DE3729000A1 - Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters - Google Patents
Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage convertersInfo
- Publication number
- DE3729000A1 DE3729000A1 DE19873729000 DE3729000A DE3729000A1 DE 3729000 A1 DE3729000 A1 DE 3729000A1 DE 19873729000 DE19873729000 DE 19873729000 DE 3729000 A DE3729000 A DE 3729000A DE 3729000 A1 DE3729000 A1 DE 3729000A1
- Authority
- DE
- Germany
- Prior art keywords
- voltage
- circuit
- converter
- sol
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000001105 regulatory effect Effects 0.000 claims abstract description 9
- 230000001965 increasing effect Effects 0.000 claims description 5
- 230000033228 biological regulation Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000003079 width control Methods 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 claims 2
- 230000003321 amplification Effects 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 9
- 230000009467 reduction Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000036561 sun exposure Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S99/00—Subject matter not provided for in other groups of this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
Immer noch steht man bei photovoltaischen Stromversorgungen vor dem Problem, daß großer Aufwand erforderlich ist, um die mit der Sonneneinstrahlung und der Modultemperatur sich ändernden elektrischen Größen an die Bedürfnisse des Verbrauchers, insbesondere aber an die Pufferbatterien so anzupassen und umzuwandeln, daß die maximal mögliche Ausbeute an Solarenegie ("Ernte") ohne nennenswerte Verluste erreicht wird. Batterien z. B. benötigen zum Laden eine langsam steigende Spannung, die Spannung der Solarzellen aber ist von anderen Parametern abhängig: sie sinkt mit sinkender Sonneneinstrahlung und mit steigender Belastung. Um dennoch auch bei schwacher Einstrahlung die Ladespannung der Batterien zu erreichen, mußte bisher die Anzahl der hintereinander geschalteten Solarmodule nach der schwächsten im Jahresmittel gerade noch nutzbaren Sonneneinstrahlung bemessen werden. Bei erhöhter Sonneneinstrahlung mußte dafür deren überschüssige Spannung zur Vermeidung des Überladens der Batterien vernichtet werden. Ein Betrieb der Solarzellen im optimalen Arbeitspunkt ist bis jetzt nur möglich mit teurer Elektronik, die durch Steuerung des Eingangswiderstandes eines DC/DC-Wandlers das Produkt aus laufend zu messendem Strom und der Spannung der Solarmoduln optimieren sollte. In einem weiteren Regeler ist zusätzlich die für die Batterien optimale Ladespannung zu erzeugen nebst Tiefentladeschutz. Die bei allen diesen Umwandlungen entstehenden Leistungsverluste machen zudem den hohen Aufwand unwirtschaftlich. Oft wurden drei oder mehr unterschiedliche Regelschaltungen verwendet:The problem with photovoltaic power supplies is still that large Effort is required to deal with the sun exposure and module temperature changing electrical parameters to the needs of the consumer, but in particular adjust and convert the backup batteries so that the maximum possible yield Solar energy ("harvest") is achieved without significant losses. Batteries e.g. B. need for Charge a slowly rising voltage, but the voltage of the solar cells is different Dependent on parameters: it decreases with falling solar radiation and with increasing load. In order to still reach the charging voltage of the batteries even with weak radiation, previously had to be the number of solar modules connected in series after the weakest in the Average annual solar radiation that can still be used. With increased sun exposure had to use their excess voltage to avoid overloading the Batteries are destroyed. Up to now, the solar cells have been operating at the optimum working point only possible with expensive electronics that control the input resistance of a DC / DC converter the product of current to be measured and the voltage of the solar modules should optimize. Another regulator also contains the optimal charging voltage for the batteries to generate along with deep discharge protection. The result of all of these conversions Loss of performance also makes the high effort uneconomical. Often three or used more different control circuits:
- 1. Ein Laderegeler für die Batterien, der die Ladung unterbricht bei beginnender Überladung,1. A charge controller for the batteries, which interrupts the charge when overcharging begins,
- 2. ein Tiefentladeschutz (Abschalten bei zu starker Entladung),2. deep discharge protection (switching off in the event of excessive discharge),
- 3. ein Längsregler, der überschüssige Spannung der Solarmoduln vernichtet - oder wahlweise ein Querregeler, der bei Überspannung die Spannung mit Lastwiederständen absenkt.3. A series regulator that destroys the excess voltage of the solar modules - or alternatively a transverse regulator that lowers the voltage with load resistors in the event of overvoltage.
Dazu gibt es 4. einen sogenannten "Maximal Power Tracker" (MPT) zur Optimierung des Produktes aus Strom und Spannung des Solarmoduls bei sich ändernder Sonneneinstrahlung, außerdem noch Überwachungsschaltungen, weil man all diesen Reglern nicht ganz traut.There is 4. a so-called "Maximum Power Tracker" (MPT) to optimize the Product of current and voltage of the solar module with changing solar radiation, also monitoring circuits, because you don't trust all of these controllers.
Die hier vorliegende Erfindung erfüllt alle diese FunktionenThe present invention fulfills all of these functions
- 1. mit einem einzigen Regler,1. with a single controller,
- 2. nahezu ohne Leistungsverluste,2. almost without loss of performance,
- 3. ohne die bisher notwendige Messung von Strom und Spannung und deren Produktbildung, und sie optimiert trotzdem die Energieausbeute,3. without the previously necessary measurement of current and voltage and their product formation, and it still optimizes the energy yield,
- 4. ohne Überdimensionierung der Anzahl der Module.4. without oversizing the number of modules.
Zunächst wird folgende Vorbedingung geschaffen:First, the following prerequisite is created:
- 1. Die Anzahl der Solarmodule wird nicht mehr überdimensioniert, sondern im Gegenteil unterdimensioniert, vorteilhaft z. B. so, daß bei maximaler Sonneneinstrahlung gerade die Ladeschlußspannung oder ein bißchen weniger erreicht wird.1. The number of solar modules is no longer oversized, on the contrary undersized, advantageous z. B. so that at maximum solar radiation just the Final charge voltage or a little less is reached.
- 2. Die bei schwächerer Sonneneinstrahlung fehlende Spannung zur Erzielung der Ladespannung der Batterie wird in einem von der Modulspannung gespeisten DC/DC-Wandler potentialfrei erzeugt und zur Modulspannung addiert. Solche Systeme gibt es bereits, allerdings müssen sie je nach Sonneneinstrahlung von Hand nachgestellt werden.2. The voltage missing in weaker sunlight to achieve the charging voltage the battery is floating in a DC / DC converter powered by the module voltage generated and added to the module voltage. Such systems already exist, but must they can be adjusted by hand depending on the amount of sunlight.
Das Neuartige dieser Erfindung besteht nun darin, daß der seriell nachgeschaltete DC/DC-Wandler - anstelle eines internen Regelkreises - in einen äußeren Regelkreis eingebunden wird, derart, daß die Summenspannung U L =Solarmodulspannung U SOL +DC/DC-Wandler-Ausgangsspannung U₁ (siehe Fig. 1) auf den bei gegebener Sonneneinstrahlung größtmöglichen Wert U L (innerhalb voreingestellter Grenzen bis U LMAX ) geregelt wird. Damit stellt sich automatisch die maximal mögliche Ausgangsleistung ein ohne Strom- und Spannungsmessung, da bei maximaler Ausgangsspannung auch der Strom seinen maximalen Wert annimmt. Die Modulkennlinie braucht im einzelnen nicht beachtet zu werden, auch nicht deren Temperaturverhalten. Durch die Festlegung der Grenzwerte des Reglers auf die Ladeschlußspannung U LMAX und die Schwelle der beginnenden Tiefentladung U LMIN wird Überladen ausgeschlossen sowie automatische Lastabschaltung bei Tiefentladung gesichert.The novelty of this invention is that the series-connected DC / DC converter - instead of an internal control loop - is integrated into an external control loop, such that the total voltage U L = solar module voltage U SOL + DC / DC converter output voltage U ₁ (see Fig. 1) is regulated to the greatest possible value U L for a given solar radiation (within preset limits up to U LMAX ). This automatically sets the maximum possible output power without current and voltage measurement, since the current also assumes its maximum value at the maximum output voltage. The module characteristic curve does not need to be considered in detail, not even its temperature behavior. By setting the limit values of the controller to the end-of-charge voltage U LMAX and the threshold of deep discharge U LMIN , overcharging is excluded and automatic load cut-off is ensured in the event of deep discharge.
Eine weitere Verbesserung ergibt sich, wenn auch die Temperatur der Batterien in den Regelkreis als Parameter einbezogen wird. Dazu werden einfach die einstellbaren Schwellenwerte für die Ladeschlußspannung (U LMAX ) und den Tiefentladeschutz (U LMIN ) mit entsprechend aufbereiteten Temperatursensor-Signalen beaufschlagt. Bei großen Anlagen können diese Temperatursensor-Signale nach bestimmten Funktionen genau geführt werden.A further improvement results if the temperature of the batteries is also included in the control loop as a parameter. For this purpose, the adjustable threshold values for the final charge voltage ( U LMAX ) and the deep discharge protection ( U LMIN ) are simply applied with appropriately prepared temperature sensor signals. In large systems, these temperature sensor signals can be managed precisely according to certain functions.
Ein Beispiel für eine nach dieser Erfindung ausgeführte Regelschaltung zeigt Fig. 1.An example of a control circuit implemented in accordance with this invention is shown in FIG. 1.
Zum Solarmodul SM in Reihe liegt der Ausgang eines DC/DC-Wandlers, dessen Ausgangsspannung U₁ in diesem Ausführungsbeispiel durch Pulsbreitensteuerung annähernd proportional mit einer positiven Referenzspannung U REF von Null an auf positive Werte geregelt werden kann. Der DC/DC-Wandler wird primärseitig direkt vom Solarmodul SM gespeist, so daß dessen Ausgangsspannung auch proportional zur Modulspannung U SOL ist.To the solar module SM in series is the output of a DC / DC converter, the output voltage U ₁ in this embodiment can be regulated by pulse width control approximately proportional with a positive reference voltage U REF from zero to positive values. The DC / DC converter is directly supplied on the primary side by the solar module SM , so that its output voltage is also proportional to the module voltage U SOL .
U₁ = proportional U REF · U SOL U ₁ = proportional U REF · U SOL
Solang der Schwellenwert nicht erreicht ist, erfolgt die Regelung nur über den Spannungsteiler R₁+R SOL , der über die Ladespannung U L =U SOL +U₁ aufgespannt ist. Dessen Abgriff A steuert V₁ bezogen auf die Verbindungsstelle S der Reihenschaltung U SOL +U₁. Dadurch geht die Spannung an A (in bezug auf S) gegen Null, wennAs long as the threshold value has not been reached, the regulation takes place only via the voltage divider R ₁ + R SOL , which is spanned via the charging voltage U L = U SOL + U ₁. Its tap A controls V ₁ based on the connection point S of the series connection U SOL + U ₁. This causes the voltage on A (with respect to S ) to go to zero if
denn U REF hat dann den Wert angenommen, bei dem sich U₁ auf dieses Verhältnis einstellt. Wäre U₁ größer, so würde über R₁ der Verstärker V₁ gegenregeln und umgekehrt. Der Regelkreis für die Ausgangsspannung des DC/DC-Wandlers ist also über V₁ geschlossen. Anders gesagt: der DC/DC-Wandler bildet den Gegenkopplungskreis (über R₁) des Operationsverstärkers V₁, wobei C₁ Eigenschwingungen verhindert.because U REF then has the value at which U ₁ adjusts to this ratio. If U ₁ were larger, the amplifier V ₁ would counter-regulate via R ₁ and vice versa. The control loop for the output voltage of the DC / DC converter is therefore closed via V ₁. In other words: the DC / DC converter forms the negative feedback circuit (via R ₁) of the operational amplifier V ₁, with C ₁ preventing natural oscillations.
ist so groß gewählt, daß U₁ eine größere Spannung anstrebt als zum Erreichen von U LMAX (=U SOL +U₁) erforderlich ist. Bei schwacher Sonneneinstrahlung kann aber U LMAX natürlich nicht bei vollem Strom erreicht werden, da der mit der Aufwärtsregelung steigende Strombedarf des DC/DC-Reglers den Solarmodul so stark belastet, daß schließlich dessen Spannung U SOL um gerade soviel absinkt, als U₁ zunimmt. Dann kann die Summe U SOL +U₁=U L nicht mehr weiter steigen. U L bleibt dann gerade so knapp über der gerade vorhandenen Ladespannung stehen, daß der Strom gerade den größtmöglichen Wert annimmt, bei dem diese Spannung nicht weiter zusammenbricht. So stellt sich ein automatisches "Maximum Power Tracking" (MPT), also automatische Leistungsmaximierung auch bei schwacher Sonneneinstrahlung ein.is chosen so large that U ₁ strives for a greater voltage than is required to reach U LMAX (= U SOL + U ₁). In weak sunlight, however, U LMAX can of course not be achieved at full current, since the increasing current requirement of the DC / DC controller loads the solar module so much that its voltage U SOL finally drops by just as much as U ₁ increases. Then the sum U SOL + U ₁ = U L can no longer increase. U L then just remains just above the current charging voltage that the current just takes on the greatest possible value at which this voltage does not collapse any further. This creates an automatic "maximum power tracking" (MPT), so automatic power maximization even in weak sunlight.
Das gilt auch dann, wenn man U₁ sehr groß wählt. Z. B. kann man mit U LMAX auf über 24 V gehen und dann mit den 12-V-Solarmoduln eine Batterie für ein 24-V-Netz laden. Der beste Wirkungsgrad wird erzielt, wenn Modul- und Batteriespannung gleiche Nennwerte haben, weil dann U₁ im Verhältnis zu U SOL klein ist (bis zu Null) und der Wirkungsgrad des DC/DC-Wandlers nur im Verhältnis der mittleren Spannung von U₁zur Gesamtspannung U SOL +U₁ in den Gesamtwirkungsgrad eingeht. Z. B. ergibt sich in einem 12-V-System mit 3-V-Regelhub von U₁ und einem DC/DC-Wandlungs-Wirkungsgrad von 90% lediglich 1-2% Wirkungsgradverlust im Gesamtwirkungsgrad.This also applies if you choose U ₁ very large. For example, you can go to over 24 V with U LMAX and then charge a battery for a 24 V network with the 12 V solar modules. The best efficiency is achieved when module and battery voltage have the same nominal values, because then U ₁ is small in relation to U SOL (up to zero) and the efficiency of the DC / DC converter is only in the ratio of the average voltage of U ₁ to the total voltage U SOL + U ₁ in the overall efficiency. For example, in a 12 V system with a 3 V control stroke of U ₁ and a DC / DC conversion efficiency of 90%, there is only a 1-2% loss in efficiency in the overall efficiency.
Sobald U SOL +U₁=U L die obere Grenze der Ladespannung U LMAX erreicht, bleibt U L auf diesen Wert nach oben begrenzt, und zwar durch eine Brücke, bestehend aus den Konstantstromdioden D₄ und D₇, den von diesen mit dem Optimalstrom gespeisten Referenz-Zenerdioden D₆ und D₅ sowie den Abgleichpotentiometern R B und R T (für U LMAX und für Tiefentladung-Lastabschaltung bei U TMIN ). Bei U L =U LMAX polt der Eingang von V L um, der Ausgang wird positiv und über V₁ geht U REF nach unten, so daß U₁ die Erhöhung von U LMAX durch Gegensteuern verhindert. Ist die Batterie bei dieser Spannung voll aufgeladen, so verhindert ihre Gegenspannung vom gleichen Betrag weiteres Laden und der Ladestrom sinkt auf den Ladeerhaltungsstrom ab. Das geschieht bei der Ladeschlußspannung. C₂ verhindert Schwingungen, D₃ verhindert negative Ausgangsspannungen von V L .As soon as U SOL + U ₁ = U L reaches the upper limit of the charging voltage U LMAX , U L remains capped at this value, namely by a bridge consisting of the constant current diodes D ₄ and D von, the latter with the optimum current fed reference Zener diodes D ₆ and D ₅ as well as the adjustment potentiometers R B and R T (for U LMAX and for deep discharge load cutoff at U TMIN ). In U L = U L MAX of the input of V L reverse polarity, the output will be positive and V ₁ is U REF downward so that U ₁, the increase of U LMAX prevented by braking. If the battery is fully charged at this voltage, its counter voltage prevents the same amount from further charging and the charging current drops to the trickle charge current. This happens at the end of charge voltage. C ₂ prevents vibrations, D ₃ prevents negative output voltages from V L.
Sinkt umgekehrt U L auf U LMIN , so schaltet die untere Schwelle der Brücke den Verstärker V T um, unterstützt durch den Mitkopplungswiderstand R HYST , wodurch dessen Ausgang auf den unteren Grenzwert umschlägt und über die Schalttransistoren die Last abschaltet. Erst wenn die Batterien wieder eine Spannung erreicht haben, die um einen durch R HYST festgelegten Betrag über U LMIN liegt, wird die Last erneut zugeschaltet (eingebaute Hysterese).Conversely, if U L drops to U LMIN , the lower threshold of the bridge switches the amplifier V T , supported by the positive feedback resistor R HYST , causing its output to change to the lower limit and to switch off the load via the switching transistors. Only when the batteries have reached a voltage that is above U LMIN by an amount determined by R HYST , the load is switched on again (built-in hysteresis).
Eine definierte Veränderung der Schwellenwerte - insbesondere für die Ladeschlußspannung - nach einer von der Batterietemperatur abhängigen Funktion kann durch Einspeisen einer von der Temperatur in geeigneter Weise gesteuerten Spannung anstelle oder zusätzlich zu einer der Referenz-Zenerdioden erfolgen.A defined change in the threshold values - especially for the final charge voltage - after a function dependent on the battery temperature, one of the temperature appropriately controlled voltage instead of or in addition to one of the Reference zener diodes are made.
Bei Verwendung von Feldeffekt-Transistoren und CMOS-Bausteinen kann der Strombedarf der Schaltung auch einer tiefentladenen Batterie zugemutet werden, nur die beiden Brückenzweige - die durch Einbau weiterer Schwellwertschalter auch noch ergänzt werden können - stellen eine merkliche Belastung dar.When using field effect transistors and CMOS devices, the current consumption of the Circuit can also be expected from a deeply discharged battery, only the two bridge branches - which can also be supplemented by installing additional threshold switches a noticeable burden.
Die Diode D₁ überbrückt den Ausgangsgleichrichter des DC/DC-Wandlers bei U₁=0, falls dieser eine höhere Durchlaßspannung hat als die Diode; zugleich kann sie die Funktion des Entladeschutzes für die Batterien übernehmen, wenn die Spannung U SOL ausfällt (nachts).The diode D ₁ bridges the output rectifier of the DC / DC converter at U ₁ = 0 if it has a higher forward voltage than the diode; at the same time, it can take over the function of protection against discharge for the batteries if the voltage U SOL fails (at night).
Die Diode D₈ wirkt als Freilaufdiode, C₃ als Pufferkondensator beim Abschalten eventueller induktiver Lasten. Der Varistor VAR ist ein Blitzschutz. Der Klarheit zuliebe sind die weiteren Schutzschaltungen für Feldeffekt-Bausteine nicht eingezeichnet, da allgemein bekannt.The diode D ₈ acts as a freewheeling diode, C ₃ as a buffer capacitor when switching off any inductive loads. The varistor VAR is a lightning protection. For the sake of clarity, the further protective circuits for field effect modules are not shown, since they are generally known.
Ebenso wie für Solarkraftwerke läßt sich dieser im Aufbau einfache Regeler direkt als Gleichspannungs-Gleichspannungswandler verwenden. Die Ausgangsspannung ist geregelt und kann in eine definierte Wechselspannung umgewandelt werden. Damit werden wesentlich einfachere Gleichspannungswandler und Wechselrichter möglich.Just as for solar power plants, this simple controller can be constructed directly as a DC-DC converter use. The output voltage is regulated and can be defined in a AC voltage can be converted. This makes DC converters much simpler and inverter possible.
Anstelle der Solarmoduln tritt jetzt eine Gleichspannungsquelle. Zunächst erhält man eine um zumindest den Regelhub erhöhte geregelte Ausgangs-Gleichspannung entsprechend dem an der Brücke eingestellten Schwellenwert. Die Ausgangsspannung kann aber auch mit einem variablen Schwellenwert z. B. nach einer Zeitfunktion gesteuert werden. Eine weitere Regelung ist nicht mehr erforderlich, falls man aus dieser Ausgangsspannung eine beliebig andere Spannung erzeugen will. Man hat dazu lediglich diese Spannung in eine meist hochfrequente rechteckförmige Wechselspannung umzuwandeln, am wirkungsvollsten mit Schalttransistoren in Halbbrücken- oder Brückenschaltung mit Impulssteuerung, und diese Wechselspannung in die gewünschte Spannung zu transformieren. Da die so erhaltene Wechselspannung auch rechteckförmig ist, eignet sie sich hervorragend zur Doppelweggleichrichtung, da sich die Diodenströme über die volle Impulsbreite verteilen und Stromlücken fast ganz vermeidbar sind. So bleibt der Aufwand für Ladekondensatoren und Speicherdrosseln gering, zumal bei den hohen Frequenzen, für die auch der Transformator wesentlich kleiner wird als bei Netzfrequenz von 50 oder 60 Hz. Es verbleibt nur die für jeden Schaltregler erforderliche Filterung von Störspitzen, hervorgerufen durch die raschen Schaltvorgänge.Instead of the solar modules, there is now a DC voltage source. First you get one around at least the control stroke increased regulated output DC voltage corresponding to that at the Bridge set threshold. The output voltage can also be variable Threshold z. B. can be controlled according to a time function. Another regulation is no longer required if you want to generate any other voltage from this output voltage. You only have this voltage in a mostly high-frequency rectangular AC voltage convert, most effectively with switching transistors in half-bridge or bridge circuit with pulse control, and transform this AC voltage into the desired voltage. Since the AC voltage obtained in this way is also rectangular, it is ideally suited for Two-way rectification, since the diode currents are distributed over the full pulse width and Electricity gaps are almost entirely avoidable. So the effort for charging capacitors and storage chokes remains low, especially at the high frequencies, for which the transformer is also much smaller is considered to be at a mains frequency of 50 or 60 Hz. Only the one required for each switching controller remains Filtering of interference peaks, caused by the rapid switching operations.
Der Wirkungsgrad einer solchen Schaltung ist schon nach dem Regler wesentlich besser als bei bisherigen Schaltreglern, auch dann, wenn man direkt auf die doppelte bis dreifache Spannung der Stromquelle hinaufregelt. Jede nachgeschaltete Spannungswandlung kann, da sie keiner weiteren Regelung mehr bedarf, im Wirkungsgrad besser optimiert werden.The efficiency of such a circuit is already much better than that of the controller previous switching regulators, even if you directly double or triple the voltage regulates the current source. Any downstream voltage conversion can, since none further regulation requires more, the efficiency can be optimized better.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873729000 DE3729000A1 (en) | 1987-08-31 | 1987-08-31 | Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873729000 DE3729000A1 (en) | 1987-08-31 | 1987-08-31 | Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3729000A1 true DE3729000A1 (en) | 1989-03-09 |
Family
ID=6334849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19873729000 Withdrawn DE3729000A1 (en) | 1987-08-31 | 1987-08-31 | Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3729000A1 (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4325436A1 (en) * | 1993-07-29 | 1995-02-02 | Inst Luft & Kaeltetechnik Ggmbh | Method for regulating photovoltaic solar systems and circuit arrangements for carrying out the method |
DE29700054U1 (en) * | 1997-01-03 | 1997-05-22 | Pauls, Werner, Dr., 24376 Kappeln | Solar module arrangement |
US8669675B2 (en) | 2003-05-28 | 2014-03-11 | Beacon Power, Llc | Power converter for a solar panel |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
JPWO2015174188A1 (en) * | 2014-05-12 | 2017-04-27 | シャープ株式会社 | Photovoltaic generator |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
CN114455092A (en) * | 2022-03-28 | 2022-05-10 | 威海广泰空港设备股份有限公司 | Photovoltaic power generation range-extending passenger ferry vehicle in pure electric motor yard and control method thereof |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3348130A (en) * | 1964-07-27 | 1967-10-17 | Honeywell Inc | Control apparatus |
DE2253039B1 (en) * | 1972-10-28 | 1973-08-09 | Rowenta-Werke Gmbh, 6050 Offenbach | DEVICE FOR CONVERTING LIGHT ENERGY INTO ELECTRICAL ENERGY |
DE2834381A1 (en) * | 1977-08-04 | 1979-02-08 | Rca Corp | DEVICE FOR TRANSMISSION OF POWER |
DE2924631A1 (en) * | 1979-06-19 | 1981-01-29 | Horizont Geraetewerk | Power supply for solar cell output - has adaptive DC=DC converter to raise or directly connect cell output to storage accumulators |
DE3150758A1 (en) * | 1981-12-22 | 1983-07-14 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn | Device for converting and storing radiation energy |
DE3525630A1 (en) * | 1985-07-18 | 1987-01-29 | Licentia Gmbh | Method for optimum matching of the voltage from a solar generator to a parallel-connected battery |
-
1987
- 1987-08-31 DE DE19873729000 patent/DE3729000A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3348130A (en) * | 1964-07-27 | 1967-10-17 | Honeywell Inc | Control apparatus |
DE2253039B1 (en) * | 1972-10-28 | 1973-08-09 | Rowenta-Werke Gmbh, 6050 Offenbach | DEVICE FOR CONVERTING LIGHT ENERGY INTO ELECTRICAL ENERGY |
DE2834381A1 (en) * | 1977-08-04 | 1979-02-08 | Rca Corp | DEVICE FOR TRANSMISSION OF POWER |
DE2924631A1 (en) * | 1979-06-19 | 1981-01-29 | Horizont Geraetewerk | Power supply for solar cell output - has adaptive DC=DC converter to raise or directly connect cell output to storage accumulators |
DE3150758A1 (en) * | 1981-12-22 | 1983-07-14 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn | Device for converting and storing radiation energy |
DE3525630A1 (en) * | 1985-07-18 | 1987-01-29 | Licentia Gmbh | Method for optimum matching of the voltage from a solar generator to a parallel-connected battery |
Non-Patent Citations (6)
Title |
---|
CH-Z: Urmi, Ceppi,Guekos: Die Übertragung der photovoltaischen Solarenergie zum Verbraucher oder ins 220 V-Netz. In: Bull ASE/UCS 73, 1982, 11, 5. Juni, S. 510-513 * |
DE-Z: A.Köhler, R.Schiffel: Grundschaltungen der Elektronik, Solarzelle,Solargenerator. In: Funkschau, 24/1985, S.63-66 * |
DE-Z: Elektrische Energie-Technik, 29.Jahrg., 1984, Nr.1, S.59-60 * |
DE-Z: Fürniß,Hoffmann, Malzacher,Bögli,Guekos: Ein photovoltaischer Generator im Netzbetrieb. In: Elektrizitätswirtschaft, Jahrg.85, 1986, H.5, S.175-178 * |
DE-Z: Pfeifer,Fett: Solarzellenversuchsanlage. In: Messen,Prüfen,Automatisieren, Juli/August 1985, S.384-390 * |
DE-Z: Schreger:Stromversorgungssystem in Satel- liten. In:Techn.Mitt.Aeg-Telefunken, 60,1970,7, S.425-429 * |
Cited By (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4325436A1 (en) * | 1993-07-29 | 1995-02-02 | Inst Luft & Kaeltetechnik Ggmbh | Method for regulating photovoltaic solar systems and circuit arrangements for carrying out the method |
DE4325436C2 (en) * | 1993-07-29 | 2000-06-29 | Inst Luft & Kaeltetechnik Ggmbh | Circuit arrangement for MPP control of photovoltaic solar systems and circuit arrangement for carrying out the method |
DE29700054U1 (en) * | 1997-01-03 | 1997-05-22 | Pauls, Werner, Dr., 24376 Kappeln | Solar module arrangement |
US11817699B2 (en) | 2003-05-28 | 2023-11-14 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11824398B2 (en) | 2003-05-28 | 2023-11-21 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11658508B2 (en) | 2003-05-28 | 2023-05-23 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US8669675B2 (en) | 2003-05-28 | 2014-03-11 | Beacon Power, Llc | Power converter for a solar panel |
US11476663B2 (en) | 2003-05-28 | 2022-10-18 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11075518B2 (en) | 2003-05-28 | 2021-07-27 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US10910834B2 (en) | 2003-05-28 | 2021-02-02 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US10135241B2 (en) | 2003-05-28 | 2018-11-20 | Solaredge Technologies, Ltd. | Power converter for a solar panel |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
EP3144945A4 (en) * | 2014-05-12 | 2017-05-31 | Sharp Kabushiki Kaisha | Light power generation apparatus |
JPWO2015174188A1 (en) * | 2014-05-12 | 2017-04-27 | シャープ株式会社 | Photovoltaic generator |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
CN114455092A (en) * | 2022-03-28 | 2022-05-10 | 威海广泰空港设备股份有限公司 | Photovoltaic power generation range-extending passenger ferry vehicle in pure electric motor yard and control method thereof |
CN114455092B (en) * | 2022-03-28 | 2023-04-11 | 威海广泰空港设备股份有限公司 | Photovoltaic power generation range-extending passenger ferry vehicle in pure electric motor yard and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3729000A1 (en) | Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters | |
EP2987222B1 (en) | Power supply arrangement for an electronic device | |
JP2541529B2 (en) | Power regulator | |
EP2451065B1 (en) | Inverter circuitry comprising a buck converter | |
WO2007036374A2 (en) | Power inverter for two direct current sources and a method for the operation thereof | |
EP3729623B1 (en) | Voltage converter arrangement comprising an input control element, and method for operating a voltage converter arrangement | |
CA2521211C (en) | Switching power supply with capacitor input for a wide range of ac input voltages | |
EP3358693A1 (en) | Photovoltaic assembly with reactive power generation dependent on mains voltage | |
EP2994969A1 (en) | Assembly for compensating reactive power and active power in a high-voltage network | |
DE69734899T2 (en) | BATTERY CHARGERS | |
DE10018943A1 (en) | Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management | |
EP4154371A1 (en) | Method for stabilizing the dc voltage in a dc grid, and dc-to-dc converter for connecting a pv generator to a dc grid | |
DE10144591C2 (en) | Circuit arrangement for voltage regulation | |
EP4054065A1 (en) | Voltage conversion circuit and power supply system | |
EP0226191A2 (en) | Current FED boost converter | |
KR101339180B1 (en) | Automatic Voltage Regulator based on Series Voltage Compensation with AC Chopper | |
US5319534A (en) | Series-parallel active power line conditioner utilizing reduced-turns-ratio transformer for enhanced peak voltage regulation capability | |
US6023419A (en) | Capacitor regulated controllable voltage and current power supply | |
DE10225020A1 (en) | Circuit arrangement for converting direct to alternating current has power compensation so power or current fed to inverter in one direct voltage branch is equal to that drawn from other branch | |
DE3033034C2 (en) | emergency generator | |
González et al. | Grid-tied modular and scalable photovoltaic distributed maximum power point tracking system with storage at module level using non-isolated three-port converters | |
DE102004054473A1 (en) | Standard frequency inverter for discontinuous energy supply | |
EP0019096A1 (en) | DC-DC converter with current and voltage regulation | |
CN215072152U (en) | Power supply circuit and electrical equipment | |
CN2817171Y (en) | Storage battery constant current discharge device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8139 | Disposal/non-payment of the annual fee |