DE3890748C2 - - Google Patents
Info
- Publication number
- DE3890748C2 DE3890748C2 DE3890748A DE3890748A DE3890748C2 DE 3890748 C2 DE3890748 C2 DE 3890748C2 DE 3890748 A DE3890748 A DE 3890748A DE 3890748 A DE3890748 A DE 3890748A DE 3890748 C2 DE3890748 C2 DE 3890748C2
- Authority
- DE
- Germany
- Prior art keywords
- signal
- information
- component
- image
- subcarrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/004—Predictors, e.g. intraframe, interframe coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N11/00—Colour television systems
- H04N11/24—High-definition television systems
- H04N11/30—High-definition television systems with transmission of the extra information by means of quadrature modulation
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Television Systems (AREA)
- Color Television Systems (AREA)
Description
Die Erfindung bezieht sich auf die Verarbeitung von
Fernsehsignalen und betrifft insbesondere Anordnungen
zur Vorbehandlung von Haupt- und Zusatzinformationen
für ein Fernsehsignal während eines Codierungsvorgangs.
Die Zusatzinformation kann dann während eines späteren
Decodierungsvorgangs wirksam und genau aus der Haupt
information rückgewonnen werden.
Ein herkömmlicher Fernsehempfänger wie z. B. ein Empfän
ger, der auf die in den USA und anderswo gebräuchliche
NTSC-Rundfunknorm abgestimmt ist, hat ein Bildseiten
verhältnis (Verhältnis der Breite zur Höhe des wieder
gegebenen Bildes) von 4 : 3. In jüngster Zeit besteht je
doch Interesse an höheren Bildseitenverhältnissen für
Fernsehempfänger, z. B. den Verhältnissen 2 : 1, 16 : 9 oder
5 : 3. Solche höheren Bildseitenverhältnisse entsprechen
eher dem Gesichtsfeld des menschlichen Auges als das
4 : 3-Bildseitenverhältnis eines herkömmlichen Fernseh
empfängers.
Besondere Beachtung schenkt man Videosignalen für ein
Bildseitenverhältnis von 5 : 3, da dieser Wert dem Bild
seitenverhältnis von Kinofilmen entspricht. Solche
Videosignale können dann ohne Beschneidung der Bildin
formation gesendet und empfangen werden. Breitbild-
Fernsehsysteme (in Anlehnung an die Kinofilmtechnik
auch "Breitwandsysteme" genannt), die einfach Signale
mit einem höheren Bildseitenverhältnis als herkömmliche
Systeme übertragen, sind jedoch inkompatibel mit Emp
fängern, die das konventionelle Bildseitenverhältnis
haben. Dies macht eine weit verbreitete Einführung von
Breitbildsystemen schwierig.
Es besteht also Bedarf an einem Breitbildsystem, das
kompatibel mit herkömmlichen Fernsehempfängern ist. Ein
solches System ist in dem US-Patent 48 16 899
beschrieben.
Noch zweckmäßiger ist
es, wenn bei einem solchen kompatiblen Breitbildsystem
Maßnahmen getroffen sind, um die Auflösung des wieder
gegebenen Bildes zu verbessern oder zu erweitern, so
daß man zusätzliche oder besonders gute Bildfeinheit
gewinnt. Ein Breitbild-Fernsehystem, das erweiterte
Bildauflösung (abgekürzt EDTV von "extended definition
television") bringt, kann eine Einrichtung zur Erzeugung
eines fortlaufend abgetasteten Bildes enthalten (Ab
tastung ohne Zeilensprung, auch "progressive" Abtastung
genannt).
In einem kompatiblen Breitbildsystem wird es notwendig
sein, zusätzliche Videoinformation zusammen mit existie
render Standard-Information in codierter Form zu über
tragen. Hier wurde nun gefunden, daß es zweckmäßig ist,
solche zusätzliche Information an einem Codierer so vor
zubehandeln, daß sie sich an einem Decodierer wirkungs
voll und genau wiedergewinnen läßt.
Die Aufgabe der Erfindung besteht in der Angabe eines nach
folgend erläuterten Intraframe-Verfahrens für die Verarbei
tung der Bildelemente zu Signalkomponenten eines Fernseh
sendesignals, um diese Komponenten auf der Empfängerseite
leichter wieder trennen zu können.
Erfindungsgemäße Lösungen dieser Aufgabe sind in den neben
geordneten Hauptansprüchen angegeben, während besondere Aus
führungsarten der Erfindung in den rückbezogenen Unteran
sprüchen gekennzeichnet sind.
In einer Ausführungsform eines kompatiblen Breitbild-
Fernsehsystems mit erweiterter Auflösung, das eine den
Prinzipien der vorliegenden Erfindung entsprechende An
ordnung enthält, wird ein hochauflösendes und "pro
gressiv" abgetastetes Original-Breitbildsignal so co
diert, daß es vier Komponenten enthält, die aus einem
zusammengesetzten Signal (Signalgemisch) abgeleitet
sind. Die vier Komponenten werden getrennt verarbeitet,
bevor sie in einem einzigen Signalübertragungskanal
wiedervereinigt werden. Gemäß den Prinzipien der vor
liegenden Bildinformation, die bestimmten Komponenten zu
geordnet ist, einem linearen, sich zeitlich ändernden
Filterungsprozeß unterworfen, z. B. einer Mittelung
innerhalb des Vollbildes (Intravollbild-Mittelung), so
daß Komponenten innerhalb eines Vollbildes, die reprä
sentativ für gut sichtbar korrelierte Bildinformation
sind, im wesentlichen identisch von einem zum anderen
der beiden aufeinanderfolgenden Teilbilder gemacht wer
den, um auf diese Weise die wirkungsvolle und genaue
Wiedergewinnung der zusätzlichen Information an einem
Decodierer zu ermöglichen.
Eine erste der besagten vier Komponenten ist ein im 2 : 1-
Zeilensprungformat aufgebautes Hauptsignal mit einem
Standard-Bildseitenverhältnis von 4 : 3. Diese Komponente
besteht aus einem mittleren Teil des Breitbildsignals,
der zeitlich so gedehnt worden ist, daß er nahezu die
gesamte aktive Zeilenzeit für das 4 : 3-Bildseitenverhält
nis ausfüllt, und aus horizontal-niedrigfrequenter Sei
tenfeldinformation, die zeitlich komprimiert in den lin
ken und den rechten Horizontal-Überabtastungsbereich
gezwängt ist, also die diejenigen Außenbereiche, die
beidseitig jenseits des sichtbaren Bereichs der Hori
zontalabtastung liegen und wo die betreffende Informa
tion auf dem Schirm eines herkömmlichen Fernsehempfän
gers nicht gesehen werden kann.
Eine zweite Komponente ist ein im 2 : 1-Zeilensprungfor
mat aufgebautes Zusatzsignal, bestehend aus den hoch
frequenten Anteilen der Informationen des linken und des
rechten Seitenfeldes, die zeitlich jeweils auf die Hälf
te der aktiven Zeilenzeit gedehnt worden sind. Diese ge
dehnten Seitenfeldinformationen nehmen somit zusammen
im wesentlichen die gesamte aktive Zeilenzeit ein.
Eine dritte Komponente ist ein im 2 : 1-Zeilensprungfor
mat aufgebautes Zusatzsignal, das aus der Breitbild
signalquelle abgeleitet ist und die hochfrequente Infor
mation horizontaler Leuchtdichtedetails zwischen unge
fähr 5,0 MHz und 6,2 MHz enthält.
Eine vierte Komponente ist ein im 2 : 1-Zeilensprungfor
mat aufgebautes zusätzliches "Helfersignal", bestehend
aus vertikal-zeitlicher Leuchtdichte-Detailinformation,
die ansonsten bei der Umwandlung vom Format progressiver
Abtastung in das Zeilensprungformat verlorengehen würde.
Diese Signalkomponente hilft, fehlende Bildinformation
zu rekonstruieren und unerwünschtes Flimmern und bewe
gungsbedingte Störerscheinungen (Bewegungsartefakte)
bei der Wiedergabe auf einem EDTV-Breitbildempfänger zu
vermindern oder zu beseitigen.
Die zweite und dritte Komponente werden einer Intra
vollbild-Mittelung unterworfen, bevor sie einem alter
nierenden Hilfsträger aufmoduliert werden. Der alter
nierende Hilfsträger ist zusätzlich vorgesehen und ein
anderer Hilfsträger als der Farbhilfsträger. Die erste
Komponente wird oberhalb einer gegebenen Frequenz eben
falls einer Intravollbild-Mittelung unterworfen, bevor
sie mit dem modulierten alternierenden Hilfsträger ver
einigt wird, um ein kombiniertes Signal zu erzeugen. An
schließend wird ein HF-Träger mit dem kombinierten Si
gnal moduliert.
Das vorliegende Breitbildsystem erweiterter Auflösung
(EDTV-Breitbildsystem) hat mehrere wichtige Vorteile
gegenüber einem normalen NTSC-System. Direkt deutlich
ist der Vorzug des größeren Bildseitenverhältnisses,
wenn man an die Wiedergabe von Kinofilmen denkt. Das
Breitbild ist "ruhiger", praktisch frei von dem Inter
zeilenflimmern, wie es ansonsten bei den Bildern eines
normalen NTSC-Empfängers üblich ist. Das Bild ist außer
dem "sauberer", praktisch frei von "kriechenden Flecken"
(crawling dots) und "hängenden Flecken" (hanging dots)
und störenden Regenbogen-Farbeffekten. Das Breitbild
hat eine merklich bessere Auflösung in beiden räumli
chen Dimensionen. Die Zeilenstruktur ist wegen der größe
ren Zeilendichte nicht sichtbar. Schließlich treten
in bewegten Teilchen des Bildes keine störenden Schwe
bungserscheinungen zwischen bewegten horizontalen Rän
dern und der Abtaststruktur auf.
Die Erfindung wird nachstehend an Ausführungsbeispielen
anhand von Zeichnungen näher erläutert:
Fig. 1 gibt eine allgemeine Übersicht über ein Co
diersystem für Breitbildfernsehen mit erweiterter Auf
lösung gemäß der vorliegenden Erfindung;
Fig. 1a ist ein ausführliches Blockschaltbild des
Codiersystems;
Fig. 1b bis 1e sind Diagramme und schematische
Darstellungen zur Erläuterung der Arbeitsweise des Co
diersystems;
Fig. 2 bis 5 zeigen Signalverläufe und schema
tische Darstellungen zur Erläuterung der Arbeitsweise
des Codiersystems;
Fig. 13 ist ein Blockschaltbild eines Teils eines
Empfängers für Breitbildfernsehen mit erweiterter Auf
lösung, der einen Decodierer gemäß der vorliegenden Er
dingung enthält;
Fig. 6 bis 12 und 14 bis 24 veranschaulichen
Aspekte des erfindungsgemäßen Breitbild-Fernsehsystems
in größerer Einzelheit.
Ein System, welches Bilder mit großem Seitenverhältnis
wie etwa 5 : 3 über einen normalen Rundfunkkanal z. B. der
NTSC-Norm übertragen werden soll, sollte einerseits eine Bild
wiedergabe hoher Qualität auf einem Breitbildempfänger
liefern und andererseits sichtbare Störungen stark ver
mindern oder ganz zu eliminieren, wenn das Bild mit ei
nem Standard-Bildseitenverhältnis von 4 : 3 wiedergegeben
wird. Man kann die den Seitenfeldern eines Breitbildes
entsprechenden Signale so komprimieren, daß sie in die
jenigen Abschnitte passen, die bei der Wiedergabe in
einem herkömmlichen NTSC-Fernsehempfänger in die Be
reiche der horizontalen Überabtastung fallen. Dies geht
jedoch auf Kosten der Bildauflösung in den Seitenfeldern
eines rekonstruierten Breitbildes.
Da eine Komprimierung in der Zeitebene zu einer Dehnung
in der Frequenzebene führt, können nur niedrigfrequente
Komponenten eine entsprechende Verarbeitung in einem
normalen Fernsehkanal überleben, der eine kleinere Band
breite hat, als es für ein Breitbildsignal erforderlich
ist. Wenn also die komprimierten Seitenfelder eines kom
patiblen Breitbildsignals in einem Breitbildempfänger
wieder gedehnt werden, ergibt sich hinsichtlich der
Auflösung oder des Gehaltes hoher Frequenzen ein deut
licher Unterschied zwischen dem mittleren Teil und den
Seitenfeldern eines wiedergegebenen Breitbildes, wenn
man keine Maßnahmen zur Vermeidung dieses Effekts trifft.
Dieser merkliche Unterschied rührt daher, daß niedrig
frequente Seitenfeldinformation wiedergewonnen wird,
während hochfrequente Information infolge bandbegrenzen
der Einflüsse des Videokanals verlorengeht.
In der Fig. 1 sind Teile, die auch in der ausführliche
ren Darstellung des Systems in Fig. 1a vorkommen, mit
denselben Bezugszahlen wie dort bezeichnet. Gemäß der
Fig. 1 wird ein Original-Breitbildsystem, das im Format
progressiver (fortlaufender) Abtastung vorliegt und In
formationen eines linken, eines rechten und eines mitt
leren Bildfeldes enthält, so verarbeitet, daß vier ge
trennte Komponenten für die Codierung entstehen. Diese
vier Komponenten, die bereits weiter oben beschrieben
wurden, sind in der Fig. 1 allgemein in Form einer Bild
wiedergabe dargestellt. Die Verarbeitung der ersten Kom
ponente (welche zeitlich gedehnte Information des mitt
leren Feldes und zeitlich komprimierte niedrigfrequente
Information der linken und rechten Seitenfelder enthält)
ist derart, daß die resultierende Leuchtdichtebandbreite
beim hier beschriebenen Beispiel die NTSC-Leuchtdichte
bandbreite von 4,2 MHz nicht überschreitet. Dieses Si
gnal ist hinsichtlich der Farbe im normalen NTSC-Format
codiert, und die Leuchtdichte- und Farbartkomponenten
des Signals sind in geeigneter Weise vorgefiltert (z. B.
unter Verwendung von Teilbild-Kammfiltern), um eine ver
besserte Trennung zwischen Leuchtdichte und Farbart so
wohl in normalen NTSC-Empfängern als auch in Breitbild
empfängern zu bekommmen.
Die zeitliche Dehnung der zweiten Komponente (hochfre
quente Information der Seitenfelder) reduziert die
"horizontale" Bandbreite dieser Komponente auf etwa
1,1 MHz. Die besagte Komponente ist räumlich unkorre
liert mit dem Hauptsignal (also mit der ersten Komponen
te), und es müssen besondere Vorkehrungen getroffen
werden, um ihre Sichtbarkeit bei normalen NTSC-Empfän
gern zu verdecken.
Der erweiterte, von 5,0 bis 6,2 MHz reichende Leucht
dichteinformationsgehalt der dritten Komponente wird
zunächst frequenzmäßig nach unten auf einen Frequenzbe
reich von 0 bis 1,2 MHz verschoben, bevor er weiterver
arbeitet wird. Die betreffende Komponente wird in das
4 : 3-Standardformat abgebildet, wodurch sie räumlich mit
dem Hauptsignal (erste Komponente) korreliert wird, um
ihre Sichtbarkeit auf NTSC-Standardempfängern zu mas
kieren. Die komprimierte Seitenfeldinformation der
dritten Komponente hat eine Bandbreite, die gleich einem
Sechstel der Bandbreite der Mittelfeldinformation ist
(0 bis 1,2 MHz).
Die vierte Komponente (vertikal-zeitliches Helfersignal)
wird in das 4 : 3-Standardformat abgebildet, um sie mit
der Hauptsignalkomponente zu korrelieren und dadurch
ihre Sichtbarkeit auf NTSC-Standardempfängern zu maskie
ren; ihre horizontale Bandbreite wird ferner auf 750 KHz
begrenzt.
Die erste, zweite und dritte Komponente werden durch je
weils eine zugeordnete Intravollbild-Mittelungsschaltung
38 bzw. 64 bzw. 76 verarbeitet (eine Art vertikal-zeit
liches Filter), um das vertikal-zeitliche Übersprechen
zwischen den Haupt- und Hilfssignalkomponenten in einem
Breitbildempfänger zu eliminieren. Die Intravollbild-
Mittelung der ersten Komponente erfolgt nur oberhalb
etwa 1,5 MHz. Die zweite und die dritte Komponente er
fahren nach ihrer Intravollbild-Mittelung, nun als Kom
ponenten X und Z bezeichnet, eine nichtlineare Amplitu
denpressung, bevor sie in Quadraturmodulation einem al
ternierenden 3,108-MHz-Hilfsträger ASC aufgeprägt wer
den, dessen Phase anders als ein Farbhilfsträger von
Teilbild zu Teilbild alterniert. Dies geschieht in ei
nem Block 80. Das vom Block 80 kommende modulierte Si
gnal M wird in einem Addierer mit der intravollbild-ge
mittelten ersten Komponente N addiert. Das resultieren
de Ausgangssignal, mit NTSCF bezeichnet, ist ein Basis
bandsignal mit einer Bandbreite von 4,2 MHz, das zusam
men mit der von einem Filter 79 kommenden tiefpaßgefil
terten, auf 750 KHz bandbegrenzten vierten Komponente
YTN in einem Block 57 in Quadraturmodulation einem HF-
Bildträger aufgeprägt wird, um ein NTSC-kompatibles HF-
Signal zu erzeugen, welches über einen einzigen Rund
funkkanal normaler Bandbreite an einen NTSC-Standard
empfänger oder einen progressiv abtastenden Breitbild
empfänger übertragen werden kann.
Wie anhand des Codierers nach der Fig. 1a ersichtlich,
ist es durch zeitliche Komprimierung der ersten Komponen
te möglich, die niedrigfrequente Seitenfeldinformation
ganz in den Horizontal-Überabtastungsbereich eines NTSC-
Standardsignals zu quetschen. Die hochfrequente Seiten
feldinformation nutzt das gleiche Spektrum wie das NTSC-
Standardsignal im Video-Übertragungskanal, jedoch in
einer solchen Weise, daß sie für einen Standardempfän
ger "transparent" ist, was an der Anwendung einer Qua
draturmodulation eines alternierenden Hilfsträgers im
Block 80 liegt, wie es noch erläutert wird. Bei Empfang
in einem NTSC-Standardempfänger wird nur der dem mittle
ren Bildfeld entsprechende Teil des Hauptsignals (erste
Komponente) sichtbar. Der zweite und die dritte Komponen
te können allenfalls ein Interferenzmuster niedriger Am
plitude bewirken, das jedoch bei normalen Betrachtungs
abständen und normalen Einstellungen der Bildregler nicht
wahrzunehmen ist. Die vierte Komponente wird in Empfän
gern, die Synchrondetektoren als Videomodulatoren ent
halten, vollständig unterdrückt. In Empfängern mit Hüll
kurvendetektoren wird die vierte Komponente zwar verar
beitet, aber nicht wahrgenommen, weil sie mit dem Haupt
signal korreliert ist.
Die Fig. 1b zeigt das HF-Spektrum des hier beschriebenen
Breitbildsystems erweiterter Auflösung (EDTV-Breitbild
system), einschließlich der Zusatzinformation, im Ver
gleich zum HF-Spektrum eines NTSC-Standardsystems. Im
Spektrum des vorliegenden Breitbildsystems belegen die
hochfrequenten Anteile der Seitenfeldinformation und die
besonders hochfrequenten horizontalen Leuchtdichtedetails
ungefähr 1,1 MHz beidseitig des alternierenden 3,108-MHz-
Hilfsträgers ASC. Das vertikal-zeitliche (V-T-)Helfersignal
(vierte Komponente) erstreckt sich über jeweils 750 KHz
beidseitig der Hauptsignal-Bildträgerfrequenz.
Ein progressiv abtastender Breitbildempfänger enthält
eine Einrichtung zur Rekonstruktion des im Format pro
gressiver Abtastung vorliegenden Original-Breitbildsig
gnals. Verglichen mit einem NTSC-Standardsignal hat das
rekonstruierte Breitbildsignal linke und rechte Seiten
felder mit einer Auflösung entsprechend dem NTSC-Stan
dard und einem Mittelfeld, welches das Seitenverhältnis
4 : 3 aufweist und besonders in stillstehenden Teilen des
Bildes feinere horizontale und vertikale Leuchtdichte
details zeigt.
Zwei grundlegende Gesichtspunkte bestimmen die anzuwen
dende Signalverarbeitungstechnik für die Erzeugung und
Verarbeitung der ersten, der zweiten, der dritten und
der vierten Signalkomponente. Diese beiden Gesichts
punkte sind erstens die Kompatibilität mit existieren
den Empfängern und zweitens die Wiederherstellbarkeit
im Empfänger.
Vollständige Kompatibilität bedeutet auch Kompatibili
tät von Empfänger und Sender, so daß existierende Stan
dardempfänger Breitbildsignale erweiterter Auflösung
(EDTV-Breitbildsignale) ohne besondere Adapter empfan
gen können und daraus ein Standardbild erzeugen können.
Eine Kompatibilität in diesem Sinne erfordert z. B., daß
das Bildabtastformat im Sender im wesentlichen das glei
che ist wie das Bildabtastformat im Empfänger oder zu
mindest innerhalb der Toleranz des empfängerseitigen
Formats liegt. Kompatibilität bedeutet ferner, daß be
sondere, nicht zum Standard gehörende Komponenten im
Hauptsignal physikalisch oder hinsichtlich der Wahr
nehmbarkeit versteckt liegen müssen, wenn die Wieder
gabe mittels eines Standardempfängers erfolgt. Um eine
Kompatibilität im letztgenannten Sinne zu erreichen,
verwendet das vorliegende System die nachstehend be
schriebene Technik zum Verstecken der Zusatzkomponenten.
Wie bereits weiter oben beschrieben, sind die niedrig
frequenten Anteile der Seitenfeldinformation körperlich
dadurch versteckt, daß sie im normalen Horizontal-Über
abtastungsbereich eines Standardempfängers liegen. Die
zweite Komponente, die im Vergleich zu den niedrigfre
quenten Anteilen der Seitenfeldinformation wenig Ener
gie enthält, und die dritte Komponente, die ein hoch
frequentes Detailsignal mit normalerweise geringer Ener
gie ist, werden in der Ampitude gepreßt und in Quadra
turmodulation auf einen alternierenden Hilfsträger ge
geben, der bei 3,108 MHz schwingt, wobei es sich um eine
"verkämmte" Frequenz handelt (ein ungerades Vielfaches
der Hälfte der Horizontalzeilenfrequenz). Frequenz,
Phase und Amplitude des alternierenden Hilfsträgers wer
den so gewählt, daß die Sichtbarkeit des modulierten
Hilfsträgersignals soweit wie möglich reduziert ist,
z. B. dadurch, daß man die Phase des alternierenden
Hilfsträgers von Teilbild zu Teilbild wechselnd um 180°
umschaltet, anders als die Phase des Farbhilfsträgers.
Obwohl die Komponenten des modulierten alternierenden
Hilfsträgers alle innerhalb des Farbart-Durchlaßbandes
liegen (2,0 bis 4,2 MHz), sind diese Komponenten vor
dem Wahrnehmungsvermögen versteckt, weil sie als teil
bildfrequent komplementär erscheinendes Farbflimmern
wiedergegeben werden, das vom menschlichen Auge bei nor
malen Farbsättigungswerten nicht wahrgenommen wird.
Außerdem werden durch die nichtlineare Amplitudenpressung
der Modulationskomponenten vor der Amplitudenmodulation
in vorteilhafter Weise momentane Amplitudenüberschwin
ger auf einen akzeptierbaren niedrigeren Pegel redu
ziert.
Die dritte Komponente wird dadurch versteckt, daß die
Mittelfeldinformation bis zur Deckung des 4 : 3-Standard
formats zeitlich gedehnt wird, wodurch die dritte Kom
ponente räumlich (und zeitlich) mit der ersten Komponen
te korreliert wird. Dies geschieht mit Hilfe eines For
matcodierers, wie er noch erläutert wird. Die besagte
räumliche Korrelation hilft verhindern, daß die Infor
mation der dritten Komponente die Information der ersten
Komponente stört, nachdem die dritte Komponente in Qua
draturmodulation mit der zweiten Komponente dem alter
nierenden Hilfsträger aufgeprägt und dann mit der er
sten Komponente vereinigt worden ist.
Die vierte Komponente, das "Helfersignal", ist eben
falls versteckt infolge der zeitlichen Dehnung der Mit
telfeldinformation auf das 4 : 3-Format, wodurch die vier
te Komponente räumlich mit dem Hauptsignal korreliert
wird. Die vierte Komponente wird in Standardempfängern
mit Synchrondetektoren unterdrückt, während sie in Stan
dardempfängern mit Hüllkurvendetektoren wegen ihrer
räumlichen Korrelation mit dem Hauptsignal dem Wahrneh
mungsvermögen verborgen bleibt.
Die Wiedergewinnung der ersten, zweiten und dritten Kom
ponente in einem Breitbildempfänger mit progressiver
Abtastung wird ermöglicht durch Anwendung eines Prozes
ses der Intravollbild-Mittelung im Sender und im Emp
fänger. Dieser Prozeß wird im Sendersystem der Fig. 1
und 1a durch die Elemente 38, 64 und 76 und im Empfän
ger durch zugeordnete Elemente durchgeführt, wie es
noch erläutert wird. Die Intravollbild-Mittelung ist
eine Signalbehandlungstechnik, bei welcher zwei gut
sichtbar korrelierte Signale hergerichtet werden, um
sie miteinander zu kombinieren. Sie können später wir
kungsvoll und genau wiedergewonnen werden, z. B. mit
Hilfe eines Teilbildspeichers, und zwar so, daß sie
frei von vertikal-zeitlichem Übersprechen sind, auch
dann, wenn es sich um Bildsignale handelt und Bewegung
in den Bildern ist.
Die für diesen Zweck benutzte Art der Signalbehandlung
beinhaltet im wesentlichen die Maßnahmen, zwei Signale
identisch auf einer Teilbildbasis zu machen, d.h. zwei
Signalproben gleichen Wertes im Abstand einer Teilbild
periode zu erzeugen. Die Intravollbild-Mittelung ist
eine bequeme Technik zur Erreichung dieses Ziels, es
können jedoch auch andere Techniken angewendet werden.
Eine Intravollbild-Mittelung ist im Grunde ein Prozeß
linearer, sich zeitlich ändernder digitaler Vorfilte
rung und Nachfilterung, um die genaue Wiedergewinnung
der beiden gut sichtbar korrelierten kombinierten Si
gnale zu gewährleisten. Horizontal-Übersprechen wird
durch Sicherheitsbänder zwischen Horizontal-Vorfiltern
im senderseitigen Codierer und zwischen Horizontal-
Nachfiltern im empfängerseitigen Decodierer eliminiert.
Der Prozeß der Intravollbild-Mittelung, wie er sich in
der Zeitebene abspielt, ist allgemein in der Fig. 1c
veranschaulicht, wo Paare von Teilbildern dadurch einan
der gleichgemacht werden, daß der Mittelwert jeweils
zweier, um 262 Horizontalzeilenperioden (262 H) auseinan
derliegender Bildpunkte (A, B und C, D) gebildet wird.
Dieser Mittelwert ersetzt die ursprünglichen Werte in
jedem Paar. Die Fig. 1d veranschaulicht den Prozeß der
Intravollbild-Mittelung im Zusammenhang mit dem System
nach Fig. 1. Beginnend mit der zweiten Komponente
(Komponente 2) und der dritten Komponente (Komponente 3)
werden Paare von Bildpunkten, die um 262 H innerhalb
eines Vollbildes auseinanderliegen, gemittelt, und der
Mittelwert (z. B. X1, X3 und Z1, Z3) ersetzt die ursprüng
lichen Bildpunktwerte. Diese vertikal-zeitliche Mitte
lung findet innerhalb jeweils eines Vollbildes statt
und überschreitet nicht die Vollbildgrenzen.
Im Falle der ersten Komponente (Komponente 1) wird die
Intravollbild-Mittelung nur am Informationsgehalt ober
halb ungefähr 1,5 MHz durchgeführt, um niedrigerfrequen
te Vertikaldetailinformation nicht zu beeinträchtigen.
Im Falle der Komponenten 1 und 2 wird die Intravollbild-
Mittelung an einem zusammengesetzten Signal durchge
führt, das Leuchtdichtekomponenten (Y) und Farbartkom
ponenten (C) enthält, und zwar über das ganze Farbart
band. Die Farbartkomponente dieses zusammengesetzten
Signals überlebt die Intravollbild-Mittelung, weil Bild
punkte, die um 262 H auseinanderliegen, mit dem Farb
hilfsträger "in Phase" sind. Die Phase des neuen al
ternierenden Hilfsträgers wird so gesteuert, daß sie
genau gegenphasig für um 262 H auseinanderliegende
Bildpunkte ist und somit anders ist als die Phase des
Farbhilfsträgers, die sich von einem Teilbild zum näch
sten nicht ändert. Wenn also die Komponenten 2 und 3
(nach der Quadraturmodulation) in der Einheit 40 mit
der Komponente 1 addiert werden, haben um 262 H beab
standete Bildpunkte die Form (M+A) und (M-A), wobei
M eine Probe des zusammengesetzten Hauptsignals oberhalb
1,5 MHz ist und A eine Probe des modulierten Zusatzsig
gnals ist.
Die Mittelung der beiden bildinformationshaltigen Si
gnale kann dazu führen, daß Bildinformation verloren
geht oder undeutlich wird, jedoch wird der Bildinfor
mationsgehalt solcher gemittelten Signale im wesentli
chen bewahrt, wenn die gemittelten Signale Bildinforma
tionen repräsentieren, die in gut sichtbarer Weise von
Teilbild zu Teilbild, d. h. innerhalb eines Vollbildes
(also "intravollbildlich") korreliert sind. Mit der
Intravollbild-Mittelung wird das vertikal-zeitliche
Übersprechen praktisch eliminiert, auch wenn Bewegung
im Bild vorhanden ist. In dieser Hinsicht führt der
Prozeß der Intravollbild-Mittelung zu genau gleichen
Proben im 262-H-Abstand.
Im Empfänger ist es eine einfache Sache, den Informa
tionsinhalt dieser Proben genau wiederzugewinnen, d. h.
frei von Übersprechen. Zur Wiedergewinnung der Informa
tion des Hauptsignals und der Zusatzsignale braucht man
hierzu nur den Mittelwert und den Differenzwert von
Bildpunktproben zu bilden, die innerhalb eines Vollbil
des um 262 H auseinanderliegen. In einem Decodierer im
Empfänger kann die nach Intravollbild-Mittelung über
tragene Originalinformation durch einen Prozeß der In
travollbild-Mittelung und Differenzbildung praktisch
unversehrt wiedergewonnen werden, weil dafür gesorgt
wurde, daß die gut sichtbar korrelierte Originalinfor
mation von Teilbild zu Teilbild praktisch "identisch"
erscheint.
Ebenfalls im Empfänger wird der HF-Kanal unter Verwen
dung eines HF-Synchrondetektors quadratur-demoduliert.
Dadurch wird die vierte Komponente (Komponente 4) von
den anderen drei Komponenten getrennt. Durch Anwendung
einer Intravollbild-Mittelung und Differenzbildung wird
die Komponente 1 von den modulierten Komponenten 2 und
3 getrennt, und unter Anwendung einer Quadratur-Demo
dulation werden die Komponenten 2 und 3 voneinander ge
trennt, wie es anhand der Fig. 13 noch beschrieben wird.
Nachdem die vier Komponenten im Empfänger wiedergewon
nen worden sind, werden die zusammengesetzten Signale
gemäß der NTSC-Norm decodiert und in Leuchtdichte- und
Farbartkomponenten aufgetrennt. Es erfolgt eine Abbil
dungstransformation aller Komponenten in umgekehrtem
Sinne, um das Breitbild-Seitenverhältnis wiederherzu
stellen, und die hochfrequenten Anteile der Seitenfeld
information werden mit den niedrigfrequenten Anteilen
kombiniert, um die volle Auflösung in den Seitenfeldern
wieder zu erhalten. Die erweiterte hochfrequente Leucht
dichte-Detailinformation wird in ihren ursprünglichen
Frequenzbereich verschoben und mit dem Leuchtdichtesi
gnal addiert, welches dann unter Verwendung zeitlicher
Interpolation und des Helfersignals in das Format pro
gressiver Abtastung umgewandelt wird. Das Farbartsignal
wird unter Verwendung einer ohne zusätzliche Hilfe
durchgeführten zeitlichen Interpolation in das Format
progressiver Abtastung umgewandelt. Schließlich werden
die nun im Format progressiver Abtastung vorliegenden
Leuchtdichte- und Farbartsignale in Analogform umgewan
delt und matriziert, um die Farbbildsignale R, G und B
für die Darstellung auf einem mit progressiver Abtastung
arbeitenden Breitbild-Wiedergabegerät zu erzeugen.
Bevor das kompatible Breitbild-Codiersystem nach Fig. 1a
näher beschrieben wird, seien die Signalverläufe A und
B in der Fig. 2 betrachtet. Das Signal A ist ein dem
Bildseitenverhältnis 5 : 3 entsprechendes Breitbildsignal,
das in ein mit dem NTSC-Standard kompatibles Signal für
ein Bildseitenverhältnis 4 : 3 umgewandelt werden soll,
dargestellt als Signal B. Das Breitbildsignal A enthält
einen als Mittelfeld bezeichneten Teil, der primäre oder
Haupt-Bildinformation enthält und ein Intervall TC be
legt, und linke und rechte Seitenfelder, die sekundäre
oder Zusatz-Bildinformation enthalten und Intervalle TS
belegen. Beim hier beschriebenen Beispiel haben die bei
den Seitenfelder im wesentlichen gleiche Seitenverhält
nisse, jeweils kleiner als das Seitenverhältnis des zwi
schen ihnen liegenden Mittelfeldes.
Zur Umwandlung des Breitbildsignals A in das NTSC-Si
gnal B
werden bestimmte Informationen der Seitenfelder
unter Komprimierung vollständig in die Horizontal-Über
abtastbereiche gequetscht, die als Zeitintervalle TO
dargestellt sind. Das NTSC-Standardsignal hat ein akti
ves Zeilenintervall TA (ungefähr 52,2 Mikrosekunden),
das die Überabtastungsintervalle TO und ein Wiedergabe
intervall TD umfaßt, welches die wiederzugebende Video
information enthält. Das gesamte Horizontalzeileninter
vall (Zeilenperiode) TH des NTSC-Standardsignals hat
eine Dauer von ungefähr 63,556 Mikrosekunden. Die Inter
valle TA und TH sind für das Breitbildsignal genauso
lang wie für das NTSC-Standardsignal.
Es wurde gefunden, daß fast alle Konsum-Fernsehgeräte
ein Überabtastungsintervall haben, das aber mindestens 4% der
gesamten aktiven Zeilenzeit TA belegt, also jeweils 2%
Überabtastung an der linken und an der rechten Seite. Im
Falle einer Abfrage- oder Probenfrequenz, die für das
Zeilensprungformat gleich 4 · fsc ist (wobei fsc die
Frequenz des Farbhilfsträgers darstellt), enthält jedes
Horizontalzeilenintervall 910 Bildpunkte (Proben), von
denen 754 Exemplare die wiederzugebende aktive Bildin
formation einer Horizontalzeile darstellen.
Das EDTV-Breitbildsystem (Breitbildsystem mit erweiterter
Auflösung) ist ausführlicher in der Fig. 1a gezeigt. Bei
dem in dieser Figur dargestellten Ausführungsbeispiel
liefert eine progressiv (d. h. fortlaufend) abtastende
Kamera 10, die mit 525 Zeilen und 60 Teilbildern pro Se
kunde arbeitet, ein Farb-Breitbildsignal mit den Farb
komponenten R, G und B für ein breites Bildseitenver
hältnis von 5 : 3. Es könnte stattdessen auch eine im Zei
lensprung-Abtastformat arbeitende Signalquelle verwen
det werden, jedoch liefert eine Signalquelle mit pro
gressiver Abtastung bessere Ergebnisse. Eine Breitbild
kamera hat ein größeres Bildseitenverhältnis und eine
größere Videobandbreite als eine normale NTSC-Kamera.
Die Videobandbreite einer Breitbildkamera ist propor
tional dem Produkt des Bildseitenverhältnisses und der
Gesamtanzahl der Zeilen pro Vollbild, neben anderen Fak
toren. Bei gleichbleibender Abtastgeschwindigkeit der
Breitbildkamera führt eine Vergrößerung des Bildseiten
verhältnisses zu einer entsprechenden Erhöhung ihrer
Videobandbreite sowie auch zu einer größeren horizonta
len Kompression der Bildinformation, wenn das Signal auf
einem Standard-Fernsehempfänger mit einem Bildseitenver
hältnis 4 : 3 wiedergegeben wird. Aus diesen Gründen ist
es notwendig, das Breitbildsignal zu modifizieren, wenn
es voll NTSC-kompatibel sein soll.
Das vom Codiersystem nach Fig. 1 verarbeitete Farbvideo
signal enthält Leuchtdichte- und Farbartkomponenten. Die
Leuchtdichte- und Farbartsignale enthalten ihrerseits
sowohl niedrigfrequente als auch hochfrequente Informa
tion, in der nachstehenden Beschreibung verkürzt auch
als "Tiefen" bzw. "Höhen" bezeichnet.
Die breitbandigen Breitbild-Farbvideosignale im Format
progressiver Abtastung von der Kamera 10 werden in einer
Einheit 12 matrifiziert, um die Leuchtdichtekomponente Y
und die Farbdifferenzkomponenten I und Q aus den Farb
signalen R, G und B abzuleiten. Die breitbandigen, im
Format progressiver Abtastung vorliegenden Signale Y,
I und Q werden dann mit einer Frequenz gleich dem Acht
fachen der Farbhilfsträgerfrequenz (8 · fsc) abgefragt
und individuell aus der Analogform in (binäre) Digital
form umgewandelt, was durch getrennte Analog/Digital-
Wandler (A/D) in einer A/D-Einheit 14 geschieht. An
schließend werden die Signale individuell durch getrenn
te vertikal-zeitliche Tiefpaßfilter in einer Filterein
heit 16 gefiltert, um gefilterte Signale YF, IF und QF
zu erzeugen. Diese Signale haben jedes eine Form, wie
sie mit der Wellenform A in Fig. 2 dargestellt ist.
Bei den getrennten Filtern handelt es sich um 3 · 3
lineare zeitinvariante Filter eines Typs, wie er in
Fig. 10d dargestellt ist und weiter unten erläutert
wird. Diese Filter reduzieren die vertikal-zeitliche
Auflösung etwas, insbesondere die diagonale vertikal-
zeitliche Auflösung, um unerwünschte Zeilensprung-Arte
fakte (wie Flimmern, gezackte Ränder und andere, auf
Umfalteffekten beruhende Erscheinungen) zu verhindern,
die im Hauptsignal (Komponente 1 in Fig. 1) nach der
Umwandlung vom Format progressiver Abtastung in das
Zeilensprungformat entstehen können. Die Filter bewah
ren nahezu die volle Vertikalauflösung in stillstehenden
Teilen des Bildes.
Der für das Mittelfeld erforderliche Dehnungsfaktor
(CEF) ist eine Funktion der Differenz zwischen der Brei
te eines auf einem Breitbildempfänger wiedergegebenen
Bildes und der Breite eines auf einem Standardempfänger
wiedergegebenen Bildes. Die Bildbreite eines Breitbil
des mit dem Seitenverhältnis 5 : 3 ist 1,25mal größer als
die Bildbreite eines Standardbildes mit dem Seitenver
hältnis 4 : 3. Dieser Faktor von 1,25 ist ein vorläufiger
Mittelfeld-Dehnungsfaktor, der noch etwas verändert wer
den muß, um dem Überabtastungsbereich eines Standard
empfängers Rechnung zu tragen und um eine beabsichtigte
leichte Überlappung der Grenzbereiche zwischen dem Mit
telfeld und den Seitenfeldern zu berücksichtigen, wie
es noch erläutert wird. Diese Gesichtspunkte gebieten
einen Mittelfeld-Dehnungsfaktor CEF von 1,19.
Die vom Filternetzwerk 19 kommenden Signale im Format
progressiver Abtastung haben eine Bandbreite von 0-14,32 MHz
und werden jeweils in ein 2 : 1-Zeilensprungformat ge
bracht. Dies geschieht mit Hilfe zugeordneter Progres
siv/Zeilensprung-Formatwandler(P/Z-Wandler) 17a, 17b
und 17c, deren Einzelheiten später in Verbindung mit den
Fig. 22 und 23 erläutert werden. Die Ausgangssignale
IF′, QF′ und YF′ der P/Z-Wandler 17a bis 17c haben eine
Bandbreite von 0-7,16 MHz, weil die Horizontalabtast
frequenz für Signale des Zeilensprungformats halb so
hoch wie für Signale des Formats progressiver Abtastung
ist. Bei der Formatumwandlung erfolgt eine Unterab
tastung der progressiv abgetasteten Signale, bei wel
cher die Hälfte der verfügbaren Bildpunktproben genom
men wird, um das Hauptsignal im 2 : 1-Zeilensprungformat
zu erzeugen. Im einzelnen wird jedes progressiv abge
tastete Signal dadurch in das 2 : 1-Zeilensprungformat
gebracht, daß entweder nur die ungeradzahligen oder die
geradzahligen Zeilen in jedem Teilbild beibehalten wer
den und die beibehaltenen Bildpunkte mit einer Frequenz
von 4 · fsc (14,32 MHz) ausgelesen werden. Die gesamte
anschließende digitale Verarbeitung der Zeilensprung
signale geht mit der Abfragefrequenz 4 · fsc vonstatten.
Das Netzwerk 17c enthält außerdem ein Fehlervorhersage-
Netzwerk. Ein Ausgang YF′ des Netzwerks 17c ist die un
terabgetastete Zeilensprung-Version der vorgefilterten
Leuchtdichtekomponente des Progressivabtastungs-Formats.
Ein weiteres (Leuchtdichte-)Ausgangssignal YT des Netz
werks 17c enthält vertikal-zeitliche Information, abgeleitet
aus der Teilbild-Differenzinformation, und re
präsentiert einen zeitlichen Vorhersage- oder Interpola
tionsfehler zwischen tatsächlichen und vorhergesagten
Werten von Leuchtdichteproben, die am Empfänger "fehlen",
wie noch erläutert wird. Die Vorhersage stützt sich auf
einen zeitlichen Mittelwert der Amplitude von "vorheri
gen" und "nachherigen" Bildpunkten, die am Empfänger
verfügbar sind.
Das Signal YT ist ein Leuchtdichte-"Helfersignal", das
beim Wiederaufbau des Signals progressiver Abtastung
am Empfänger hilft; es dient im wesentlichen der Be
rücksichtung eines Fehlers, der den Empfänger der Er
wartung nach hinsichtlich nicht-stationärer Bildsignale
machen kann, und es ermöglicht die Auslöschung eines
solchen Fehlers am Empfänger. In stationären (stillste
henden) Teilen eines Bildes ist dieser Fehler gleich
Null, und die Rekonstruktion am Empfänger wird perfekt
durchgeführt. Es wurde gefunden, daß ein Farbart-Helfer
signal in der Praxis nicht notwendig ist und daß ein
Leuchtdichte-Helfersignal für die Erzielung guter Ergeb
nisse ausreicht, weil das menschliche Auge weniger emp
findlich für fehlende vertikale oder zeitliche Details
der Farbart ist. Die Fig. 2a veranschaulicht den Algo
rithmus, der für die Entwicklung des Helfersignals YT
angewandt wird.
Die in der Fig. 2a dargestellten Bildpunkte A, X und B
im Progressivabtastung-Signal belegen die gleiche räum
liche Position in einem Bild. Schwarze Bildpunkte wie
A und B werden als Hauptsignal übertragen und sind am
Empfänger verfügbar. Ein weißer Bildpunkt wie X wird
nicht übertragen und auf der Grundlage einer zeitlichen
Vollbildmittelung (A+B)/2 vorhergesagt. Das heißt, am
Codierer erfolgt eine Vorhersage für den "fehlenden"
Bildpunkt X, indem die Amplituden des "vorherigen" und
des "nachherigen" Bildpunktes A und B gemittelt werden.
Der Vorhersagewert (A+B)/2 wird von dem tatsächlichen
Wert X substrahiert, um ein Vorhersage-Fehlersignal zu
erzeugen, das dem Helfersignal entspricht und dessen
Amplitude dem Ausdruck X-(A+B)/2 folgt. Dieser Ausdruck
definiert eine Information über die zeitliche Teilbild
differenz zusätzlich zur Information der zeitlichen
Vollbildmittelung.
Das Helfersignal erfährt eine horizontale Tiefpaßfil
terung in einem 750-KHz-Tiefpaßfilter und wird als Hel
fersignal YT weitergeleitet. Die Bandbegrenzung des
Helfersignals auf 750 KHz ist notwendig, um zu verhin
dern, daß dieses Signal den nächstniedrigeren HF-Kanal
stört, nachdem es dem HF-Bildträger aufmoduliert worden
ist.
Im Empfänger erfolgt eine ähnliche Vorhersage des feh
lenden Bildpunktes X unter Verwendung eines Mittelwertes
der Proben A und B, und der Vorhersagefehler wird mit
der Vorhersage addiert. Das heißt, X wird dadurch wie
dergewonnen, daß der Vorhersagefehler X-(A+B)/2 mit dem
zeitlichen Mittel (A+B)/2 addiert wird. Somit erleichtert
das vertikal-zeitliche Helfersignal die Umwandlung aus
dem Zeilensprungformat in das Format progressiver Ab
tastung.
Das mit Hilfe des beschriebenen Algorithmus der zeitli
chen Vorhersage erzeugte Hilfsignal hat vorteilhafter
weise geringe Energie im Vergleich zu einem Vorhersage
signal, das durch irgendwelche anderen Algorithmus er
zeugt wird, z. B. durch den Algorithmus zur Erzeugung
eines Zeilendifferenzsignals, wie er von M. Tsinberg in
einem Artikel "ENTSC Two-Channel Compatible HDTV System"
beschrieben ist, veröffentlicht in IEEE Transactions on
Consumer Electronics, Band CE-33, No. 3, August 1987,
Seiten 146-153. In stillstehenden Bereichen eines Bildes
ist die Fehlerenergie gleich Null, weil die Vorhersage
perfekt ist. Ein Zustand niedriger Energie manifestiert
sich durch stillstehende und praktisch stillstehende
Bilder (z. B. eine Nachrichtensendung mit einem Reporter
vor einem stillstehenden Hintergrund).
Es hat sich gezeigt, daß der beschriebene Algorithmus
die am wenigsten störenden Artefakte nach der Bildre
konstruktion am Empfänger verursacht, und daß das von
diesem Algorithmus erzeugte Helfersignal seine Nützlich
keit behält, nachdem es auf etwa 750 KHz bandbegrenzt
(gefiltert) worden ist. Das vom beschriebenen Algorithmus
erzeugte Helfersignal hat vorteilhafterweise bei inbe
wegter Bildinformation eine Energie von Null, und infolge
dessen wird ein zu einem stillstehenden Bild gehöriges
Helfersignal durch Filterung nicht beeinträchtigt.
Auch wenn das Helfersignal nicht übertragen wird, ist
die Rekonstruktion des Breitbildes viel besser. In einem
solchen Fall erscheinen stillstehende Teile des Bildes
viel schärfer als in einem NTSC-Standardbild, allerdings
werden bewegte Teile etwas "weicher" und können einen
"Schwebungs"-Artefakt enthalten. Ein Rundfunksender
braucht also das Helfersignal nicht von Anfang an zu
übertragen, sondern kann wählen, die HF-Übertragung zu
einem späteren Zeitpunkt zu verbessern.
Das beschriebene System der zeitlichen Vorhersage ist
nützlich sowohl für progressive Abtastung als auch für
Zeilensprung-Abtastung mit höheren als den Standard-Zei
lenfrequenzen, sie funktioniert jedoch am besten bei ei
ner Quelle des Progressivabtastungs-Formats, wo Bild
punkte A, X und B die gleiche räumliche Position in einem
Bild belegen, was zu einer perfekten Vorhersage für still
stehende Bilder führt. Die zeitliche Vorhersage wird je
doch auch in stillstehenden Bereichen eines Bildes un
vollkommen sein, wenn das Original-Breitbild aus einer
im Zeilensprungformat arbeitenden Signalquelle kommt. In
einem solchen Fall hat das Helfersignal mehr Energie und
wird geringe Artefakte in stillstehenden Teilen eines
rekonstruierten Bildes einführen. Versuche haben gezeigt,
daß die Verwendung einer Zeilensprung-Signalquelle zwar
annehmbare Ergebnisse bringt mit Artefakten, die nur bei
näherer Betrachtung wahrnehmbar werden, während eine
Quelle von Signalen in Progressivabtastung weniger Arte
fakte bringt und bessere Ergebnisse liefert.
In der Anordnung nach Fig. 1a werden die im Zeilensprung
format vorliegenden Breitbildsignale IF′, QF′ und YF′ von
den Formatwandlern 17a bis 17c jeweils in einem zugehöri
gen Horizontal-Tiefpaßfilter 19a bzw. 19b bzw. 19c ge
filtert, um ein Signal IF′′ mit einer Bandbreite von
0-600 KHz, ein Signal QF′′ mit einer Bandbreite von 0-600 KHz
und ein Signal YF′′ mit einer Bandbreite von 0-5 MHz
zu erzeugen. Diese Signale werden anschließend einer
Bildformat-Codierung unterworfen, wo jedes dieser Signa
le in das 4 : 3-Format gebracht wird. Dies geschieht mit
tels einer Bildformat-Codiereinrichtung, zu der eine
Seitenfeld/Mittelfeld-Trenneinrichtung und eine Verar
beitungseinrichtung in der Einheit 18 gehört.
Kurz gesagt, wird der mittlere Abschnitt einer jeden
Breitbild-Zeile zeitlich gedehnt und in den wiederge
gebenen Abschnitt der aktiven Zeilenzeit mit einem Bild
seitenverhältnis 4 : 3 abgebildet. Die zeitliche Dehnung
bewirkt eine Verminderung der Bandbreite, so daß die
verkämmten Frequenzen des Original-Breitbildsignals kom
patibel mit der Bandbreite des NTSC-Standards werden.
Die Seitenfelder werden in Horizontalfrequenzbänder auf
gespalten, so daß die Komponente, welche die hochfrequen
ten Anteile ("Höhen") der Farbe des I- und des Q-Signals
enthält, eine Bandbreite von 83 KHz bis 600 KHz hat (wie
für das Signal IH in Fig. 7 gezeigt) und die Komponente,
welche die "Höhen" des Leuchtdichtesignals Y enthält,
eine Bandbreite von 700 KHz bis 5,0 MHz hat (wie für das
Signal YH in Fig. 6 gezeigt). Die niedrigfrequenten An
teile ("Tiefen") der Seitenfelder, d. h. die gemäß den
Fig. 6 und 7 entwickelten Signale YO, IO und QO, ent
halten eine Gleichstromkomponente und werden unter zeit
licher Komprimierung in den linken und rechten Horizon
tal-Überabtastungsbereich einer jeden Zeile abgebildet.
Die "Höhen" der Seitenfelder werden gesondert verarbei
tet. Einzelheiten dieses Bildformat-Codierungsvorgangs
werden nachstehend erläutert.
Für die Betrachtung der nachstehend beschriebenen Einzel
heiten der Codierung ist es hilfreich, auch die Fig. 1e
zu betrachten, die den Prozeß der Codierung der Komponen
ten 1, 2, 3 und 4 im Zusammenhang mit der wiedergegebenen
Mittelfeld- und Seitenfeldinformation veranschaulicht.
Die gefilterten Zeilensprungsignale IF′′, QF′′ und YF′′ wer
den von der Einheit 18 (Seitenfeld/Mittelfeld-Trennein
richtung und Verarbeitungseinrichtung) verarbeitet, um
drei Gruppen von Ausgangssignalen zu erzeugen: YE, IE
und QE; YO, IO und QO; YH, IH und QH. Die ersten beiden
Signalgruppen (YE, IE, QE und YO, IO, QO) werden zu einem
Signal verarbeitet, das eine Mittelfeldkomponente voller
Bandbreite und die Leuchtdichte-Tiefen der Seitenfelder
enthält, die in die Horizonal-Überabtastungsbereiche
gepreßt sind.
Die dritte Signalgruppe (YH, IH, QH) wird zu einem
Signal verarbeitet, das die Höhen der Seitenfelder enthält.
Wenn diese Signale kombiniert werden, erhält man ein
NTSC-kompatibles Breitbildsignal mit einem Bildseiten
verhältnis 4 : 3. Einzelheiten der die Einheit 18 bilden
den Schaltungen sind in den Fig. 6, 7 und 8 gezeigt
und werden weiter unten in Verbindung mit diesen Figuren
beschrieben.
Die Signale YE, IE und QE enthalten die vollständige
Mittelfeldinformation und haben dasselbe Format, wie es
in der Fig. 3 für das Signal YW gezeigt ist. Das Signal
YE wird aus dem Signal YF′′ kurz gesagt wie folgt abge
leitet: Das Breitbildsignal YE′′ enthält Bildpunkte 1-754,
die während des aktiven Zeilenintervalls des Breitbild
signals erscheinen und sowohl Seitenfeld- als auch Mit
telfeldinformationen enthalten. Die breitbandige Mittel
feldinformation (Bildpunkte 75-680) wird als Mittelfeld-
Leuchtdichtesignal YC mittels eines Zeit-Demultiplexver
fahrens extrahiert. Das Signal YC wird zeitlich gedehnt,
und zwar um den Mittelfeld-Dehnungsfaktor 1,19 (d. h.
5,0 MHz : 4,2 MHz), um das NTSC-kompatible Mittelfeldsignal YE
zu erzeugen. Das Signal YE hat eine NTSC-kompatible Band
breite (0-4,2 MHz) infolge der zeitlichen Dehnung um den
Faktor 1,19. Das Signal YE belegt das Bildwiedergabein
tervall TD (Fig. 2) zwischen den Überabtastungsbereichen
TO. Die Signale IE und QE werden aus den Signalen IF′′
bzw. QF′′ abgeleitet und in gleichartiger Weise verarbei
tet wie das Signal YE.
Die Signale YO, IO und QO enthalten die niedrigfrequen
ten Anteile ("Tiefen") der Seitenfeldinformation, die
in den linken und den rechten Horizontal-Überabtastungs
bereich eingefügt sind. Die Signale YO, IO und QO haben
das gleiche Format, wie es für das Signal YO in der Fig. 3
gezeigt ist. Das Signal YO wird aus dem Signal YF′′ kurz
gesagt wie folgt abgeleitet: Das Breitbildsignal YF′′ ent
hält linke Seitenfeldinformation in den Bildpunkten 1-84
und rechte Seitenfeldinformation in den Bildpunkten 671-
754. Wie noch zu erläutern ist, wird das Signal YF′′ tief
paßgefiltert, um ein Leuchtdichte-Tiefensignal mit einer
Bandbreite von 0-700 KHz zu erzeugen, aus dem dann mit
tels eines Zeit-Demultiplexverfahrens ein linkes und ein
rechtes Seitenfeld-Tiefensignal extahiert wird (Signal
YL′ in Fig. 3).
Das Leuchtdichte-Tiefensignal YL′ wird zeitlich kompri
miert, um das Seitenfeld-Tiefensignal YO mit der kompri
mierten niedrigfrequenten Information in den Überab
tastungsbereichen zu erzeugen, also in den Bildpunkten 1-14
und 741-754. Das komprimierte Seitenfeld-Tiefensignal
hat eine proportional zum Maß der Zeitkompression er
höhte Bandbreite. Die Signale IO und QO werden aus den
Signalen IF′′ bzw. QF′′ entwickelt und in gleichartiger
Weise verarbeitet wie das Signal YO.
Die Signale YE, IE, QE und YO, IO, QO werden durch einen
Seitenfeld/Mittelfeld-Kombinator 28, z. B. einen Zeitmul
tiplexer, miteinander kombiniert, um Signale YN, IN und
QN mit einer NTSC-kompatiblen Bandbreite und einem Bild
seitenverhältnis 4 : 3 zu erzeugen. Diese Signale haben die
Form des in Fig. 3 dargestellten Signals YN. Der Kombi
nator 28 enthält ferner geeignete Signalverzögerungen,
um die Laufzeiten der zu vereinigenden Signale einander
anzugleichen. Solche ausgleichenden Signalverzögerungen
befinden sich auch an anderen Stellen des Systems über
all dort, wo es gilt, Signallaufzeiten anzugleichen.
Ein Modulator 30, ein Bandpaßfilter 32, ein Horizontal/
Vertikal/Zeit-Bandsperrfilter 34 und der Kombinator 36
stellen einen verbesserten NTSC-Signalcodierer 31 dar.
Die Farbartsignalkomponenten IN und QN werden mittels
des Modulators 30 einem Hilfsträger SC der NTSC-Farb
hilfsträgerfrequenz von nominell 3,58 MHz aufgegeben, um
ein moduliertes Signal CN zu erzeugen. Der Modulator 30
ist herkömmlicher Bauart und wird weiter unten in Verbin
dung mit Fig. 9 beschrieben.
Das modulierte Signal CN erfährt eine Bandpaßfilterung
in vertikaler (V) und zeitlicher (T) Dimension im zwei
dimensionalen "V-T"-Filter 32, das Übersprech-Artefakte
im Zeilensprung-Farbartsignal entfernt, bevor dieses Si
gnal als Signal CP auf einen Farbartsignaleingang des Kom
binators 36 gegeben wird.
Das Leuchtdichtesignal YN erfährt eine Bandsperrfilte
rung in horizontaler (H), vertikaler (V) und zeitlicher
(T) Dimension mittels des dreidimensionalen "H-V-T"-
Bandsperrfilters 34, bevor es als Signal YP an einen
Leuchtdichteeingang des Kombinators 36 gelegt wird. Die
Filterung des Leuchtdichtesignals YN und der Farbdiffe
renzsignale IN und QN soll sicherstellen, daß nach der
anschließenden NTSC-Codierung das Übersprechen zwischen
Leuchtdichte und Farbe wesentlich reduziert ist. Mehr
dimensionale räumlich-zeitliche Filter wie das H-V-T-
Filter 34 und das V-T-Filter 32 in Fig. 1a haben eine
Struktur, wie sie in Fig. 10 gezeigt ist und nachstehend
beschrieben wird.
Das H-V-T-Bandfilter 34 in Fig. 1a hat den in Fig. 10b
gezeigten Aufbau und entfernt die Frequenzkomponenten
sich aufwärts bewegender Diagonalen aus dem Leuchtdich
tesignal YN. Diese Frequenzkomponenten sind in ihrem Er
scheinungsbild ähnlich wie Komponenten des Farbhilfsträ
gers und werden entfernt, um eine Lücke im Frequenzspek
trum herzustellen, wo modulierte Farbartinformation ein
gefügt wird. Die Wegnahme der Frequenzkomponenten auf
wärts bewegter Diagonalen aus dem Leuchtdichtesignal YN
verschlechtert ein wiedergegebenes Bild nicht sichtbar,
denn es wurde festgestellt, daß das menschliche Auge prak
tisch unempfindlich für solche Frequenzkomponenten ist.
Das Filter 34 hat eine Frenzfrequenz von ungefähr 1,5 MHz,
um die Vertikaldetailinformation in der Leuchtdichte
nicht zu beeinträchtigen.
Das V-T-Bandpaßfilter 32 reduziert die Farbart-Bandbrei
te, so daß die modulierte Farbartinformation der Seiten
felder in die Lücke eingesetzt werden kann, die, wie oben
beschrieben, vom Filter 34 im Leuchtdichtespektrum ge
schaffen wird. Das Filter 32 reduziert die vertikale und
zeitliche Auflösung der Farbartinformation, so daß stille
und bewegte Ränder leicht verwischt werden, was jedoch
wenig oder gar keine Folgen hat, weil das menschliche
Auge für solche Effekte unempfindlich ist.
Der Kombinator 36 liefert an seinem Ausgang ein Mittel
feld/Seitenfeld-Tiefensignal C/SL, das wiederzugebende
NTSC-kompatible Information enthält, die aus dem Mittel
feld des Breitbildsignals abgeleitet worden ist, sowie
komprimierte Seitenfeld-Tiefen (sowohl Leuchtdichte wie
auch Farbart), die aus den Seitenfeldern des Breitbild
signals abgeleitet sind und sich nun in den linken und
rechten Horizontal-Überabtastungsbereichen befindet, wo
sie auch bei der Wiedergabe auf einem NTSC-Empfänger nicht
zu sehen sind.
Die komprimierten Seitenfeld-Tiefen im Überabtastungsbe
reich bilden den einen Bestandteil der Seitenfeldinfor
mation für eine Breitbildwiedergabe. Der andere Bestand
teil, die Seitenfeld-Höhen, wird durch die Verarbeitungs
einheit 18 entwickelt, wie es später beschrieben wird.
Die Seitenfeld-Höhensignale YH (Leuchtdichtehöhen), IH
(I-Höhen) und QH (Q-Höhen) sind in der Fig. 4 gezeigt.
Die Fig. 6, 7 und 8 zeigen eine Anordnung zur Ent
wicklung dieser Signale, wie es noch beschrieben wird.
Die in Fig. 4 dargestellten Signale YH, IH und QH ent
halten hochfrequente Informationen des linken Seiten
feldes in den Bildpunkten 1-84 und hochfrequente Infor
mation des rechten Seitenfeldes in den Bildpunkten 671-
754.
Das Signal C/SL wird in der Intravollbild-Mittelungs
schaltung 38 verarbeitet, um ein Signal zu erzeugen,
das auf den Eingang des Addierers 40 gegeben wird. Das
intravollbildlich gemittelte Signal N ist im wesentli
chen identisch mit dem Signal C/SL wegen der gut sicht
baren Intravollbild-Korrelation der Information des Si
nals C/SL. Die Mittelungsschaltung mittelt das Signal
C/SL oberhalb ungefähr 1,5 MHz und hilft, vertikal-zeit
liches Übersprechen zwischen dem Hauptsignal und den Zu
satzsignalen zu reduzieren oder zu eliminieren.
Der Hochpaß-Frequenzbereich von 1,5 MHz und darüber, in
welchem die Intravollbild-Mittelungsschaltung 38 arbei
tet, wurde deswegen gewählt, damit eine vollständige
Intravollbild-Mittelung für Informationen bei 2 MHz und
darüber stattfindet, um zu verhindern, daß Vertikalde
tailinformation der Leuchtdichte durch den Prozeß der
Intravollbild-Mittelung beeinträchtigt wird. Horizontal-
Übersprechen wird eliminiert durch ein 200-KHz-Sicher
heitsband zwischen einem Filter, das zur Intravollbild-
Mittelungsschaltung 38 im Codierer 31 gehört, und einem
Filter, das zu einer Intravollbild-Mittelungs- und Diffe
renzbildungseinheit im Decodierer nach Fig. 13 gehört.
Die Fig. 11a und 11b zeigen Einzelheiten der für die
Höhen vorgesehenen Intravollbild-Mittelungsschaltung 38.
Die Fig. 11a, 11b und 13 werden weiter unten erläutert.
Die Signale IH, QH und XH werden mit Hilfe eines NTSC-
Codierers 60, der dem Codierer 31 ähnlich ist, in das
NTSC-Format gebracht. Im einzelnen enthält der Codierer
60 eine Einrichtung des in Fig. 9 gezeigten Typs sowie
eine Einrichtung zur Quadraturmodulation der Höhen der
Seitenfeld-Farbartinformation auf die Höhen der Seiten
feld-Leuchtdichteinformation bei 3,58 MHz, um ein Signal
NTSCH zu erzeugen, welches die Höhen der Seitenfeldin
formation im NTSC-Format darstellt. Dieses Signal ist in
Fig. 5 gezeigt.
Die Anwendung einer mehrdimensionalen Bandpaßfilterung
in den NTSC-Codierern 31 und 60 gestattet es in vorteil
hafter Weise, daß die Leuchtdichte- und Farbartkomponen
ten praktisch frei von Übersprechen im Empfänger voneinan
der getrennt werden, wenn der Empfänger eine komplemen
täre mehrdimensionale Filterung zur Trennung von Leucht
dichte- und Farbartinformation benutzt. Die Verwendung
komplementärer Filter für die Codierung und Decodierung
von Leuchtdichte und Farbart nennt man "kooperative Ver
arbeitung", sie ist ausführlich von C. H. Strolle in einem
Aufsatz "Cooperative Processing for Improved Chrominance/
Luminance Separation" beschrieben, veröffentlich im
SMPTE Journal, Band 95, No. 8, August 1986, Seiten 782-
789. Selbst Standardempfänger, die herkömmliche Kerb
filter und Zeilenkammfilter benutzen, profitieren von
der Verwendung einer solchen mehrdimensionalen Vorfil
terung im Codierer, indem sie weniger Übersprechen zwi
schen Farbart und Leuchtdichte zeigen.
Das Signal NTSCH wird in einer Einheit 62 zeitlich ge
dehnt, um ein gedehntes Seitenfeld-Höhensignal ESH zu
erzeugen. Im einzelnen erfolgt die Dehnung, wie in Fig. 5
gezeigt, durch einen "Abbildungs"-Prozeß, bei dem die
linken Seitenfeldbildpunkte 1-84 des Signals NTSCH auf
die Bildpunktpositionen 1-377 des Signals ESH abgebil
det werden, d. h., die Höhen des linken Seitenfeldes im
Signal NTSCH werden so gedehnt, daß sie die Hälfte der
Zeilenzeit des Signals ESH belegen. Der dem rechten Sei
tenfeld zugeordnete Teil (Bildpunkte 671-754) des Si
nals NTSCH wird in ähnlicher Weise verarbeitet. Der Zeit
dehnungsprozeß wird in ähnlicher Weise verarbeitet. Der Zeit
dehnungsprozeß vermindert die horizontale Bandbreite der
Information des Signals ESH (im Vergleich zu derjenigen
des Signals NTSCH) um den Faktor 377/84.
Der Abbildungsprozeß, durch den die zeitliche Dehnung
erfolgt, kann durch eine Einrichtung des Typs realisiert
werden, wie er in den Fig. 12-12d gezeigt ist und
in Verbindung mit diesen Figuren weiter unten beschrie
ben wird. Das Signal ESH erfährt eine Intravollbild-
Mittelung in einem Netzwerk 64 des in Fig. 11b gezeigten
Typs, um ein Signal X zu erzeugen, wie es in Fig. 5 dar
gestellt ist. Dieses Mittelwertsignal X ist im wesentli
chen identisch mit dem Signal ESH, und zwar wegen der
gut sichtbaren Korrelation der Bildinformationen des Si
gnals ESH innerhalb eines Vollbildes.
Das Signal X wird auf einen Signaleingang eines Quadra
turmodulators 80 gegeben.
Das Signal YF′ wird außerdem durch ein Horizontal-Band
paßfilter 70 mit einer Bandbreite von 5-6,2 MHz gefil
tert. Das Ausgangssignal des Filters 70, horizontale
Leuchtdichte-Höhen enthaltend, wird an einen Amplituden
modulator 72 gelegt, wo es die Amplitude eines 5-MHz-
Trägersignals fc moduliert. Der Modulator 72 enthält
ausgangsseitig ein Tiefpaßfilter mit einer Grenzfrequenz
von ungefähr 1,2 MHz, um am Ausgang des Modulators 72
ein Signal im Bandbereich 0-1,2 MHz zu erhalten.
Das obere ("umgefaltete") Seitenband (5,0-6,2 MHz) des
Modulationsprozesses wird durch das 1,2-MHz-Tiefpaßfil
ter entfernt. Effektiv werden die horizontalen Leucht
dichte-Höhen (hochfrequente Komponenten in Horizontal
richtung) im Bereich von 5,0-6,2 MHz durch den Amplitu
denmodulationsprozeß und die anschließende Tiefpaßfilte
rung in den Frequenzbereich 0-1,2 MHz verschoben. Die
Trägeramplitude sollte hoch genug sein, damit die ur
sprünglichen Signalamplituden nach der Filterung durch
das 1,2-MHz-Tiefpaßfilter erhalten bleiben. Das heißt,
es erfolgt eine Frequenzverschiebung ohne Beeinflussung
der Amplitude.
Das frequenzverschobene Signal der horizontalen Leucht
dichte-Höhen aus der Einheit 72 wird mittels eines Bild
format-Codierers 74 codiert, um es in räumliche Korrela
tion mit dem Hauptsignal C/SL zu bringen. Der Codierer
74 ist ähnlich den formatcodierenden Netzwerken in den
Einheiten 18 und 28, um die Mittelfeldinformation zu
dehnen und die Tiefen der Seitenfeldinformation in den
horizontalen Überabtastungsbereich zu pressen. Das heißt,
der Codierer 74 codiert die frequenzverschobenen horizon
talen Leuchtdichte-Höhen in das 4 : 3-Standardformat unter
Anwendung von Methoden, wie sie in Verbindung mit den
Fig. 6-8 beschrieben werden.
Wenn der mittlere Abschnitt (Mittelfeld) des Eingangs
signals des Codierers 74 zeitlich gedehnt wird, vermin
dert sich seine Bandbreite von 1,2 MHz auf etwa 1,0 MHz,
und das Ausgangssignal des Codierers 74 kommt in räum
liche Korrelation mit dem Hauptsignal. Die Seitenfeldin
formation wird innerhalb der Einheit 72 auf 170 KHz tief
paßgefiltert, bevor sie im Codierer 74 zeitlich kompri
miert wird. Das Signal vom Codierer 74 erfährt, bevor
es als Signal Z auf eine Einheit 80 gegeben wird, eine
Intravollbild-Mittelung in einer Einrichtung 76, die
ähnlich der in Fig. 11b dargestellten Einrichtung ist.
Dieses Intravollbild-Mittelwertsignal Z ist im wesentli
chen identisch mit dem Signal vom Codierer 74 wegen der
gut sichtbaren Korrelation der Bildinformationen inner
halb eines Vollbildes des vom Codierer 74 kommenden Si
gnals. Das Modulationssignal X ist ein zusammengesetztes
Signal, das Leuchtdichte- und Farbartinformation ent
hält, und das modulierende Signal Z hat im wesentlichen
die gleiche Bandbreite, ungefähr 0-1,1 MHz.
Wie es in Verbindung mit Fig. 24 noch erläutert wird,
führt die Einheit 80 an großen Amplitudenausschlägen der
beiden Zusatzsignale X und Z eine nichtlineare Gamma
funktions-Amplitudenpressung durch, bevor diese Signale
in Quadraturmodulation dem alternierenden Hilfsträger
ASC aufgeprägt werden. Es wird ein Gammawert von 0,7 be
nutzt, wodurch der Absolutwert einer jeden Probe auf die
0,7te Potenz gehoben und mit dem Vorzeichen des ursprüng
lichen Probenwertes multipliziert wird. Die Gammakompres
sion reduziert die Sicherheit eventuell störender Am
plitudenausschläge der modulierten Signale in normalen
Empfängern und erlaubt eine vorhersagbare Wiedergewin
nung im Breitbildempfänger, weil die inverse Funktion der
im Codierer benutzten Gammafunktion vorhersagbar ist und
leicht im Decodierer des Empfängers realisiert werden
kann.
Die amplitudengepreßten Signale werden dann in Quadratur
modulation dem phasengesteuerten alternierenden 3,1075-
MHz-Hilfsträgers ASC aufgeprägt, dessen Frequenz ein un
gerades Vielfaches der halben Horizontalzeilenfrequenz
ist (395 · H/2). Die Phase des alternierenden Hilfsträgers
wird jeweils von einem zum nächsten Teilbild um 180° ge
ändert, anders als die Phase des Farbhilfsträgern, die
nicht von Teilbild zu Teilbild wechselt. Die teilbild
weise wechselnde Phase des alternierenden Hilfsträgers
erlaubt es, daß sich die modulierende Information der
Zusatzsignale X und Z mit der Farbartinformation über
lappen kann. Es entstehen komplementär-phasige Informa
tionskomponenten A1, -A1 und A3, -A3 des modulierten Zu
satzsignals. Dies ermöglicht es, im Empfänger die Zusatz
information unter Verwendung eines relativ unkomplizier
ten Teilbildspeichers abzutrennen. Das quadraturmodulier
te Signal M wird im Addierer 40 mit dem Signal N addiert.
Das resultierende Signal NTSCF ist ein NTSC-kompatibles
4,2-MHz-Signal.
Die beschriebene, im Codierer benutzte nichtlineare
Gammafunktion dient zur Komprimierung hoher Amplituden.
Sie bildet einen Bestandteil eines nichtlinearen pressen
den und dehnenden "Kompandierungs"-Systems (Kompression/
Expansion), das als weiteren Bestandteil für die Dehnung
(Expansion) der Amplitude eine komplementäre Gammafunk
tion im Decodierer eines Breitbildempfängers enthält, wie
es weiter unten noch beschrieben wird. Es hat sich ge
zeigt, daß das beschriebene nichtlineare Kompandierungs
system die Auswirkung der nicht zum Standard gehörenden
Zusatzinformation auf die Standard-Bildinformation be
trächtlich reduziert, ohne ein Bild durch Rauscheffekte
sichtbar zu verschlechtern.
Das Kompandierungssystem benutzt eine nichtlineare Gamma
funktion, um große Amplitudenausschläge der zusätzlichen,
nicht zum Standard gehörenden hochfrequenten Breitbild
information im Codierer zu pressen, und eine komplemen
täre nichtlineare Gammafunktion, um die besagte hochfre
quente Information im Decodierer entsprechend wieder zu
dehnen. Das Resultat ist, daß hohe Amplituden der hoch
frequenten zusätzlichen Information die existierende
Standard-Videoinformation im beschriebenen kompatiblen
Breitbildsystem weniger stören, wo die nicht zum Standard
gehörende zusätzliche Breitbildinformation in niedrigfre
quente Teile und in hochfrequente Teile aufgespalten
wird, die der Kompandierung unterworfen werden.
Im Decodierer führt eine nichtlineare Amplitudendehnung
der gepreßten hochfrequenten Information nicht zu über
mäßig merklichem Rauschen. Das heißt, hohe Amplituden
hochfrequenter Information finden sich typischerweise
an kontrastreichen Bildrändern, und das menschliche Auge
ist für Rauschen an solchen Rändern unempfindlich. Der
beschriebene Kompandierungsvorgang reduziert außerdem
vorteilhafterweise Kreuzmodulationsprodukte zwischen
dem alternierenden Hilfsträger und dem Farbhilfsträger,
so daß auch damit zusammenhängende sichtbare Schwebungs
erscheinungen reduziert werden.
Das Leuchtdichte-Detailsignal YT in Fig. 1a hat eine
Bandbreite von 7,16 MHz und wird mittels eines Bildfor
mat-Codierers 78 auf das 4 : 3-Bildformat codiert (in der
gleichen Weise, wie es der Codierer 74 tut) und erfährt
anschließend in einem Filter 79 eine horizontale Tief
paßfilterung auf 750 KHz, um ein Signal YTN zu erzeugen.
Die Seitenfeldteile werden vor ihrer zeitlichen Kompri
mierung auf 125 KHz tiefpaßgefiltert, was in einem ein
gangsseitigen Tiefpaßfilter des Bildformat-Codierers 78
geschieht, das dem Eingangsfilter 610 der in Fig. 6 dar
gestellten Einrichtung entspricht, jedoch eine Grenzfre
quenz von 125 KHz hat. Die Höhen der Seitenfeldteile wer
den unterdrückt. Somit ist das Signal YTN räumlich korre
liert mit dem Hauptsignal C/SL.
Die Signale YTN und NTSCF werden mit Hilfe von Digital/
Analog-Wandlern (D/A) 53 und 54 aus ihrer (binären) Di
gitalform in Analogform umgewandelt, bevor sie auf einen
HF-Quadraturmodulator 57 gegeben werden, um sie einem
Fernseh-HF-Trägersignal aufzumodulieren. Das HF-modulier
te Signal wird anschließend auf einen Sender 55 gegeben,
um es über eine Antenne 56 abzustrahlen.
Der im Modulator 80 benutzte alternierende Hilfsträger
HSC ist horizontal-synchronisiert, und seine Frequenz ist
so gewählt, daß eine ausreichende Trennung von Seitenfeld-
und Mittelfeldinformation sichergestellt ist (z. B. 20-30 db)
und daß sich keine wesentlichen Auswirkungen auf ein
Bild ergeben, das mit einem NTSC-Standardempfänger wie
dergegeben wird. Die ASC-Frequenz sollte vorzugsweise
eine verkämmte Frequenz gleich einem ungeraden Vielfachen
der halben Horizontalzeilenfrequenz sein, so daß sie
keine Störungen verursacht, welche die Qualität eines
wiedergegebenen Bildes beeinträchtigen könnten.
Die auf diese Weise in der Einheit 80 durchgeführte
Quadraturmodulation gestattet in vorteilhafter Weise die
gleichzeitige Übertragung zweier schmalbandiger Signale.
Die zeitliche Dehnung und Modulation hochfrequenter Si
gnale führt zu einer Verminderung der Bandbreite, entspre
chend den Schmalband-Erfordernissen der Quadraturmodula
tion. Je mehr die Bandbreite vermindert ist, desto weni
ger wahrscheinlich ist es, daß Störwirkungen zwischen
Träger und Modulationssignalen auftreten. Außerdem wird
die typischerweise mit hoher Energie auftretende Gleich
stromkomponente der Seitenfeldinformation in den Überab
tastungsbereich gepreßt und nicht als modulierendes Si
gnal verwendet. Somit ist die Energie des modulierenden
Signals und deswegen die damit verbundene Störung sehr
verringert.
Das codierte und über die Antenne 56 abgestrahlte NTSC-
kompatible Breitbildsignal soll sowohl von NTSC-Empfän
gern als auch von Breitbildempfängern empfangen werden
können, wie es die Fig. 13 zeigt.
Gemäß der Fig. 13 wird ein gesendetes kompatibles Breit
bild-Fernsehsignal mit erweiterter Auflösung und im Zei
lensprungformat an einer Antenne 1310 aufgefangen und
dem Antenneneingang eines NTSC-Empfängers 1312 zuge
führt. Der Empfänger 1312 verarbeitet das kompatible
Breitbildsignal in normaler Weise, um ein Bild mit dem
Seitenverhältnis 4 : 3 wiederzugeben, wobei die Seitenfeld
information des Breitbildes zum Teil (d. h. die "Tiefen")
in die Horizontal-Überabtastungsbereiche außerhalb der
Sicht des Betrachters gepreßt sind und zum Teil (d. h.
die "Höhen") in der Modulation des alternierenden Hilfs
trägers enthalten sind, wo sie den Betrieb des Standard
empfängers nicht zerreißen.
Das an der Antenne 1310 aufgefangene kompatible Breit
bildsignal erweiterter Auflösung (EDTV-Breitbildsignal)
wird außerdem auf einen mit progressiver Abtastung arbei
tenden Breitbildempfänger 1320 gegeben, der ein Bild mit
einem großen Seitenverhältnis von z. B. 5 : 3 wiedergeben
kann. Das empfangene Breitbildsignal erfährt eine erste
Verarbeitung in einer Eingangseinheit 1322, die einen HF-
Tuner und Verstärkerschaltungen, einen ein Basisband-Vi
deosignal erzeugendes Synchron-Videomodulator (einen
Quadratur-Demodulator) und Analog/Digital-Wandlerschal
tungen(A/D-Wandler) enthält, um ein Basisband-Video
signal (NTSCF) in binärer Form zu erzeugen. Die A/D-Wandler
arbeiten mit einer Probenrate gleich dem Vielfachen der
Farbhilfsträgerfrequenz (4 · fsc).
Das Signal NTSCF wird einer Intravollbild-Mittelungs-
und Differenzbildung 1324 zugeführt, in welcher
in einem Frequenzbereich oberhalb 1,7 MHz Mittelwerte
(additive Vereinigung) und Differenzwerte (subtraktive
Vereinigung) von Bildzeilen erzeugt werden, die jeweils
innerhalb eines betreffenden Vollbildes um 262 Horizon
talzeilenperioden (262 H) auseinanderliegen, um so das
Hauptsignal N und des quadraturmodulierte Signal M prak
tisch frei von vertikalem und zeitlichem Übersprechen
(V-T-Übersprechen) wiederzugewinnen. Zwischen der bei
1,7 MHZ liegenden unteren Grenze der Betriebsfrequenz der
Einheit 1324 und der bei 1,5 MHz liegenden unteren Grenze
der Betriebsfrequenz der Einheit 38 im Decoder der Fig. 1a
befindet sich ein 200 KHz breites Sicherheitsband ge
gen horizontales Übersprechen. Das wiedergewonnene Si
gnal N enthält Information, die in sichtbarer Hinsicht
praktisch identisch mit der Bildinformation des Haupt
signals C/SL ist, und zwar wegen der guten Korrelation
der sichtbaren Informationen innerhalb eines Vollbildes
des Original-Hauptsignals C/SL, das die Vollbild-Mitte
lung im Codierer nach Fig. 1a erfahren hat.
Das Signal M wird auf eine Quadraturmodulator- und
Amplitudendehnungseinheit 1326 gegeben, um die Zusatz
signale X und Z mit Hilfe eines alternierenden Hilfsträ
gers ASC zu demodulieren, dessen Phase von Teilbild zu
Teilbild wechselt, ähnlich wie bei dem in Verbindung mit
Fig. 1a beschriebenen Hilfsträgersignal ASC. Die demodu
lierten Signale X und Z enthalten Information, die in
sichtbarer Hinsicht im wesentlichen identisch mit der
Bildinformation des Signals ESH bzw. des Ausgangssignals
der Einheit 74 in Fig. 1a ist, und zwar wegen der guten
Korrelation der sichtbaren Informationen innerhalb je
weils eines Vollbildes in diesen Signalen, die eine In
travollbild-Mittelung im Codierer der Fig. 1a erfahren
haben.
Die Einheit 1326 enthält außerdem ein 1,5-MHz-Tiefpaßfil
ter, um unerwünschte hochfrequente Demodulationsprodukte
der zweifachen Frequenz des alternierenden Hilfsträgers
zu entfernen, und eine Amplitudendehnungsschaltung um
die (zuvor gepreßten) demodulierten Signale unter Ver
wendung einer Gammafunktion zu dehnen, die das Inverse
der von der Einheit 80 in Fig. 1a benutzten nichtlinearen
Kompressionsfunktion ist (also einen Gammawert von 1/0,7
=1,429 hat).
Eine Einheit 1328 bewirkt eine zeitliche Komprimierung
der farbcodierten hochfrequenten Anteile der Seitenfeld
information, so daß sie wieder ihre ursprünglichen Zeit
schlitze belegen, wodurch das Signal NTSCH wiedererhalten
wird. Die Einheit 1328 komprimiert das Signal NTSCH zeit
lich um das gleiche Maß, um welches die Einheit 72 in
Fig. 1a das Signal NTSCH zeitlich gedehnt hat.
Ein Decoder 1330 decodiert das die horizontal-hochfre
quenten Anteile der Leuchtdichte (Y-Höhen) enthaltende
Signal Z in das Breitbildformat. Die Seitenfeldinforma
tion wird zeitlich gedehnt (um das gleiche Maß, um welches
der Codierer nach Fig. 1a die Seitenfeldinformation zeit
lich komprimiert hat), und die Mittelfeldinformation wird
zeitlich komprimiert (um das gleiche Maß, wie sie im
Codierer nach Fig. 1a zeitlich gedehnt worden ist). Die
Seitenfelder werden unter Bildung eines zehn Bildpunkte
breiten Überlappungsbereichs zusammengefügt, wie es wei
ter unten in Verbindung mit Fig. 14 erläutert wird. Die
Einheit 1330 ist gemäß der Fig. 17 ausgebildet.
Ein Modulator 1332 gibt das Signal vom Decodierer 1330
in Amplitudenmodulation auf einen 5,0-MHz-Träger fc. Das
amplitudenmodulierte Signal wird anschließend in einem
Filter 1334 mit einer Grenzfrequenz von 5,0 MHz hochpaß
gefiltert, um das untere Seitenband zu unterdrücken. Im
Ausgangssignal des Filters finden sich die Frequenzen der
Mittelfeldinformation von 5,0 bis 6,2 MHz und die Frequen
zen der Seitenfeldinformation von 5,0 bis 5,2 MHz. Das
vom Filter 1334 gelieferte Signal wird auf einen Addie
rer 1336 gegeben.
Das Signal NTSCH vom Zeitpresser 1328 wird einer Einheit
1340 angelegt, um die Leuchtdichte-Höhen von den Farb
art-Höhen zu trennen und Signale YH, IH und QH zu erzeu
gen. Dies kann mit Hilfe der in Fig. 18 gezeigten Anord
nung erfolgen.
Das Signal N von der Einheit 1324 wird in einem Leucht
dichte/Farbart-Separator 1342 in seine Leuchtdichte- und
Farbart-Komponenten YN, IN und QN getrennt. Der Separator
1342 kann ähnlich der Einheit 1340 ausgebildet sein und
eine Anordnung des in Fig. 18 gezeigten Typs benutzen.
Die Signale YH, IH, QH und YN, IN, QN werden auf die Ein
gänge eines Y-I-Q-Bildformatdecoders 1334 gegeben, der die
Leuchtdichte- und Farbartkomponenten auf das Breitbild
format bringt. Die Seitenfeld-Tiefen werden zeitlich ge
dehnt, die Mittelfeldinformation wird zeitlich kompri
miert, die Seitenfeld-Höhen werden mit den Seitenfeld-
Tiefen addiert, und die Seitenfelder werden unter Bildung
des zehn Bildpunkte breiten Überlappungsbereichs mit dem
Mittelfeld zusammengefügt, unter Anwendung der in Fig. 14
veranschaulichten Prinzipien. Einzelheiten des Decoders
1344 sind in Fig. 19 dargestellt.
Das Signal YF′ wird auf den Addierer 1336 gegeben, wo es
mit dem vom Filter 1334 kommenden Signal summiert wird.
Durch diesen Vorgang wird wiedergewonnene Information er
weitert-hochfrequenter Horizontaldetails der Leuchtdichte
mit dem decodierten Leuchtdichtesignal YF′ addiert.
Die Signale YF′, IF′ und QF′ werden mit Hilfe von Ab
tastformat-Wandlern 1350, 1352 und 1354 aus dem Zeilen
sprung-Abtastformat in das Format progressiver Abtastung
umgewandelt. Der Abtastformat-Wandler 1350 für die Leucht
dichte spricht außerdem auf das "Helfer"-Leuchtdichte
signal YT aus dem Bildformat-Decoder 1360 an, der das co
dierte "Helfersignal" YTN decodiert. Der Decodierer 1360 de
codiert das Signal YTN in das Breitbildformat und hat
einen Aufbau ähnlich dem in Fig. 17 gezeigten Aufbau.
Die Abtastformat-Wandler 1352 und 1354 für die I- bzw.
Q-Komponente bringen die Zeilensprungsignale in das For
mat progressiver Abtastung, indem sie das zeitliche Mit
tel von Zeilen bilden, die um ein Vollbild auseinander
liegen, um so die Information für die jeweils fehlende
Zeile der progressiven Abtastung zu erhalten. Dies kann
mit Hilfe einer Einrichtung des in Fig. 20 gezeigten
Typs geschehen.
Der Abtastformat-Wandler 1350 für die Leuchtdichte gleicht
der in Fig. 20 dargestellten Anordnung, nur daß das
Signal YT addiert wird, wie es bei der Anordnung nach
Fig. 21 gezeigt ist. In dieser Einheit wird eine Probe des
"Helfersignals" YT zu einem zeitlichen Mittelwert addiert,
um bei der Rekonstruktion eines fehlenden Bildpunkes der
progressiven Abtastung zu helfen. Die vollständigen Zeit
details finden sich innerhalb des Bandes der Horizontal
frequenzen wieder, das im codierten Zeilendifferenzsignal
(750 KHz, nach der Codierung) enthalten ist. Oberhalb
dieses Bandes von Horizontalfrequenzen ist das Signal YT
gleich Null, so daß der fehlende Bildpunkt durch zeit
liche Mittelung rekonstruiert wird.
Die nun im Format progressiver Abtastung vorliegenden
Breitbildsignale YF, IF und QF werden mittels eines Di
gital/Analog-Wandlers 1362 in Analogform gebracht, bevor
sie einer Videosignalprozessor- und Matrixverstärker-
Einheit 1364 zugeführt werden. Der Videosignalprozessor
in der Einheit 1364 enthält Schaltungen zur Signalver
stärkung, Verschiebung des Gleichstrompegels, Versteile
rung, Helligkeitsregelung, Kontrastregelung und anderer
üblicher Videosignalbehandlungen. Der Matrixverstärker
in der Einheit 1364 kombiniert das Leuchtdichtesignal
YF mit den Farbdifferenzsignalen IF und QF, um die Video
farbsignale R, G und B zu erzeugen. Diese Farbsignale wer
den in der Einheit 1364 durch Treiberverstärker auf einen
Pegel verstärkt, der sich zur direkten Ansteuerung einer
farbtüchtigen Breitbild-Wiedergabeeinrichtung wie z. B.
einer Breitschirm-Bildröhre eignet.
Die Fig. 6 zeigt eine in der Verarbeitungseinrichtung 18
der Fig. 1a enthaltene Anordnung zur Entwicklung der Si
gnale YE, YO und YH aus dem breitbandigen Breitbildsignal
YF. Das Signal YF′′ erfährt eine Horizontal-Tiefpaßfilte
rung in einem Eingangsfilter 610 mit einer Grenzfrequenz
von 700 KHz, um das aus niedrigfrequenten Leuchtdichte
anteilen bestehende Signal YL zu erzeugen, das auf einen
Eingang einer subtraktiven Vereinigungsschaltung 612 ge
geben wird. Das Signal YF′′ wird auch dem anderen Eingang
der Vereinigungsschaltung 612 und einer Zeit-Demultiplex
schaltung 616 zugeführt, nach dem es in einer Einheit 614
verzögert worden ist, um die durch Verarbeitung im Fil
ter 610 hervorgerufene Signalverzögerung auszugleichen.
Die Kombination des verzögerten Signals YF′′ und des ge
filterten Signals YL liefert das die hochfrequenten
Leuchtdichteanteile enthaltende Signal YH am Ausgang der
Vereinigungsschaltung 612.
Das verzögerte Signal YF′′ und die Signale YH und und YL wer
den getrennten Eingängen der Demultiplexschaltung 616
zugeführt, die einzelne Demultiplexer-Einheiten (abge
kürzt DEMUX) 618, 620 und 621 enthält, um die Signale YF′′,
YH und YL zu verarbeiten. Die Einzelheiten der Demulti
plexschaltung 616 werden in Verbindung mit Fig. 8 er
läutert. Die Demultiplexer-Einheiten 618, 620 und 621
liefern das über die volle Bandbreite gehende Mittel
feldsignal YC, das Seitenfeld-Höhensignal YH und das
Seitenfeld-Tiefensignal YL′, wie sie in den Fig. 3
und 4 dargestellt sind.
Das Signal YC wird in einem Zeitdehner 622 zeitlich ge
dehnt, um das Signal YE zu erzeugen. Diese Dehnung er
folgt mit einem Mittelfeld-Dehnungsfaktor, der so bemes
sen ist, daß noch Raum für die linken und rechten Hori
zontal-Überabtastungsbereiche bleibt. Dieser Mittelfeld-
Dehnungsfaktor (1,19) ist das Verhältnis der gewünsch
ten "Breite" des Signals YE (Bildpunkte 15-740) zur
"Breite" des Signals YC (Bildpunkte 75-680), wie in
Fig. 3 gezeigt.
Das Signal YL′ wird in einem Zeitpresser 628 um einen
Seitenfeld-Kompressionsfaktor zeitlich komprimiert, um
das Signal YO zu erzeugen. Der Seitenfeld-Kompressions
faktor (6,0) ist das Verhältnis der Breite des entspre
chenden Teils des Signals YL′ (z. B. die linken Bildpunk
te 1-84) zur gewünschten Breite des Signals YO (z. B. die
linken Bildpunkte 1-14), wie in Fig. 3 gezeigt. Die
Zeitdehner 622, 624 und 626 und der Zeitpresser 628 kön
nen von einem Typ sein, wie er in Fig. 12 gezeigt und
weiter unten beschrieben wird.
Die Signale IE, IH, IO und QE, QH, QO werden aus dem
Signal IF′′ bzw. aus dem Signal QF′′ in einer ähnlichen
Weise entwickelt wie die Signale YE, YH und YE mit Hil
fe der Einrichtung nach Fig. 6. Hierzu sei die Fig. 7
betrachtet, die eine Einrichtung zur Erzeugung der Si
gnale IE, IH und IO aus dem Signal IF′′ zeigt. Die Ent
wicklung der Signale QE, QH und QO aus dem Signal QF′′
erfolgt in ähnlicher Weise.
Gemäß der Fig. 7 wird das breitbandige Breitbildsignal
IF′′ nach Verzögerung in einer Einheit 714 auf eine De
multiplexschaltung 716 gegeben und außerdem in einer
subtraktiven Vereinigungsschaltung 712 subtraktiv mit
einem niedrigfrequenten Signal IL aus einem Tiefpaßfil
ter 710 vereinigt, um das hochfrequente Signal IH zu
erzeugen. Das verzögerte Signal IF′′ und die Signale IH
und IL werden durch gesonderte Demultiplexer 718, 720
und 721 in der Demultiplexschaltung 716 so entflochten,
daß die Signale IC, IH und IL′ erhalten werden. Das Si
gnal IC wird in einem Zeitdehner 722 zeitlich gedehnt,
um das Signal IE zu erhalten, und das Signal IL′ wird
in einem Zeitpresser 728 zeitlich kompromiert, um das
Signal IO zu erzeugen. Die Dehnung des Signals IC er
folgt mit einem ähnlichen Dehnungsfaktor wie die be
schriebene Dehnung des Signals YC, und die Komprimierung
des Signals IL′ erfolgt mit einem ähnlichen Seitenfeld-
Kompressionsfaktor wie die beschriebene Komprimierung
des Signals YL′.
Die Fig. 8 zeigt eine Demultiplexschaltung 816, wie sie
für die Schaltung 616 in Fig. 6 und die Schaltung 716
in Fig. 7 verwendet werden kann. Die Fig. 8 zeigt die
Schaltung in ihrer Anwendung als Demultiplexerschaltung
616 nach Fig. 6. Das Eingangssignal YF′′ enthält 754 Bild
punkte, welche die Bildinformation definieren. Die Bild
punkte 1-84 definieren das linke Seitenfeld, die Bild
punkte 671-754 definieren das rechte Seitenfeld, und die
Bildpunkte 75-680 definieren das Mittelfeld, welches das
linke und das rechte Seitenfeld etwas überlappt. Die Si
gnale IF′′ und QF′′ zeigen ähnliche Überlappung. Wie noch
beschrieben wird, wird es durch eine solche Feldüber
lappung möglich, das Mittelfeld und die Seitenfelder im
Empfänger so zusammenzufügen, daß Artefakte an den Feld
grenzen praktisch eliminiert werden.
Die Demultiplexschaltung 816 enthält eine erste, eine
zweite und eine dritte Demultiplexer-Einheit (abgekürzt
DEMUX) 810 bzw. 812 bzw. 814 für die Information des lin
ken Seitenfeldes bzw. des Mittelfeldes bzw. des rechten
Seitenfeldes. Jede Demultiplexer-Einheit hat einen Ein
gang "A", wo das Signal YH bzw. YF′′ bzw. YL angelegt
wird, und einen Eingang "B" zum Anlegen eines Austast
signals (BLK). Das Austastsignal kann z. B. ein Logikwert
0 bzw. Massenpotential sein.
Die Einheit 810 extrahiert das Ausgangssignal YH, das
die Höhen des linken und des rechten Seitenfeldes ent
hält, aus dem Eingangssignal YH, solange der Wähleingang
SEL von einem Zählwertvergleicher 817 ein erstes Steuer
signal empfängt, welches die Gegenwart der Bildpunkte
1-84 des linken Seitenfeldes und der Bildpunkte 671-754
des rechten Seitenfeldes anzeigt. Zu anderen Zeiten be
wirkt ein zweites Steuersignal vom Zählwertvergleicher 817,
daß anstelle des Signals YH vom Eingang A das Austastsi
gnal BLK vom Eingang B auf den Ausgang der Einheit 810 ge
koppelt wird.
Die Einheit 814 und ein Zählwertvergleicher 820 arbeiten
in ähnlicher Weise, um das Seitenfeld-Tiefensignal YL′
aus dem Signal YL abzuleiten. Die Einheiten 812 koppelt das
Signal YF′′ von ihrem Eingang A auf ihren Ausgang zur Er
zeugung des Mittelfeldsignals YC nur dann, wenn ein Steuer
signal von einem Zählwertvergleicher 818 die Gegenwart
der Mittelfeld-Bildpunkte 75-680 anzeigt.
Die Zählwertvergleicher 817, 818 und 820 werden mit dem
Videosignal YF′′ durch ein Impulssignal vom Ausgang eines
Zählers 822 synchronisiert, der auf ein Taktsignal mit
dem Vierfachen der Farbhilfsträgerfrequenz (4 · fsc 35803 00070 552 001000280000000200012000285913569200040 0002003890748 00004 35684) und
auf ein Horizontalzeilen-Synchronsignal H anspricht, ab
geleitet aus dem Videosignal YF′′. Jeder Ausgangsimpuls
des Zählers 822 entspricht einer Bildpunktposition längs
einer Horizontalzeile. Der Zähler 822 hat einen Anfangs
versatz, indem er mit dem Zählwert -100 beginnt, ent
sprechend den 100 Bildpunkten vom Beginn des negativ ge
richteten Horizontalsynchronimpulses zum Zeitpunkt THS
bis zum Ende des Horizontalaustastintervalls, wo der
Bildpunkt 1 am Anfang des Horizontalzeilen- Wiedergabe
intervalls erscheint. Somit steht der Zähler 822 am An
fang des Zeilenwiedergabeintervalls auf dem Zählwert "1".
Es können auch andere Zähleranordnungen entwickelt wer
den. Die von der Demultiplexschaltung 816 angewandten
Prinzipien können auch bei Multiplexschaltungen für die
Durchführung eines in umgekehrter Richtung laufenden
Signalvereinigungsvorgangs benutzt werden, wie er z. B.
im Seitenfeld/Mittelfeld-Kombinator (28) nach Fig. 1a ab
läuft.
Die Fig. 9 zeigt Einzelheiten des Modulators 30 in den
Codierern 31 und 60 der Fig. 1a. Gemäß der Fig. 9 werden
Signale IN und QN, die mit dem Vierfachen der Farbhilfs
trägerfrequenz (4 · fsc) erscheinen, jeweils an den Si
gnaleingang eines zugeordneten Zwischenspeichers (Latch-
Schaltung) 910 bzw. 912 gelegt. Die Latch-Schaltungen
910 und 912 empfangen außerdem Taktsignale der Frequenz
4 · fsc, um die Signale IN und QN einzugeben, und ein
Schaltsignal der Frequenz 2 · fsc, das einem invertie
renden Schaltsignaleingang der Latch-Schaltung 910 und
einem nicht-invertierenden Schaltsignaleingang der Latch-
Schaltung 912 angelegt wird.
Die Ausgänge der Latch-Schaltungen 910 und 912 sind zu
einer einzigen Ausgangsleitung vereinigt, auf der die
Signale I und Q abwechselnd erscheinen und zu den Si
gnaleingängen einer nicht-invertierenden Latch-Schaltung
914 und einer invertierenden Latch-Schaltung 916 gelan
gen. Diese Latch-Schaltungen werden mit der Frequenz
4 · fsc taktgesteuert, und jede von ihnen empfängt ein
Schaltsignal der Farbhilfsträgerfrequenz fsc, die erste
an einem invertierenden und die zweite an einem nicht-
invertierenden Eingang. Die nicht-invertierende Latch-
Schaltung 914 liefert an ihrem Ausgang in abwechselnder
Folge Signale I und Q positiver Polarität, und die in
vertierende Latch-Schaltung 916 liefert an ihrem Ausgang
in abwechselnder Folge Signale I und Q negativer Polari
tät, also Signale -I, -Q.
Die Ausgänge der Latch-Schaltungen 914 und 916 sind zu
einer einzigen Ausgangsleitung zusammengefaßt, auf der
die Signale I und Q in abwechselnder Folge und jeweils
paarweise zwischen entgegengesetzten Polaritäten wech
selnd erscheinen, also in der Folge I, Q, -I, -Q . . . usw.,
um so das Signal CN zu bilden. Dieses Signal wird im
Filter 32 gefiltert, bevor es in der Einheit 36 mit ei
ner gefilterten Version des Leuchtdichtesignals YN kom
biniert wird, um das codierte NTSC-Signal C/SL zu er
zeugen in der Form Y+I, Y+Q, Y-I, Y-Q, Y+I, Y+Q . . . usw.
Die Fig. 10 zeigt ein Filter für vertikale-zeitliche
Filterung (vertikal-zeitliches Filter oder abgekürzt
V-T-Filter), das durch Einstellung von Gewichtskoeffi
zienten a1-a9 zu einem V-T-Bandpaßfilter, einem V-T-
Bandsperrfilter oder einem V-T-Tiefpaßfilter gemacht
werden kann. Die Tabelle in Fig. 10a zeigt die Gewichts
koeffizienten für eine V-T-Bandpaßfilterung und eine V-T-
Bandsperrfilterung, wie sie in dem hier beschriebenen
System benutzt werden. Filter für die Dimensionen hori
zontal-vertikal-zeitlich (H-V-T-Filter) werden durch
Kombinationen von V-T-Filtern mit Horizontalfiltern
realisiert. So besteht ein H-V-T-Bandsperrfilter wie
das Filter 34 in Fig. 1a aus der Kombination eines Hori
zontal-Tiefpaßfilters 1020 und eines V-T-Bandsperrfil
ters 1021 gemäß der Fig. 10b; H-V-T-Bandpaßfilter, wie
sie im Decodersystem nach Fig. 13 enthalten sind, beste
hen aus der Kombination eines Horizontal-Bandpaßfilters
1030 und eines V-T-Bandpaßfilters 1031 gemäß der
Fig. 10c.
Im H-V-T-Bandsperrfilter nach Fig. 10b hat das Horizon
tal-Tiefpaßfilter 1020 eine gegebene Grenzfrequenz und
liefert eine gefilterte niedrigfrequente Signalkomponen
te. Diese Komponente wird in einer Vereinigungsschaltung
1023 subtraktiv mit einer verzögerten Version des Ein
gangssignals aus einer Verzögerungseinheit 1022 kombi
niert, um eine hochfrequente Komponente zu erzeugen. Die
niedrigfrequente Komponente wird mittels eines Netzwerkes
1024 um eine Vollbildperiode verzögert, bevor sie an eine
additive Vereinigungsschaltung 1025 gelegt wird, die an
einem anderen Eingang das Ausgangssignal der subtraktiven
Vereinigungsschaltung 1023 über ein V-T-Bandsperrfilter
1021 empfängt. Das Ausgangssignal der additiven Vereini
gungsschaltung 1025 ist damit insgesamt der gewünschten
H-V-T-Bandsperrfilterung unterworfen. Das V-T-Filter
1021 hat die in Fig. 10 für das V-T-Bandsperrfilter an
gegebene Gewichtskoeffizienten.
Ein H-V-T-Bandpaßfilter, wie es z. B. im Decoder der Fig. 13
enthalten ist, besteht gemäß der Fig. 10c aus einem
Horizontal-Bandpaßfilter 1030 mit einer gegebenen Grenz
frequenz in Kaskade mit einem V-T-Bandpaßfilter 1031,
das die in der Tabelle der Fig. 10a für V-T-Bandpaß
filter angegebenen Gewichtskoeffizienten hat.
Das Filter nach 10 enthält eine Vielzahl kaskadengeschal
teter Speichereinheiten (M) 1010a bis 1010h, um an ein
zelnen Anzapfungen t1-t9 fortschreitend längere Signal
verzögerungen zu erhalten und eine Filter-Gesamtverzö
gerung zu liefern. Die an den Anzapfungen abgenommenen
Signale werden jeweils einem Eingang zugeordneter Mul
tiplizierschaltungen 1012a bis 1012i zugeführt. Ein wei
terer Eingang jeder Multiplizierschaltung empfängt ein
vorgeschriebenes Gewichtungssignal a1-a9, je nach der
Natur des durchzuführenden Filterungsvorgangs. Die Na
tur des Filterungsvorgangs schreibt auch die Verzögerun
gen vor, die von den Speichereinheiten 1010a bis 1010h
eingeführt werden.
Filter für die horizontale Dimension enthalten Bildpunkt-
Speicherelemente, so daß die Filter-Gesamtverzögerung
kürzer ist als eine Horizontalzeilenperiode (1H). Filter
für die vertikale Dimension enthalten ausschließlich
Zeilen-Speicherelemente, und Filter für die zeitliche
Dimension enthalten ausschließlich Vollbild-Speicherele
mente. Somit besteht ein dreidimensionales H-V-T-Filter
aus einer Kombination von Bildpunkt-Speicherelementen
(<1H), Zeilen-Speicherelementen (1H) und Vollbild-Spei
cherelementen <1H), während ein V-T-Filter nur die bei
den letztgenannten Typen von Speicherelementen enthält.
Die gewichteten angezapften (zueinander verzögerten) Si
gnale von den Elementen 1012a bis 1012i werden in einem
Addierer 1015 kombiniert, um ein gefiltertes Ausgangs
signal zu liefern.
Solche Filter sind nicht-rekursive Filter mit endlicher
Impulsantwort (sogenannte FIR-Filter). Die Natur der
von den Speicherelementen eingeführten Verzögerung hängt
vom Typ des zu filternden Signals ab, und beim vorliegen
den Beispiel auch davon, welches Maß an Übersprechen
zwischen der Leuchtdichte, der Farbart und den hochfre
quenten Seitenfeldinformationen toleriert werden kann.
Die Steilheit der Filterflanken und damit die Schärfe
der Filterung wird verbessert, wenn man die Anzahl der
kaskadengeschalteten Speicherelemente vergrößert.
Die Fig. 10d zeigt eines der gesonderten Filter im Netz
werk 16 der Fig. 1a. Dieses Filter enthält kaskadenge
schaltete Speichereinheiten (Verzögerungseinheiten)
1040a bis 1040d und zugeordnete Multiplizierschaltungen
1042a bis 1042e, welche die Signale von Anzapfungen t1-t5
empfangen und jeweils bestimmte Gewichtsfaktoren a1-a5
einführen. Ferner ist eine Vereinigungsschaltung 1045
vorgesehen, welche die gewichteten Ausgangssignale der
Multiplizierschaltungen empfängt, um daraus ein Aus
gangssignal zu bilden.
Die Fig. 11a und 11b zeigen Einzelheiten der die hoch
frequenten Anteile (Höhen) verarbeitenden Intravollbild-
Mittelungsschaltung 38 der Fig. 1a. Die Mittelungsschal
tung 38 enthält ein eingangsseitiges Horizontal-Tiefpaß
filter 1110, das eine Grenzfrequenz von ungefähr 1,5 MHz
hat und das Signal C/SL empfängt. Am Ausgang des Filters
1110 erscheint also eine niedrigfrequente Komponente des
Eingangssignals C/SL, und am Ausgang einer subtraktiven
Vereinigungsschaltung 1112, die in der gezeigten Weise
angeschlossen ist, erscheint eine hochfrequente Kompo
nente des Eingangssignals C/SL. Die niedrigfrequente
Komponente wird in einer Einheit 1114 um 262 Horizontal
zeilenperioden (262 H) verzögert, bevor sie auf einen
Addierer 1120 gegeben wird. Die hochfrequente Komponen
te des Signals C/SL durchläuft ein V-T-Filter 1116, be
vor sie ebenfalls auf den Addierer 1120 gegeben wird, um
das Signal N zu erzeugen.
Das Filter 1116 ist in der Fig. 11b näher dargestellt
und enthält zwei 262-H-Verzögerungselemente 1122 und
1144 und angeschlossene Multiplizierschaltungen 1125,
1126 und 1127 mit zugeordneten Gewichtskoeffizienten
a1, a2 und a3. Die Ausgänge der Multiplizierschaltungen
werden einem Addierer 1130 zugeführt, um ein Ausgangs
signal zu erzeugen, das die Höhen des Signals C/SL zeit
lich gemittelt enthält. Der Gewichtskoeffizient a2
bleibt konstant, während die Koeffizienten a1 und a3
von einem Teilbild zum anderen zwischen 1/2 und 0 wech
seln. Der Koeffizient a1 hat den Wert 1/2, wenn der Ko
effizient a3 den Wert Null hat, und umgekehrt.
Die Fig. 12 zeigt eine Raster-Abbildungseinrichtung, die
für die Zeitdehner und Zeitpresser in den Fig. 6 und
7 verwendet werden kann. Die Wellenform in der Fig. 12a
veranschaulichen den Abbildungsprozeß. Die Fig. 12a
zeigt ein Eingangssignal S mit einem mittleren Teil
zwischen Bildpunkten 84 und 670, der mittels eines Zeit
dehnungsprozesses auf die Bildpunktpositionen 1-754 eines
Ausgangssignals W abgebildet werden soll. Die End-Bild
punkte 84 und 670 aus den Signal S werden direkt auf die
End-Bildpunkte 1 und 754 des Signals W abgebildet. Die
dazwischenliegenden Bildpunkte werden wegen der zeitli
chen Dehnung nicht direkt in einem Positionsverhältnis
1 : 1 abgebildet, in manchen Fällen nicht einmal in einem
ganzzahligen Positionsverhältnis. Der letztgenannte Fall
gilt z. B., wenn die Bildpunktposition 85,33 des Signals
S der ganzzahligen Bildpunktposition 3 des Ausgangs
signals W entspricht. Die Bildpunktposition 85,33 des Si
gnals S enthält einen ganzzahligen Teil (85), und einen
Bruchteil DX (0,33), und die Bildpunktposition 3 des
Ausgangssignals W enthält einen ganzzahligen Teil (3)
und einen Bruchteil (0).
In der Anordnung nach Fig. 12 liefert ein mit der Fre
quenz 4 · fsc arbeitender Bildpunktzähler 1210 ein aus
gangsseitiges Adressensignal M, das Bildpunktpositionen
(1 . . . 754) eines Ausgangsrasters repräsentiert. Das Si
gnal M wird einem programmierbaren Festwertspeicher (PROM-
Speicher) 1212 angelegt, der eine Nachschlagetabelle pro
grammierter Werte enthält, die von der Natur der durch
zuführenden Rasterabbildung abhängen, z. B. davon, ob
die Abbildung komprimierend oder dehnend ist. Als Ant
wort auf das Signal M liefert der PROM-Speicher 1212 ein
ausgangsseitiges Leseadressensignal N, welches eine ganze
Zahl darstellt, und ein ausgangsseitiges Signal DX, das
eine Bruchzahl darstellt, die gleich oder größer als Null
ist, jedoch kleiner als 1. Im Falle eines 6-Bit-Signals
DX (2⁶=64), zeigt das Signal DX die Bruchteile 0, 1/64,
2/64, 3/64 . . . 63/64.
Der PROM 1212 erlaubt eine dehnende oder komprimierende
Abbildung eines Videoeingangssignals S je nach den ge
speicherten Werten des Signals N. So werden als Antwort
auf ganzzahlige Werte des Bildpunkt-Positionssignals M
ein programmierter Wert des Leseadressensignals N und
ein programmierter Wert des Bruchteilsignals DX gelie
fert. Um beispielsweise eine Signaldehnung durchzufüh
ren, ist der PROM-Speicher 1212 so ausgelegt, daß er
die Signale N mit einer langsameren Geschwindigkeit lie
fert als die Signale M. Wenn umgekehrt eine Komprimierung
erfolgen soll, liefert der PROM 1212 die Signale N mit
einer größeren Geschwindigkeit als die Signale M.
Das Videoeingangssignal S wird durch kaskadengeschaltete
Bildpunkt-Verzögerungselement 1214a, 1214b und 1214c
verzögert, um Videosignale S(N+2), S (N+1) und S (N)
zu erzeugen, bei denen es sich um zueinander verzögerte
Versionen des Videoeingangssignals handelt. Diese Signa
le werden auf Videosignaleingänge zugehöriger Doppelan
schluß-Speicher 1216a-1216d gegeben, wie sie an sich be
kannt sind. Das Signal M wird an den Schreibadressenein
gang eines jeden der Speicher 1216a-1216d gelegt, und
das Signal n wird an den Leseadresseneingang eines je
den der Speicher 1216a-1216d gelegt.
Das Signal M bestimmt, wo ankommende Videosignalinforma
tion in die Speicher eingeschrieben werden soll, und das
Signal N bestimmt, welche Werte aus dem Speicher gelesen
werden sollen. Die Speicher sind so ausgelegt, daß sich
Information an eine Adresse einschreiben läßt, während
gleichzeitig eine andere Adresse ausgelesen wird. Aus
gangssignale S (N-1), S (N), S (N+1) und S (N+2) aus den
Speichern 1216a-1216d zeigen ein zeitlich gedehntes
oder zeitlich komprimiertes Format, abhängig vom Lese/
Schreib-Betrieb der Speicher 1216a-1216d, was seiner
seits davon abhängt, wie der PROM-Speicher 1212 pro
grammiert ist.
Die Signale S (N-1), S (N), S (N+1) und S (N+2) von den
Speichern 1216a-1216d werden in einem linearen Vierpunkt-
Interpolator verarbeitet, der Versteilerungsfilter 1220
und 1222, einen PROM-Speicher 1225 und einen linearen
Zweipunkt-Interpolator 1230 enthält; Einzelheiten dieser
Teile sind in den Fig. 12b und 12c veranschaulicht.
Die Versteilerungsfilter 1220 und 1222 empfangen drei
Signale aus der Gruppe der Signale S (N-1), S (N), S (N+1)
und S (N+2) in der gezeigten Auswahl und erhalten außer
dem ein Versteilerungssignal PX. Der Wert des Versteile
rungssignals PX ändert sich von 0 bis 1 als Funktion des
Wertes des Signals DX, wie in Fig. 12d gezeigt, und wird
vom PROM-Speicher 1225 als Antwort auf das Signal DX ab
gegeben. Der PROM-Speicher 1225 enthält eine Nachschlage
tabelle und ist so programmiert, daß er als Antwort auf
einen gegebenen Wert von DX einen gegebenen Wert von PX
liefert.
Die Versteilerungsfilter 1220 und 1222 liefern zwei ver
steilerte, zueinander verzögerte Videosignale S′ (N) und
S′ (N+1) an den linearen Zweipunkt-Interpolator 1230, der
auch das Signal DX empfängt. Der Interpolator 1230 lie
fert ein (komprimiertes oder gedehntes) Videoausgangs
signal W, das definiert ist durch den Ausdruck
W = S′ (N) + DX [S′ (N + 1) - S′ (N)).
Die beschriebene Funktion der Vierpunkt-Interpolation
und Versteilerung ist vorteilhafterweise angenähert eine
(sin X)X-Interpolationsfunktion mit guter Auflösung
hochfrequenter Details.
Die Fig. 12b zeigt Einzelheiten der Versteilerungsfil
ter 1220 und 1222 und des Interpolators 1230. Gemäß der
Fig. 12b werden die Signale S (N-1), S (N), S (N+1)
einer Gewichtungsschaltung 1240 im Versteilerungsfilter
1220 zugeführt, wo diese Signale (in der aufgezählten
Reihenfolge) mit Versteilerungskoeffizienten -1/4, 1/2
und -1/4 gewichtet werden. Wie in Fig. 12c gezeigt, ent
hält die Gewichtungsschaltung 1240 Multiplizierschaltun
gen 1241a-1241c, um die Signale S (N-1), S (N) und S
(N+1) jeweils mit dem zugeordneten Versteilerungskoeffi
zienten -1/4 bzw. 1/2 bzw. -1/4 zu multiplizieren.
Die Ausgangssignale der Multiplizierschaltungen 1241a-
1241c werden in einem Addierer 1242 summiert, um ein
versteilertes Signal P (N) zu erzeugen, das in einer wei
teren Multiplizierschaltung 1243 mit dem Signal PX mul
tipliziert wird, um ein versteilertes Signal zu liefern,
das dann in einem Addierer 1244 mit dem Signal S (N)
summiert wird, um das versteilerte Signal S′ (N) zu lie
fern. Das Versteilerungsfilter 1222 hat gleichartige
Struktur und Arbeitsweise.
Im Zweipunkt-Interpolator 1230 wird das Signal S′ (N)
mittels einer Subtrahierschaltung 1232 vom Signal S′
(N+1) subtrahiert, um ein Differenzsignal zu erzeugen,
das in einer Multiplizierschaltung 1234 mit dem Signal
DX multipliziert wird. Die Ausgangsgröße der Multipli
zierschaltung 1234 wird in einem Addierer 1236 mit dem
Signal S′ (N) summiert, um das Ausgangssignal W zu er
zeugen.
Einzelheiten der Mittelungs- und Differenzbildungsein
heit 1324 sind in der Fig. 15 dargestellt. Das Signal
NTSCF wird in einer Einheit 1510 tiefpaßgefiltert, um
eine die niedrigen Frequenzen enthaltende Komponente
("Tiefen") zu liefern, die in einer Einheit 1512 sub
traktiv mit dem Signal NTSCF kombiniert wird, um eine
die hochfrequenten Anteile enthaltende Komponente
("Höhen") des Signals NTSCF zu liefern. Diese Höhen-
Komponente wird in einer Einheit 1513 einer Mittelung
(additive Kombination) und einer Differenzbildung (sub
traktive Kombination) unterworfen, um an einem Mittel
wertausgang (+) eine gemittelte Höhen-Komponente NH und
an einem Differenzwertausgang (-) das Signal M zu erzeu
gen. Die Komponente NH wird in einem Addierer 1514 mit
einer um 262 H verzögerten Version des Ausgangssignals
des Filters 1510 summiert, um das Signal N zu erhalten.
Die Fig. 16 zeigt Einzelheiten der Einheit 1513 in Fig. 15.
Die in Fig. 16 gezeigte Anordnung ist ähnlich der
weiter oben beschriebenen Anordnung nach Fig. 11b, nur
daß zusätzlich Inverter 1610 und 1612 und ein Addierer
1614 vorgesehen sind.
Gemäß der Fig. 17, die Einzelheiten der Einheit 1330 in
Fig. 13 zeigt, wird das Signal Z einem Seitenfeld/Mittel
feld-Separator (Demultiplexer) 1710 angelegt, der ge
trennt voneinander die Leuchtdichte-Höhen der Seitenfel
der und des Mittelfeldes YHO bzw. YHE liefert, die im
Codierer der Fig. 1a komprimiert bzw. gedehnt worden sind.
Diese Signale werden durch Einheiten 1712 und 1714 zeit
lich gedehnt bzw. zeitlich komprimiert, unter Anwendung
der bereits beschriebenen Abbildungsmethoden, um Leucht
dichte-Höhen der Seitenfelder und des Mittelfeldes YHS
bzw. YHC zu erzeugen, die in einer Einheit 1716 zusam
mengefügt werden (was z. B. durch die Anordnung nach Fig. 14
geschehen kann), bevor sie auf den Amplitudenmodula
tor 1332 gegeben werden.
In der Fig. 18 sind, wie bereits angedeutet, Einzelhei
ten des Leuchtdichte/Farbart-Separators 1340 bzw. 1342
für das Signal NTSCH bzw. für das Signal N dargestellt.
Wie in dieser Figur gezeigt, wird das Signal NTSCH über
ein H-V-T-Bandpaßfilter 1810, das den in Fig. 10c ge
zeigten Aufbau hat und ein Durchlaßband von 3,508±0,5 MHz
aufweist, an eine subtraktive Vereinigungsschaltung
1814 übertragen, die außerdem das Signal NTSCH nach
Durchlaufen einer laufzeitausgleichenden Verzögerung
1812 empfängt. Am Ausgang der Vereinigungsschaltung 1814
erscheinen die abgetrennten Leuchtdichte-Höhen YH. Das
gefilterte NTSCH-Signal vom Filger 1810 erfährt in einem
Demodulator 1816 eine Quadratur-Demodulation mittels des
Farbhilfsträgers SC, um die Farbart-Höhen IH und QH zu
erhalten.
Gemäß der Fig. 19, die Einzelheiten des Decoders
1344 zeigt, werden die Signale YN, IN und QN mittels
eines Seitenfeld/Mittelfeld-Separators (Zeit-Demulti
plexer) 1940 in komprimierte Seitenfeld-Tiefen YO, IO,
QO und in gedehnte Mittelfeldsignale YE, IE, QE getrennt.
Der Demultiplexer 1940 kann nach den Prinzipien des wei
ter oben beschrieben Demultiplexers 814 nach Fig. 8
arbeiten.
Die Signale YO, IO und QO erfahren mittels eines Zeit
dehners 1942 eine zeitliche Dehnung um einen Seitenfeld-
Dehnungsfaktor (entsprechend dem Seitenfeld-Kompres
sionsfaktor im Codierer der Fig. 1a), um die ursprüngli
che Einordnung der Seitenfeld-Tiefen im Breitbildsignal
wiederherzustellen; diese wiederhergestellten Seiten
feld-Tiefen sind mit YL, IL und QL bezeichnet. In ähn
licher Weise erfahren, um Raum für die Seitenfelder zu
schaffen, die Mittelfeldsignale YE, IE und QE in einem
Zeitpresser 1944 eine zeitliche Komprimierung um einen
Mittelfeld-Kompressionsfaktor (entsprechend dem Mittel
feld-Dehnungsfaktor im Codierer nach Fig. 1a), um die
ursprüngliche räumliche Einordnung des Mittelfeldsi
gnals im Breitbildsignal wiederherzustellen; die wieder
hergestellten Mittelfeldsignale sind mit YC, IC und QC
bezeichnet. Der Zeitpresser 1944 und der Zeitdehner 1942
können von einem Typ sein, wie er weiter oben in Ver
bindung mit Fig. 12 beschrieben wurde.
Die räumlich wiederhergestellten Seitenfeld-Höhen YH,
IH und QH werden mit den räumlich wiederhergestellten
Seitenfeld-Tiefen YL, IL und QL in einer Vereinigungs
schaltung 1946 kombiniert, um rekonstruierte Seitenfeld
signale YS, IS und QS zu erzeugen. Diese Signale werden
mit den rekonstruierten Mittelfeldsignalen YC, IC und
QC in einem Kombinator 1960 zusammengefügt, um ein
vollständig rekonstruiertes Breitbild-Leuchtdichte
signal YF′ und vollständig rekonstruierte Breitbild-Farb
differenzsignale IF′ und QF′ zu bilden. Die Zusammen
fügung der Seitenfeld- und Mittelfeld-Signalkomponen
ten erfolgt in einer Weise, bei welcher ein sichtbarer
Saum an den Grenzen zwischen dem Mittelfeld und den
Seitenfeldern praktisch eliminiert wird, wie es aus
der nachfolgenden Beschreibung des Kombinators 1960 her
vorgeht, der in Fig. 14 gezeigt ist.
In der Fig. 20 sind Einzelheiten der Abtastformat-Wand
ler 1352 und 1354 dargestellt. Die im Zeilensprungformat
vorliegenden Signale IF′ (oder QF′) werden durch ein
Element 2010 um 263 H verzögert, bevor sie auf einen
Eingang eines Doppelanschluß-Speichers 2020 gegeben
werden. Dieses verzögerte Signal erfährt eine weitere
Verzögerung um 262 H in einem Element 2012, bevor es
in einem Addierer 2014 mit dem Eingangssignal addiert
wird. Das Ausgangssignal des Addierers 2014 wird einer
durch 2 teilenden Schaltung 2016 zugeführt, bevor es
auf einen Eingang eines Doppelanschluß-Speichers 2018
gegeben wird. Die Auslesung von Daten an den Speichern
2020 und 2018 erfolgt mit einer Rate 8 · fsc, während
die Einschreibung von Daten mit einer Rate 4 · fsc
geschieht. Die Ausgangssignale aus den Speichern 2018
und 2020 werden einem Multiplexer 2022 zugeführt, um
Ausgangssignale IF (QF) im Format progressiver Abtastung
zu erzeugen. In der Fig. 20 sind auch die Wellenformen
des im Zeilensprungformat vorliegenden Eingangssignals
(zwei Zeilen, deren eine die Bildpunktproben C und de
ren andere die Bildpunktproben X enthält) und des im
Format progressiver Abtastung erscheinenden Ausgangs
signals mit den gleichen Bildpunktproben C und X ge
zeigt.
Die Fig. 21 zeigt eine Anordnung, die als Wandler
1350 für das Signal YF′′in Fig. 13 verwendet werden
kann. Das Zeilensprung-Signal YF′ wird durch Elemente
2110 und 2112 verzögert, bevor es mit der unverzöger
ten Version in einem Addierer 2114 vereinigt wird. Das
verzögerte Signal vom Element 2110 wird auf einen Dop
pelanschluß-Speicher 2120 gegeben. Das Ausgangssignal
des Addierers 2114 wird einer durch 2 teilenden Schal
tung 2116 zugeführt, deren Ausgangssignal in einem Addie
rer 2118 mit dem Signal YT addiert wird. Das Ausgangs
signal des Addierers 2118 wird einem Doppelanschluß-
Speicher 2122 zugeführt. Die Speicher 2120 und 2122
werden mit einer Schreibfrequenz von 4 · fsc und mit
einer Lesefrequenz von 8 · fsc betrieben und liefern
Ausgangssignale an einen Multiplexer 2124, der die Si
gnale YF im Format progressiver Abtastung liefert.
Die Fig. 14 zeigt einen Seitenfeld/Mittelfeld-Kombina
tor, der z. B. für das Element 1916 in Fig. 19 verwendet
werden kann. Der in Fig. 14 dargestellte Kombinator ent
hält ein Netzwerk 1410, das aus der Seitenfeld-Leucht
dichtekomponente YS und aus der Mittelfeld-Leuchtdichte
komponente YC das Leuchtdichtesignal YF′ voller Band
breite erzeugt, und einen I-Signalkombinator 1420 und
einen Q-Signalkombinator 1430, die in Aufbau und Ar
beitsweise dem Netzwerk 1410 ähnlich sind. Das Mittel
feld und die Seitenfelder werden vorsätzlich über eini
ge Bildpunkte einander überlappt, z. B. über 10 Bildpunk
te. Somit haben die Mittelfeld- und die Seitenfeld
signale über den gesamten Codierungs- und Übertragungsvor
gang vor ihrer Zusammenführung einige Bildpunkte in
redundanter Weise gemeinsam.
Im Breitbildempfänger werden das Mittelfeld und die
Seitenfelder aus den jeweils betreffenden Signalen wie
der aufgebaut, jedoch sind wegen der erfahrenen zeitli
chen Dehnung, zeitlichen Komprimierung und Filterung
der den einzelnen Feldern zugeordnete Signale einige
Bildpunkte an den Grenzen zwischen Seitenfeldern und
Mittelfeld verfälscht oder verzerrt. Die in Fig. 14
dargestellten Wellenformen der Signale YS und YC zei
gen die Überlappungsbereiche (OL) und die verfälschten
Bildpunkte (CP, zur Veranschaulichung etwas übertrie
ben). Gäbe es keine Überlappungsbereiche der Felder,
würden die verfälschten Bildpunkte aneinanderstoßen, so
daß ein Saum sichtbar wäre. Es hat sich gezeigt, daß
ein Überlappungsbereich von 10 Bildpunkten breit genug
ist, um drei bis fünf verfälschte Grenz-Bildpunkte zu
kompensieren.
Die redundanten Bildpunkte erlauben in vorteilhafter
Weise ein gegenseitiges Überblenden von Seiten- und
Mittelfeldern im Überlappungsbereich. Eine Multiplizier
schaltung 1411 multipliziert das Seitenfeldsignal YS
mit einer Gewichtsfunktion W in den Überlappungsberei
chen, wie durch die zugeordnete Wellenform dargestellt,
bevor das Signal YS auf eine Vereinigungsschaltung 1415
gegeben wird. In ähnlicher Weise multipliziert eine
Multiplizierschaltung 1412 das Mittelfeldsignal YC mit
einer komplementären Gewichtsfunktion (1-W) in den Über
lappungsbereichen, wie mit der zugeordneten Wellenform
dargestellt, bevor das Signal YC auf die Vereinigungs
schaltung 1415 gegeben wird. Die besagten Gewichtsfunk
tionen haben einen linearen rampenförmigen Verlauf in
den Überlappungsbereichen und haben Werte zwischen 0
und 1. Nach der Gewichtung werden die Seitenfeld- und
Mittelfeld-Bildpunkte in der Vereinigungsschaltung 1415
summiert, so daß jeder rekonstruierte Bildpunkt eine
lineare Kombination von Seitenfeld- und Mittelfeld-
Bildpunkten ist.
Die Gewichtsfunktionen sollten vorzugsweise nahe den
inneren Grenzen des Überlappungsbereichs dem Wert 1
und nahe den äußeren Grenzen dem Wert 0 zustreben. Dies
stellt sicher, daß die verfälschten Bildpunkte relativ
wenig Einfluß auf die Grenzen der rekonstruierten Felder
haben. Die dargestellte lineare rampenförmige Gewichts
funktion erfüllt diese Forderung. Die Gewichtsfunktionen
müssen aber nicht unbedingt linear sein, es können auch
nichtlineare Gewichtsfunktionen verwendet werden, die
in den Endabschnitten (d. h. in der Nähe der Gewichte
1 und 0) krummlinig oder gerundet sind. Eine solche
Gewichtsfunktion läßt sich leicht dadurch erreichen,
daß man eine lineare rampenförmige Gewichtsfunktion
des dargestellten Typs filtert.
Die Gewichtsfunktionen W und 1-W können leicht durch
ein Netzwerk erzeugt werden, das eine Nachschlagetabel
le, die auf ein Bildpunktpositionen angebendes Ein
gangssignal anspricht, und eine subtraktive Vereini
gungsschaltung enthält. Die Bildpunktpositionen im
Überlappungsbereich zwischen Seiten- und Mittelfeldern
sind bekannt, und die Nachschlagetabelle kann entspre
chend programmiert werden, um als Antwort auf das Ein
gangssignal Ausgangswerte von 0 bis 1 entsprechend der
Gewichtsfunktion W zu liefern. Das Eingangssignal kann
auf verschiedene Weise entwickelt werden, z. B. durch
einen Zähler, der mit jedem Horizontalsynchronimpuls
synchronisiert wird. Die komplementäre Gewichtsfunktion
1-W läßt sich erhalten, indem man die Gewichtsfunktion
W von 1 substrahiert.
Die Fig. 22 zeigt eine Anordnung, die als Abtastformat
wandler 17c für das Signal YF in Fig. 1a verwendet wer
den kann, um dieses Signal aus dem Format progressiver
Abtastung in das Zeilensprungformat umzuwandeln. Die
Fig. 22 zeigt außerdem ein Diagramm eines Teils des im
Format progressiver Abtastung vorliegenden Eingangs
signals YF mit Proben A, B, C und X in der die vertikale
(V) und zeitliche (T) Dimension enthaltenden Ebene, wie
sie auch in Fig. 2a dargestellt ist. Das Signal YF des
Formats progressiver Abtastung wird in Elementen 2210
und 2212 jeweils einer Verzögerung um 525 H unterworfen,
um aus der Probe B relativ verzögerte Proben X und A
zu erzeugen. Die Proben B und A werden in einem Addierer
2214 summiert, bevor sie einem durch 2 teilenden Netz
werk 2216 angelegt werden.
Das Ausgangssignal der Schaltung 2216 wird in
einer Schaltung 2218 subtraktiv mit der Probe X
vereinigt, um das Signal YT zu erzeugen. Das
Signal YT wird an einen Eingang eines Doppel
anschluß-Speichers 2222 gelegt, und das Signal
YF vom Ausgang des Verzögerungselementes 2210
wird einem Eingang eines Doppelanschluß-
Speichers 2223 zugeführt. Beide Speicher 2222
und 2223 lesen mit einer Geschwindigkeit von
4 · fsc und schreiben mit einer Geschwindig
keit von 8 · fsc, um an zugeordneten Ausgän
gen die Signale YF′ und YT im Zeilensprungfor
mat zu liefern.
Die Fig. 23 zeigt eine Anordnung, wie sie zur Realisie
rung der Abtastformat-Wandler 17a und 17b in Fig. 1a
verwendet werden kann. Gemäß Fig. 23 wird das im Format
progressiver Abtastung vorliegende Signal IF (oder QF)
einem um 525 H verzögernden Element 2310 angelegt, be
vor es einem Doppelanschluß-Speicher 2312 zugeführt wird,
der mit einer Lesegeschwindigkeit von 4 · fsc und einer
Schreibgeschwindigkeit von 8 · fsc arbeitet, um das Aus
gangssignal IF′ (oder QF′) im Zeilensprungformat zu er
zeugen. Ebenfalls in Fig. 23 dargestellt sind Wellenfor
men des im Progressiv-Abtastformat vorliegenden Eingangs
signals mit einer die Proben C enthaltenden ersten Zei
le und einer die Proben X enthaltenden zweiten Zeile
und des Zeilensprung-Ausgangssignals (die erste Zeile
mit den Proben C, gestreckt durch Abtastung mit der hal
ben Zeilenfrequenz). Der Doppelanschluß-Speicher 2312
liefert an seinem Ausgang nur die erste Zeile (Proben
C) des Eingangssignals in gestreckter Form.
Die Fig. 24 zeigt Einzelheiten der Einheit 80 der Fig. 1a.
Die Signale X und Z werden jeweils auf den Adres
seneingang eines zugeordneten nichtlinearen Amplituden
pressers 2410 bzw. 2412 gegeben. Die Presser 2410 und
2412 sind programmierbare Festwertspeicher (PROM-Spei
cher), deren jeder eine Nachschlagetabelle programmier
ter Werte enthält, entsprechend der gewünschten nicht-
linearen amplitudenpressenden Gammafunktion. Diese Funk
tion ist in der Fig. 24 unter der Einheit 2412 durch
eine Kurve dargestellt, welche die ausgangsseitigen
Augenblickswerte abhängig von den eingangsseitigen Augen
blickswerten zeigt.
Die gepreßten Signale X und Z von den Datenausgängen
der Einheiten 2410 und 2412 werden jeweils an den Si
gnaleingang einer zugeordneten Multiplizierschaltung
2414 bzw. 2416 gegeben. Die Referenzeingänge der Multi
plizierschaltungen 2414 und 2416 empfangen den alter
nierenden Hilfsträger ASC in einer um 90° zueinander
verschobenen Phasenlage (quadraturphasig), d. h. in
Sinus- bzw. in Cosinusform. Die Ausgangssignale der
Multiplizierschaltungen 2414 und 2416 werden in einer
Vereinigungsschaltung 2420 kombiniert, um das quadra
tur-modulierte Signal M zu erzeugen. Im Decoder nach
Fig. 13 werden die gepreßten Signale X und Z durch
ein herkömmliches Verfahren der Quadratur-Demodulation
wiedergewonnen und erfahren eine komplementäre nicht-
lineare Amplitudendehnung in zugeordneten PROM-Spei
chern mit Nachschlagetabelle, die mit Werten program
miert sind, welche komplementär zu den Werten in den
PROM-Speichern 2410 und 2412 sind.
Claims (20)
1. Anordnung zur Verarbeitung eines Fernsehsi
gnals, gekennzeichnet durch:
eine Einrichtung (31, 38) zur Lieferung eines ersten Signals mit einander ausschließenden Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb jeder Gruppe, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträger wiederholt;
eine Einrichtung (60-80) zur Lieferung eines zweiten Signals mit einander ausschließenden Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb jeder Gruppe, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine Einrichtung (40) zum Kombinieren des ersten und des zweiten Signals über einen invertierbaren Algorithmus, um die Trennung des ersten und zweiten Signals in einem Empfänger zu erleichtern.
eine Einrichtung (31, 38) zur Lieferung eines ersten Signals mit einander ausschließenden Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb jeder Gruppe, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträger wiederholt;
eine Einrichtung (60-80) zur Lieferung eines zweiten Signals mit einander ausschließenden Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb jeder Gruppe, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine Einrichtung (40) zum Kombinieren des ersten und des zweiten Signals über einen invertierbaren Algorithmus, um die Trennung des ersten und zweiten Signals in einem Empfänger zu erleichtern.
2. Anordnung zur Verarbeitung eines Fernsehsi
gnals, gekennzeichnet durch:
eine Einrichtung (10-16) zur Lieferung eines Fernsehsi gnals, das ein Breitbild darstellt, welches Hauptfeld- Bildinformation und Zusatz-Bildinformation einschließlich Seitenfeld-Information enthält und ein Bildseitenverhältnis hat, das größer ist als dasjenige eines normgemäßen Fernsehbildes;
eine auf das Fernsehsignal ansprechende erste Einrich tung (17-31) zur Erzeugung einer ersten Komponente, die Bildinformation enthält, welche ein Bild mit einem normge mäßen Seitenverhältnis repräsentiert;
eine auf das Fernsehsignal ansprechende zweite Einrich tung (60-62; 70-74) zur Erzeugung einer zweiten Komponente, die aus der Zusatz-Information abgeleitete Information enthält;
eine erste Einrichtung (38) zur Intravollbildverarbei tung der ersten Komponente, um einander ausschließende Gruppen von Bildelementen im wesentlichen gleichen Wertes innerhalb jeder Gruppe zu erzeugen, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine zweite Einrichtung (64; 76) zur Intravollbildver arbeitung der zweiten Komponente, um einander ausschlie ßende Gruppen von Bildelementen im wesentlichen gleichen Wertes innerhalb jeder Gruppe zu erzeugen, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine Einrichtung (40) zum Kombinieren der intravoll bildverarbeitenden ersten und zweiten Komponente zur Erzeugung eines kombinierten Signals.
eine Einrichtung (10-16) zur Lieferung eines Fernsehsi gnals, das ein Breitbild darstellt, welches Hauptfeld- Bildinformation und Zusatz-Bildinformation einschließlich Seitenfeld-Information enthält und ein Bildseitenverhältnis hat, das größer ist als dasjenige eines normgemäßen Fernsehbildes;
eine auf das Fernsehsignal ansprechende erste Einrich tung (17-31) zur Erzeugung einer ersten Komponente, die Bildinformation enthält, welche ein Bild mit einem normge mäßen Seitenverhältnis repräsentiert;
eine auf das Fernsehsignal ansprechende zweite Einrich tung (60-62; 70-74) zur Erzeugung einer zweiten Komponente, die aus der Zusatz-Information abgeleitete Information enthält;
eine erste Einrichtung (38) zur Intravollbildverarbei tung der ersten Komponente, um einander ausschließende Gruppen von Bildelementen im wesentlichen gleichen Wertes innerhalb jeder Gruppe zu erzeugen, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine zweite Einrichtung (64; 76) zur Intravollbildver arbeitung der zweiten Komponente, um einander ausschlie ßende Gruppen von Bildelementen im wesentlichen gleichen Wertes innerhalb jeder Gruppe zu erzeugen, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastintervalls entsprechend der Periode, über welche sich eine gegebene Phase eines Farbhilfsträgers wiederholt;
eine Einrichtung (40) zum Kombinieren der intravoll bildverarbeitenden ersten und zweiten Komponente zur Erzeugung eines kombinierten Signals.
3. Anordnung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß Bildelemente innerhalb
jeder Gruppe um 262 H voneinander getrennt sind, wobei H
ein Zeilenabtastinvervall ist.
4. Anordnung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß die erste Signalkompo
nente zusammengesetzte Videoinformation mit einem Hilfsträ
ger aufmodulierter Leuchtdichte- und Farbartinformation
enthält.
5. Anordnung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß die Bildelementgruppen
intravollbildgemittelte Information enthalten.
6. Anordnung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß die erste und die
zweite Signalkomponente Informationen enthalten, die
relativ räumlich-unkorreliert sind.
7. Anordnung nach Anspruch 6, dadurch
gekennzeichnet, daß die zweite Komponente
Seitenfeld-Bildinformation enthält.
8. Anordnung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß die zweite Signalkom
ponente einen Hilfsträger moduliert, der ein anderer als
ein Farbhilfsträger ist und dessen Phase ein Teilbild zu
Teilbild anders alterniert als diejenige des Farbhilfsträ
gers.
9. Anordnung zum Empfang eines Fernsehsignals mit
einer ersten Komponente, worin einander ausschließende
Gruppen von Intravollbild-Bildelementen im wesentlichen
gleiche Information innerhalb jeder Gruppe enthalten, wobei
gruppierte Bildelemente in der zeitlichen Dimension einen
Abstand haben, der definiert ist durch ein Vielfaches eines
Zeilenabtastintervalls entsprechend der Periode, über
welche sich eine gegebene Phase eines Farbhilfsträgers
wiederholt, und mit einer zweiten bilddarstellenden
Komponente, worin einander ausschließende Gruppen von
Intravollbild-Bildelementen im wesentlichen gleiche
Information innerhalb jeder Gruppe haben, wobei gruppierte
Bildelemente in der zeitlichen Dimension einen Abstand
haben, der definiert ist durch ein Vielfaches eines
Zeilenabtastintervalls entsprechend der Periode, über
welche sich eine gegebene Phase eines Farbhilfsträgers
wiederholt, und wobei die erste und die zweite Komponente
über einen invertierbaren Algorithmus miteinander
kombiniert worden sind, gekennzeichnet
durch:
eine Einrichtung (1324) zum Trennen der ersten und der zweiten Komponente;
eine erste Videosignal-Verarbeitungseinrichtung (1324) zum Verarbeiten der getrennten ersten Komponente, um ein erstes Bildsignal zu erzeugen;
eine zweite Videosignal-Verarbeitungseinrichtung (1326- 1340) zum Verarbeiten der getrennten zweiten Komponente, um ein zweites Bildsignal zu erzeugen;
eine Einrichtung (1344) zum Kombinieren des ersten und des zweiten Bildsignals aus der ersten und der zweiten Videosignal-Verarbeitungseinrichtung, um ein bilddarstel lendes Signal zu erzeugen.
eine Einrichtung (1324) zum Trennen der ersten und der zweiten Komponente;
eine erste Videosignal-Verarbeitungseinrichtung (1324) zum Verarbeiten der getrennten ersten Komponente, um ein erstes Bildsignal zu erzeugen;
eine zweite Videosignal-Verarbeitungseinrichtung (1326- 1340) zum Verarbeiten der getrennten zweiten Komponente, um ein zweites Bildsignal zu erzeugen;
eine Einrichtung (1344) zum Kombinieren des ersten und des zweiten Bildsignals aus der ersten und der zweiten Videosignal-Verarbeitungseinrichtung, um ein bilddarstel lendes Signal zu erzeugen.
10. Anordnung nach Anspruch 9, dadurch
gekennzeichnet, daß die Trenneinrichtung
(1324) additive und subtraktive Kombiniereinrichtungen
enthält.
11. Anordnung nach Anspruch 9, dadurch
gekennzeichnet,
daß die erste Komponente ein Basisband-Signal ist;
daß die zweite Komponente ein Basisband-Signal ist, das einen zusätzlichen Hilfsträger moduliert, der ein anderer als ein Farbhilfsträger ist;
daß eine Einrichtung (1326) vorgesehen ist, um den zusätzlichen Hilfsträger in Ansprache auf ein Referenzsignal zu demodulieren, dessen Phase anders als diejenige eines Farbhilfsträgers von Teilbild zu Teilbild alterniert.
daß die erste Komponente ein Basisband-Signal ist;
daß die zweite Komponente ein Basisband-Signal ist, das einen zusätzlichen Hilfsträger moduliert, der ein anderer als ein Farbhilfsträger ist;
daß eine Einrichtung (1326) vorgesehen ist, um den zusätzlichen Hilfsträger in Ansprache auf ein Referenzsignal zu demodulieren, dessen Phase anders als diejenige eines Farbhilfsträgers von Teilbild zu Teilbild alterniert.
12. Anordnung nach Anspruch 9, dadurch
gekennzeichnet, daß die erste und die zweite
Komponente Informationen enthalten, die relativ räumlich-
unkorreliert sind.
13. Anordnung nach Anspruch 9, dadurch
gekennzeichnet,
daß die erste Komponente ein Videosignalgemisch mit einem Hilfsträger aufmodulierter Leuchtdichte- und Farbartinformation ist;
daß die Intravollbild-Bildelemente der ersten Komponente und die Intravollbild-Bildelementen der zweiten Komponente um 262 H voneinander getrennt sind, wobei H ein Zeilenabtastintervall ist.
daß die erste Komponente ein Videosignalgemisch mit einem Hilfsträger aufmodulierter Leuchtdichte- und Farbartinformation ist;
daß die Intravollbild-Bildelemente der ersten Komponente und die Intravollbild-Bildelementen der zweiten Komponente um 262 H voneinander getrennt sind, wobei H ein Zeilenabtastintervall ist.
14. Anordnung nach Anspruch 9, dadurch
gekennzeichnet,
daß das Fernsehsignal ein Breitbild darstellt, welches Hauptfeld-Bildinformation und Zusatzinformation einschließ lich Seitenfeld-Information enthält und ein Bildseitenver hältnis hat, das größer ist als dasjenige eines normgemäßen Fernsehbildes;
daß die erste Komponente aus der Hauptfeld-Bildinforma tion abgeleitete Information enthält;
daß die zweite Komponente Zusatzinformation enthält.
daß das Fernsehsignal ein Breitbild darstellt, welches Hauptfeld-Bildinformation und Zusatzinformation einschließ lich Seitenfeld-Information enthält und ein Bildseitenver hältnis hat, das größer ist als dasjenige eines normgemäßen Fernsehbildes;
daß die erste Komponente aus der Hauptfeld-Bildinforma tion abgeleitete Information enthält;
daß die zweite Komponente Zusatzinformation enthält.
15. Anordnung zur Verarbeitung eines Farbfernseh
signals eines Typs, bei welchem ein Vollbild zwei miteinan
der verschachtelte Teilbilder aus Abtastzeilen enthält,
deren jede aus einer Vielzahl von Bildelementen besteht,
und der einen Farbhilfsträger enthält, dessen Phase sich
jeweils von Zeile zu Zeile umgekehrt,
gekennzeichnet durch:
eine Einrichtung (38) zur Intravollbild-Mittelung einander ausschließender Gruppen von Bildelementen, die aus zwei aufeinanderfolgenden Teilbildern stammen und voneinan der um 262 H getrennt sind, wobei H eine Zeilenabtastperiode ist, so daß die Phase des Farbhilfsträgers an den Stellen miteinander gemittelter Bildelemente die gleiche ist;
eine Einrichtung zum Einsetzen von Bildelement- Mittelwertinformation einer jeden Gruppe an die Stelle der ursprünglichen Bildelementeinformation, von wo die Mittelwertinformation erhalten wurde;
eine Einrichtung zur Lieferung eines Zusatzsignals (X; Z);
eine Einrichtung zur Lieferung eines zusätzlichen Trägersignals, dessen Phase sich von Teilbild zu Teilbild umkehrt;
eine Einrichtung (80) zur Modulation des zusätzlichen Trägersignals mit dem Zusatzinformationssignal;
eine Einrichtung (40) zum Kombinieren des zusätzlichen Trägers mit der Bildelement-Mittelwertinformation.
gekennzeichnet durch:
eine Einrichtung (38) zur Intravollbild-Mittelung einander ausschließender Gruppen von Bildelementen, die aus zwei aufeinanderfolgenden Teilbildern stammen und voneinan der um 262 H getrennt sind, wobei H eine Zeilenabtastperiode ist, so daß die Phase des Farbhilfsträgers an den Stellen miteinander gemittelter Bildelemente die gleiche ist;
eine Einrichtung zum Einsetzen von Bildelement- Mittelwertinformation einer jeden Gruppe an die Stelle der ursprünglichen Bildelementeinformation, von wo die Mittelwertinformation erhalten wurde;
eine Einrichtung zur Lieferung eines Zusatzsignals (X; Z);
eine Einrichtung zur Lieferung eines zusätzlichen Trägersignals, dessen Phase sich von Teilbild zu Teilbild umkehrt;
eine Einrichtung (80) zur Modulation des zusätzlichen Trägersignals mit dem Zusatzinformationssignal;
eine Einrichtung (40) zum Kombinieren des zusätzlichen Trägers mit der Bildelement-Mittelwertinformation.
16. Anordnung nach Anspruch 15, gekenn
zeichnet durch eine Einrichtung (64, 76) zur
Intravollbild-Mittelung einander ausschließender Gruppen
von Bildelementen, die aus zwei aufeinanderfolgenden
Teilbildern des Zusatzsignals stammen und voneinander um
262 H getrennt sind, wobei H eine Zeilenabtastperiode ist.
17. Farbfernsehsignal-Empfangsanordnung zum
Empfangen des kombinierten Signals, das aus einem mit
zusätzlicher Signalinformation modulierten zusätzlichen
Hilfsträger und einem Signal besteht, das einander
ausschließende Gruppen von intavollbildverarbeitenden
Informationen enthält, wobei gruppierte Informationen in
der zeitlichen Dimension einen Abstand haben, der definiert
ist durch ein Vielfaches eines Zeilenabtastintervalls
entsprechend der Periode, über welche sich eine gegebene
Phase eines Farbhilfsträgers wiederholt, gekenn
zeichnet durch:
eine Einrichtung (1514) zur Addition von Bildinforma tionen, die um das besagte Intervall voneinander getrennt sind, um die besagte verarbeitete Information wiederzuge gewinnen;
eine Einrichtung (1512; 1513) zur Subtraktion von Bildinformationen, die um das besagte Intervall voneinander getrennt sind, um den modulierten zusätzlichen Träger wiederzugewinnen.
eine Einrichtung (1514) zur Addition von Bildinforma tionen, die um das besagte Intervall voneinander getrennt sind, um die besagte verarbeitete Information wiederzuge gewinnen;
eine Einrichtung (1512; 1513) zur Subtraktion von Bildinformationen, die um das besagte Intervall voneinander getrennt sind, um den modulierten zusätzlichen Träger wiederzugewinnen.
18. Anordnung zum Empfang eines Farbfernseh
signals, in welchem ein Vollbild aus zwei miteinander
verschachtelten Teilbildern von Abtastzeilen besteht, deren
jede eine Vielzahl von Bildelementen aufweist, und das
einen Farbhilfsträger enthält und eine erste Komponente mit
einander ausschließenden Gruppen von Intravollbild-
Bildelementen identischen Wertes innerhalb jeder Gruppe
enthält, wobei gruppierte Bildelemente in der zeitlichen
Dimension einen Abstand haben, der definiert ist durch ein
Vielfaches eines Zeilenabtastintervalls entsprechend der
Periode, über welche sich eine gegebene Phase des
Farbhilfsträgers wiederholt, und eine zweite Komponente,
die zusätzliche Information enthält, welche einen Hilfsträ
ger moduliert, der eine von Teilbild zu Teilbild alternie
rende Phase hat, gekennzeichnet durch:
eine Einrichtung (1324) zum Trennen der ersten Komponente und des modulierten zusätzlichen Hilfsträgers voneinander;
eine Einrichtung (1326) zur Demodulation des getrennten modulierten zusätzlichen Hilfsträgers, um die besagte zweite Komponente zu erzeugen;
eine Videosignal-Verarbeitungseinrichtung (1326-1340, 1324, 1344), die auf die erste und die zweite Komponente anspricht, um ein bilddarstellendes Signal zu erzeugen.
eine Einrichtung (1324) zum Trennen der ersten Komponente und des modulierten zusätzlichen Hilfsträgers voneinander;
eine Einrichtung (1326) zur Demodulation des getrennten modulierten zusätzlichen Hilfsträgers, um die besagte zweite Komponente zu erzeugen;
eine Videosignal-Verarbeitungseinrichtung (1326-1340, 1324, 1344), die auf die erste und die zweite Komponente anspricht, um ein bilddarstellendes Signal zu erzeugen.
19. Anordnung nach Anspruch 18, dadurch
gekennzeichnet,
daß das besagte Intervall gleich 262 H ist, wobei H ein Horizontalzeilen-Abtastintervall bedeutet;
daß die Trenneinrichtung (1324) eine Einrichtung zum additiven und subtraktiven Kombinieren von Bildelementen ist, die um das besagte Intervall voneinander beabstandet sind;
daß die Demodulationseinrichtung (1326) auf ein Referenzsignal anspricht, das die Frequenz des zusätzlichen Hilfsträgers und eine von Teilbild zu Teilbild alternie rende Phase hat.
daß das besagte Intervall gleich 262 H ist, wobei H ein Horizontalzeilen-Abtastintervall bedeutet;
daß die Trenneinrichtung (1324) eine Einrichtung zum additiven und subtraktiven Kombinieren von Bildelementen ist, die um das besagte Intervall voneinander beabstandet sind;
daß die Demodulationseinrichtung (1326) auf ein Referenzsignal anspricht, das die Frequenz des zusätzlichen Hilfsträgers und eine von Teilbild zu Teilbild alternie rende Phase hat.
20. Anordnung nach Anspruch 18, dadurch
gekennzeichnet,
daß das empfangene Farbfernsehsignal ein Breitbild- Farbfernsehsignal ist, welches Hauptfeld-Bildinformation und Seitenfeld-Bildinformation enthält;
daß die erste Komponente die Hauptfeld-Bildinformation enthält;
daß die zweite Komponente die besagte Seitenfeld- Bildinformation birgt und einander ausschließende Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb einer jeden Gruppe enthält, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastinter valls entsprechend der Periode, über welche sich eine gegebene Phase des Farbhilfsträgers wiederholt.
daß das empfangene Farbfernsehsignal ein Breitbild- Farbfernsehsignal ist, welches Hauptfeld-Bildinformation und Seitenfeld-Bildinformation enthält;
daß die erste Komponente die Hauptfeld-Bildinformation enthält;
daß die zweite Komponente die besagte Seitenfeld- Bildinformation birgt und einander ausschließende Gruppen von Intravollbild-Bildelementen gleichen Wertes innerhalb einer jeden Gruppe enthält, wobei gruppierte Bildelemente in der zeitlichen Dimension einen Abstand haben, der definiert ist durch ein Vielfaches eines Zeilenabtastinter valls entsprechend der Periode, über welche sich eine gegebene Phase des Farbhilfsträgers wiederholt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB878721565A GB8721565D0 (en) | 1987-09-14 | 1987-09-14 | Video signal processing system |
US07/139,338 US4884127A (en) | 1987-09-14 | 1987-12-29 | Apparatus for pre-conditioning auxiliary television signal information |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3890748C2 true DE3890748C2 (de) | 1991-11-28 |
Family
ID=26292729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE3890748A Expired - Fee Related DE3890748C2 (de) | 1987-09-14 | 1988-09-09 |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP0438389B1 (de) |
JP (1) | JP2901626B2 (de) |
CN (1) | CN1018509B (de) |
CA (1) | CA1309161C (de) |
DE (1) | DE3890748C2 (de) |
DK (1) | DK61090D0 (de) |
ES (1) | ES2009036A6 (de) |
FI (1) | FI87962C (de) |
GB (1) | GB2230676B (de) |
HK (1) | HK21897A (de) |
MX (1) | MX170012B (de) |
NZ (1) | NZ226147A (de) |
PT (1) | PT88482B (de) |
WO (1) | WO1989002686A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101574730B1 (ko) * | 2008-11-17 | 2015-12-07 | 삼성전자 주식회사 | 영상 처리 장치 및 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547796A (en) * | 1982-06-28 | 1985-10-15 | Sony Corporation | Digital color video signal encoder |
US4816899A (en) * | 1987-07-27 | 1989-03-28 | General Electric Company | Compatible widescreen television system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2512894B2 (ja) * | 1985-11-05 | 1996-07-03 | ソニー株式会社 | 高能率符号化/復号装置 |
-
1988
- 1988-09-08 CA CA000576850A patent/CA1309161C/en not_active Expired - Fee Related
- 1988-09-09 EP EP88908577A patent/EP0438389B1/de not_active Expired - Lifetime
- 1988-09-09 DE DE3890748A patent/DE3890748C2/de not_active Expired - Fee Related
- 1988-09-09 WO PCT/US1988/003012 patent/WO1989002686A1/en active IP Right Grant
- 1988-09-09 JP JP63507925A patent/JP2901626B2/ja not_active Expired - Fee Related
- 1988-09-12 NZ NZ226147A patent/NZ226147A/xx unknown
- 1988-09-13 MX MX013011A patent/MX170012B/es unknown
- 1988-09-13 PT PT88482A patent/PT88482B/pt active IP Right Grant
- 1988-09-14 ES ES8802796A patent/ES2009036A6/es not_active Expired
- 1988-09-14 CN CN88106655A patent/CN1018509B/zh not_active Expired
-
1990
- 1990-02-12 GB GB9003150A patent/GB2230676B/en not_active Expired - Fee Related
- 1990-03-08 DK DK061090A patent/DK61090D0/da not_active Application Discontinuation
- 1990-03-14 FI FI901272A patent/FI87962C/fi not_active IP Right Cessation
-
1997
- 1997-02-27 HK HK21897A patent/HK21897A/xx not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547796A (en) * | 1982-06-28 | 1985-10-15 | Sony Corporation | Digital color video signal encoder |
US4816899A (en) * | 1987-07-27 | 1989-03-28 | General Electric Company | Compatible widescreen television system |
Also Published As
Publication number | Publication date |
---|---|
GB9003150D0 (en) | 1990-07-18 |
GB2230676B (en) | 1992-02-26 |
EP0438389B1 (de) | 1994-12-21 |
EP0438389A1 (de) | 1991-07-31 |
PT88482A (pt) | 1989-07-31 |
DK61090A (da) | 1990-03-08 |
FI901272A0 (fi) | 1990-03-14 |
CN1033726A (zh) | 1989-07-05 |
NZ226147A (en) | 1991-01-29 |
ES2009036A6 (es) | 1989-08-16 |
WO1989002686A1 (en) | 1989-03-23 |
FI87962B (fi) | 1992-11-30 |
CN1018509B (zh) | 1992-09-30 |
FI87962C (fi) | 1993-03-10 |
DK61090D0 (da) | 1990-03-08 |
HK21897A (en) | 1997-02-27 |
GB2230676A (en) | 1990-10-24 |
MX170012B (es) | 1993-08-04 |
CA1309161C (en) | 1992-10-20 |
PT88482B (pt) | 1994-09-30 |
JP2901626B2 (ja) | 1999-06-07 |
JPH03500231A (ja) | 1991-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DD282558A5 (de) | Anordnung zur verarbeitung zusaetzlicher informationen in einem breitbild-fernsehsystem mit erweiterter aufloesung | |
DD293931A5 (de) | Anordnung zum empfangen eines fernsehsignals | |
DD292795A5 (de) | Anordnung zur verarbeitung eines fernsehsignals zur reduzierung diagonaler bildartefakte | |
DE68924778T2 (de) | Synchronisiersystem für ein grossbildfernsehsignal mit hoher auflösung. | |
DE3590163C2 (de) | ||
AT391967B (de) | Farbfernsehwiedergabegeraet | |
DE3702661A1 (de) | Fernsehsystem fuer progressive abtastung | |
DE3885083T2 (de) | Kompatibles fernsehsystem mit vergrössertem bildseitenverhältnis. | |
DE3718075A1 (de) | Kompatibles fernsehsystem fuer breitwand-bildschirm mit bildkompression und -expansion | |
DD295476A5 (de) | Fernsehuebertragungssystem | |
DD292797A5 (de) | Anordnung zur verarbeitung eines breitbild-fernsehsignals mit einem interpolator zur reduzierung von bildartefakten | |
DE68925642T2 (de) | System zur zusammensetzung und trennung von komponenten eines videosignals | |
DD296593A5 (de) | Anordnung zum empfang eines fernsehartigen signals | |
DE3890744C3 (de) | Kompatibles, zusätzliche Informationen verarbeitendes Fernsehsystem | |
DE2837120A1 (de) | Verfahren und anordnung zur verarbeitung von pal-farbfernsehsignalen in digitaler form | |
DE3890725C2 (de) | ||
DD292800A5 (de) | Frequenzselektiver videosignal-intraframeprozessor | |
DE3890745C2 (de) | ||
DE3890748C2 (de) | ||
DE3586512T2 (de) | Raumzeitliche signalverarbeitung mit frequenzverkammung eines fernsehsignals. | |
DE68922741T2 (de) | Übertragungssystem von b-mac-fernsehsignalen mit hoher auflösung. | |
DE4039514A1 (de) | Anordnungen zur codierung und decodierung zusaetzlicher information in einem fernsehsystem | |
DE68906152T2 (de) | Fernsehsignalverarbeitungssystem zur verminderung von diagonalen bildstoerungen. | |
DE68923178T2 (de) | Verfahren und gerät zum erhöhen der auflösung eines ntsc-videosignals mittels eines zusatzkanals. | |
DD292794A5 (de) | Anordnung zur verarbeitung eines breitbild-fernsehsignals zur gleichmaessigen bildaufloesung im mittel- und seitenbereich |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8320 | Willingness to grant licences declared (paragraph 23) | ||
8339 | Ceased/non-payment of the annual fee |