens eines auf die Ballenoberfläche gerichteten Sensors das Höhenprofil einer Ballenreihe ermittelt und zur Steuerung der Lage des Abtragorganes bei der nachfolgenden Ballenabtragung herangezogen wird, dadurch gekennzeichnet, daß das Empfangssignal des vorzugsweise optischen, akustischen oder mit Radarwellen arbeitenden Sensors zur Gewinnung eines der Ballenhärte entsprechenden Signals verarbeitet wird, und daß die Zustellung und ggf. auch die Durch­ grifftiefe des Abtragorganes entsprechend diesem Härte­ signal gesteuert oder geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Härtesignal aus den Schwankungen, insbesondere aus den Amplitudenschwankungen der Sensorsignale ermittelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Härtesignal durch das Summieren der mit positivem Vorzeichen versehenen Abweichungen des Sensorsignals vom Mittelwert dieses Signals ermittelt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Sensorsignal abgetastet wird, vorzugsweise mit einer Frequenz, die größer ist als die doppelte Grundfrequenz des Signals.
5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß ein Sensor verwendet wird, der z. B. periodisch gestartet wird und unmittelbar den momentane Meßwert in digitalisierter Form dem Computer übergibt, der dieses in einem Array abspeichert.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Härte getrennt für jeden Ballen bzw. für jede Komponente der Ballenreihe ermittelt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Höhenprofil der Ballen­ reihe während einer Leerfahrt des Abtragorganes oberhalb der Ballenreihe ermittelt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem Ballenreihen auf beiden Seiten einer Ballenabtrag­ maschine angeordnet sind, dadurch gekennzeichnet, daß das Höhenprofil der einen Ballenreihe während des Abtragens der anderen Ballenreihe ermittelt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das während eines ersten Durchganges des Abtragorganes entlang einer Ballenreihe abgetastete Höhenprofil in einen Computer eingelesen wird, welcher aufgrund dieses Höhenprofils und des errechneten Härteprofils ein sich über die Länge der Ballenreihe änderndes Zustellprofil errechnet, bei dem die Produktion unter Berücksichtigung des erwünschten Mischungsverhältnisses der Provenienzen der einzelnen Ballen annähernd an einem Maximum gehalten wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Computer programmiert wird, um bei mehreren Durch­ gängen bestrebt zu sein, alle Ballen entsprechend den jeweils gemessenen Härten und dem erwünschten Mischungs­ verhältnis so abzutragen, daß am Ende des Abtragens die ganze Reihe ohne nennenswerte Ballenreste abgetragen ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß bei jedem Durchgang der Computer stets eine Zustelltiefe bzw. ein Zustelltiefenprofil anstrebt, das immer mehr einer waagrechten Linie angenähert wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das Abtragen der Ballenreihe bereits bei dem ersten Durchgang bei gleichzeitigem Erfassen des Höhenprofils erfolgt, wobei das Abtragorgan im ersten Durchgang konstant oder schrittweise der Ballenhöhe nachgesteuert wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß der Computer für nachfolgende Durchgänge die optimalen Durchgangshöhenkurven ermittelt, um einerseits immer eine annähernd maximale Produktion zu erreichen und andererseits im letzten Durchgang auf einer minimalen Höhe angelangt zu sein.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß ein Sollwert für den Flockenstrom der Abtragmaschine vorgebbar ist, daß der Istwert des Flockenstromes aufgrund der Zustelltiefe und des jeweili­ gen Härtesignals ermittelt wird und die Zustelltiefe zur Einhaltung des vorgegebenen bzw. eines maximalen Flocken­ stromes geregelt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anfang bzw. das Ende der Ballenreihe und ggf. das Vorhandensein und die Länge von Lücken zwischen den Ballen der Reihe durch das Sensorsignal ermittelt wird.
16. Verfahren nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß ein dem Fahrweg des Abtragorganes entlang der Ballenreihe proportionales Signal erzeugt und vom Computer bei der Berechnung des Höhenprofils bzw. des Zustelltiefenprofils bzw. des Härteprofils berücksichtigt wird.
17. Verfahren zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan, bei dem mittels wenigstens eines auf die Ballenoberfläche gerichteten Sensors das Höhenprofil einer Ballenreihe ermittelt und zur Steuerung der Lage des Abtragorganes bei der nachfolgenden Ballenabtragung herangezogen wird, dadurch gekennzeichnet, daß für die Ermittlung des Höhenprofils ein Abstandsmeßsensor verwendet wird, insbesondere ein optischer, akustischer oder mit Radarwellen arbeitender Sensor, der den Abstand zwischen ihm und der Ballenoberfläche bzw. dem Boden direkt mißt.
18. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß bei der Abtragung einer Ballenreihe das Abtragsorgan im ersten Durchgang der Ballenoberfläche schrittweise nachgeführt wird, daß im zweiten Durchgang und evtl. auch im dritten Durchgang das Abtragorgan auf eine konstante Höhe eingestellt wird, dessen Wert vom Computer so berechnet wird, daß einerseits eine maximale Abtragtiefe nicht überschritten wird, andererseits aber doch die Produktion schon möglichst hoch gehalten wird, und daß vorzugsweise spätestens beim vierten Durchgang an die Ballengruppe ausnivelliert wird.
19. Vorrichtung zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan zum Abtragen wenigstens einer Ballenreihe, mit einem die Höhe des Abtragorganes steuernden oder regelnden Einrichtung und mit mindestens einem das Höhenprofil der Ballenreihe ermittelnden und auf die Oberfläche der Ballenreihe gerichteten Sensor, dadurch gekennzeichnet, daß der bzw. jeder Sensor ein Abstandsmeßsensor (30, 30.1, 30.2), insbesondere ein optischer, akustischer oder mit Radarwellen arbeitender Sensor ist, der den Abstand zur Ballenoberfläche bzw. am Anfang und am Ende der Ballenreihe oder bei Lücken innerhalb der Ballenreihe den Abstand zum Boden oder zu einem Ballenträger mißt.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß eine Einrichtung (22) vorgesehen ist, die an den Abstandssignalen des Abstandsmeßsensors (30, 30.1, 30.2) die Härte der einzelnen Ballen (43-47) im Bereich der Ballenoberfläche (32) ermittelt.
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß eine Einrichtung (22) vorgesehen ist, welche die Zustellung des Abtragorganes (6) entsprechend der ermittelten Ballenhärte steuert.
22. Vorrichtung nach Anspruch 20 oder Anspruch 21, dadurch gekennzeichnet, daß eine Einrichtung (22) vorgesehen ist, welche die Durchgrifftiefe des Abtragorganes entsprechend der ermittelten Ballenhärte steuert.
23. Vorrichtung nach einem der vorhergehenden Ansprüche 19 bis 22, dadurch gekennzeichnet, daß der Abstandsmeß­ sensor an dem das Abtragorgan (6) tragenden Ausleger (5) in Abtragrichtung vor dem Abtragorgan angebracht ist.
24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß mehrere parallel zueinander arbeitende Abstandsmeß­ sensoren an dem das Abtragorgan (6) tragenden Ausleger (5) in Abtragrichtung vor dem Abtragorgan angebracht ist.
25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, daß wenigstens ein weiterer Abstandsmeßsensor auf der Rückseite des das Abtragorgan (6) tragenden Auslegers (5) angebracht ist.
26. Vorrichtung nach Anspruch 19, bei dem das Abtragorgan von einem fahrbaren und drehbaren Turm getragen ist, der zur Abtragung von auf beiden Seiten des Fahrweges angeordneten Ballenreihen vorgesehen ist, dadurch gekennzeichnet, daß der Abstandsmeßsensor (30.1) auf der dem Abtragorgan entgegengesetzten Seite des Turmes angeordnet ist.
27. Vorrichtung nach einem der vorhergehenden Ansprüche 19-26, gekennzeichnet durch einen die Längsposition des Abtragorganes entlang der Ballenreihe ermittelnden Wegmeßsensor, der am Computer angeschlossen ist.
28. Fahrwegmeßeinrichtung für eine Ballenabtragmaschine mit einem nicht schlupffreien Antriebssystem mit einem fahrbaren Turm, der mittels des Antriebssystems entlang einer Ballenreihe verfahrbar ist, insbesondere zur Anwendung bei einer Vorrichtung nach einem der Ansprüche 19 bis 26, gekennzeichnet durch ein längliches, sich entlang der Ballenreihe erstreckendes Teil, das entweder fest angeordnet oder mit dem Turm verbunden ist und sich mit diesem bewegt, durch eine Abtasteinrichtung, welche je nach der Anordnung des länglichen Teils entweder am fahrbaren Turm oder an einer bestimmten Stelle entlang der Ballenreihe angeordnet ist und das längliche Teil während der Fahrbewegung des Turmes schlupffrei abtastet und jedesmal, wenn der Turm einen bestimmten Schritt zurücklegt, einen Impuls abgibt und durch eine Zähleinrichtung, welche die Impulse zählt und ein dem Fahrweg proportionales Signal erzeugt.
29. Fahrwegmeßeinrichtung nach Anspruch 28, dadurch gekennzeichnet, daß das längliche Teil eine Schiene und die Abtasteinrichtung ein Rad ist, das am Turm angeordnet schlupffrei entlang der Schiene abrollt, und daß ein Impulsgeber zur Abgabe von Impulsen mit dem Rad gekoppelt ist.
30. Fahrwegmeßeinrichtung nach Anspruch 29, dadurch gekennzeichnet, daß die Schiene als Zahnstange und das Rad als ein mit dieser kämmendes Zahnrad ausgebildet ist.
31. Fahrwegmeßeinrichtung nach Anspruch 28, dadurch gekennzeichnet, daß das längliche Teil durch eine Kette gebildet ist, die am Turm befestigt ist und während einer durch die Bewegung des Turmes entlang der Ballenreihe verursachten Umlaufbewegung um Umlenkein­ richtungen an beiden Enden der Ballenreihe umlenkbar ist; daß die Abtasteinrichtung durch ein durch die Kette antreibbares Kettenrad gebildet ist; und daß ein Impulsgeber zur Abgabe von Impulsen mit dem an einer festen Stelle der Ballenreihe angeordneten Kettenrad gekoppelt ist.
32. Fahrwegmeßeinrichtung nach Anspruch 31, dadurch gekennzeichnet, daß das Kettenrad eine der Umlenkeinrichtungen bildet.
33. Fahrwegmeßeinrichtung nach Anspruch 28, dadurch gekennzeichnet, daß das längliche Teil durch eine sich regelmäßiger wiederholende, engere und breitere Bereiche aufweisende Struktur gebildet ist, beispielsweise durch eine Lochschiene oder eine fest gespannte Kette oder ein Zähne und Lücken aufweisendes längliches Gebilde, und daß die Struktur durch eine Lichtschranke oder induktive Abtasteinrichtung abtastbar ist, deren Empfangskreis die Impulse abgibt.
34. Fahrwegmeßeinrichtung nach Anspruch 33, dadurch gekennzeichnet, daß sich die längliche Struktur entlang des Flockentransportkanals (Absaugkanals) erstreckt und an diesem befestigt ist.
35. Fahrwegmeßeinrichtung nach einem der Ansprüche 33 oder 34, dadurch gekennzeichnet, daß die Wiederholungslänge der Struktur relativ groß ist, beispielsweise mehr als etwa 10 cm, und daß bei einer bekannten, vorzugsweise konstanten Fahrgeschwindigkeit Längsmessungen im Bereich zwischen zwei nacheinander folgenden Impulsen durch eine Interpoliereinrichtung durchführbar sind.
36. Fahrwegmeßeinrichtung nach Anspruch 35, gekennzeichnet durch eine den Zeitabstand zwischen den Impulsen überwachende Einrichtung.
37. Fahrwegmeßeinrichtung nach einem der Ansprüche 28 bis 36, dadurch gekennzeichnet, daß die Zähleinrichtung und/oder die Interpoliereinrichtung und/oder die Überwachungseinrichtung durch einen Mikroprozessor gebildet ist bzw. sind.
DE19893943322 1989-08-10 1989-12-29 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine Withdrawn DE3943322A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19893943322 DE3943322A1 (de) 1989-12-29 1989-12-29 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
US07/565,513 US5105507A (en) 1989-08-10 1990-08-10 Method and apparatus for operating a bale opening machine
EP90115424A EP0415156B1 (de) 1989-08-10 1990-08-10 Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine
JP2210554A JPH03220323A (ja) 1989-08-10 1990-08-10 ベール搬出機械の作動方法及び装置並びにベール搬出機械用の走行距離測定装置
DE59010412T DE59010412D1 (de) 1989-08-10 1990-08-10 Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine
US07/745,837 US5121418A (en) 1989-08-10 1991-08-16 Distance of travel measuring device for use with a bale opening machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19893943322 DE3943322A1 (de) 1989-12-29 1989-12-29 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine

Publications (1)

Publication Number Publication Date
DE3943322A1 true DE3943322A1 (de) 1991-07-04

Family

ID=6396617

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19893943322 Withdrawn DE3943322A1 (de) 1989-08-10 1989-12-29 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine

Country Status (1)

Country Link
DE (1) DE3943322A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495642A (en) * 1993-09-24 1996-03-05 Tru/ tzschler GmbH & Co. KG Method and apparatus for detaching fiber tufts from textile fiber bales as a function of bale height
WO2019211013A1 (de) * 2018-05-04 2019-11-07 TRüTZSCHLER GMBH & CO. KG Ballenöffner mit einem maschinengestell in portalbauweise und mit einer an dem maschinengestell angeordneten abnehmereinheit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245506A1 (de) * 1981-12-11 1983-06-30 F.lli Marzoli & C. S.p.A., Palazzolo Sull'Oglio, Brescia Steuerungsvorrichtung fuer eine maschine zum abtragen von faserflocken von einer textilfaserballengruppe
DE3315979A1 (de) * 1983-05-02 1984-11-08 Hubert Dipl.-Ing. 4408 Dülmen Hergeth Schaltung fuer ballenfraesen zur erzielung einer gleichmaessigen aufloesung
DE3334789C1 (de) * 1983-09-26 1985-03-21 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Betreiben eines Ballenöffners für Faserballen
DE3335793A1 (de) * 1983-10-01 1985-04-25 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und vorrichtung zum betreiben eines ballenoeffners, insbesondere zur ermittlung der hoehe von textilfaserballen
DE3153246C2 (de) * 1981-09-05 1985-11-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Ermittlung der senkrechten Ballengrenzen von Faserballen
DE3335792C2 (de) * 1983-10-01 1985-11-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Vorrichtung zur Ermittlung der Lücken zwischen Ballen einer Ballenreihe
DE3135272C2 (de) * 1981-09-05 1986-10-09 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Ermittlung der Höhe von Textilfaserballen
DE3622977A1 (de) * 1986-07-09 1988-01-21 Hollingsworth Gmbh Vorrichtung zum oeffnen von faser-pressballen mittels einer abtragevorrichtung
DE3631902A1 (de) * 1986-09-19 1988-04-07 Hollingsworth Gmbh Vorrichtung zum abtragen von faserballen aus spinngut
DE3636752A1 (de) * 1986-10-29 1988-05-05 Hergeth Hubert Verfahren und vorrichtung zum ermitteln der begrenzungen von ballenbloecken bei ballenfraesen
DE3827517A1 (de) * 1988-08-12 1990-02-15 Rieter Ag Maschf Verstellbarer rost fuer den abtragarm einer ballenabtragmaschine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3153246C2 (de) * 1981-09-05 1985-11-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Ermittlung der senkrechten Ballengrenzen von Faserballen
DE3135272C2 (de) * 1981-09-05 1986-10-09 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Ermittlung der Höhe von Textilfaserballen
DE3245506A1 (de) * 1981-12-11 1983-06-30 F.lli Marzoli & C. S.p.A., Palazzolo Sull'Oglio, Brescia Steuerungsvorrichtung fuer eine maschine zum abtragen von faserflocken von einer textilfaserballengruppe
DE3315979A1 (de) * 1983-05-02 1984-11-08 Hubert Dipl.-Ing. 4408 Dülmen Hergeth Schaltung fuer ballenfraesen zur erzielung einer gleichmaessigen aufloesung
DE3334789C1 (de) * 1983-09-26 1985-03-21 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Betreiben eines Ballenöffners für Faserballen
DE3335793A1 (de) * 1983-10-01 1985-04-25 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und vorrichtung zum betreiben eines ballenoeffners, insbesondere zur ermittlung der hoehe von textilfaserballen
DE3335792C2 (de) * 1983-10-01 1985-11-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Vorrichtung zur Ermittlung der Lücken zwischen Ballen einer Ballenreihe
DE3622977A1 (de) * 1986-07-09 1988-01-21 Hollingsworth Gmbh Vorrichtung zum oeffnen von faser-pressballen mittels einer abtragevorrichtung
DE3631902A1 (de) * 1986-09-19 1988-04-07 Hollingsworth Gmbh Vorrichtung zum abtragen von faserballen aus spinngut
DE3636752A1 (de) * 1986-10-29 1988-05-05 Hergeth Hubert Verfahren und vorrichtung zum ermitteln der begrenzungen von ballenbloecken bei ballenfraesen
DE3827517A1 (de) * 1988-08-12 1990-02-15 Rieter Ag Maschf Verstellbarer rost fuer den abtragarm einer ballenabtragmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495642A (en) * 1993-09-24 1996-03-05 Tru/ tzschler GmbH & Co. KG Method and apparatus for detaching fiber tufts from textile fiber bales as a function of bale height
WO2019211013A1 (de) * 2018-05-04 2019-11-07 TRüTZSCHLER GMBH & CO. KG Ballenöffner mit einem maschinengestell in portalbauweise und mit einer an dem maschinengestell angeordneten abnehmereinheit

Similar Documents

Publication Publication Date Title
EP0415156B1 (de) Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine
DE4422497C2 (de) Vorrichtung und Verfahren zum optoelektronischen Erfassen von Gegenständen
DE69106707T2 (de) Einrichtung an einer wickelmaschine für kabel oder ähnliches strangartiges produkt.
EP0358891B1 (de) Öffnungsvorrichtung zum Öffnen von gepressten Faserballen, z.B. Baumwolle- und Zellwollballen
EP0199041B1 (de) Verfahren und Vorrichtung zum Abtragen von Faserflocken aus Textilfaserballen
DD286389A5 (de) Fahrbare gleisbearbeitungsmaschine mit einer einrichtung zur steuerung der arbeits-position ihrer arbeits-aggregate bzw. -werkzeuge
EP0193647B1 (de) Verfahren und Steuerung für eine Maschine zum Abtragen von Faserflocken von Textilfaserballen
DE3903381C2 (de)
DE102016113149A1 (de) Aufnahme von Entfernungsprofilen
DE3916060C2 (de) Verfahren und Vorrichtung zum Erfassen der Querschnittsform und der Abmessungen eines Werkstücks in einer Sägemaschine
DE4435975C2 (de) Vorrichtung zur maschinellen Festigkeitssortierung von Schnittholz
EP0327885B1 (de) Vorrichtung zum Abtragen von Faserflocken
DE3631902C2 (de)
DE3943322A1 (de) Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
DE3832984A1 (de) Fadenbruchanzeige in fadenscharen
DE3926482A1 (de) Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
WO2017143373A1 (de) Bearbeitungsanlage zum bearbeiten von rundmaterial umfassend eine zufördereinrichtung mit dauermagneten
CH673041A5 (de)
CH692508A5 (de) Ballenabtragverfahren und Vorrichtung zum Abtragen für in mindestens einer Reihe aufgestellte Faserballen.
DE3314601C2 (de)
DE3932281C2 (de)
DE69722508T2 (de) Antriebseinrichtung für eine Stabschneidvorrichtung
DE1784148A1 (de) Verfahren und Vorrichtung zum Ausrichten von Gleisen der Seite nach
DE3436923C2 (de)
AT513546B1 (de) Schneidemaschine

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee