[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE3726670A1 - Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement - Google Patents

Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement

Info

Publication number
DE3726670A1
DE3726670A1 DE19873726670 DE3726670A DE3726670A1 DE 3726670 A1 DE3726670 A1 DE 3726670A1 DE 19873726670 DE19873726670 DE 19873726670 DE 3726670 A DE3726670 A DE 3726670A DE 3726670 A1 DE3726670 A1 DE 3726670A1
Authority
DE
Germany
Prior art keywords
measuring device
distance measuring
time
measurement
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873726670
Other languages
German (de)
Inventor
Gerhard Dipl Ing Smolarczyk
Thomas Wanisch
Heribert Parsiegla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WANISCH JOSEF THOMAS
Original Assignee
WANISCH JOSEF THOMAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WANISCH JOSEF THOMAS filed Critical WANISCH JOSEF THOMAS
Priority to DE19873726670 priority Critical patent/DE3726670A1/en
Publication of DE3726670A1 publication Critical patent/DE3726670A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The patent describes a method using which the signal propagation time of an ultrasound pulse, as is used for non-touching separation measurement, is determined exactly. For this purpose, an ultrasound pulse is transmitted which consists of a plurality of frequencies, the ratios between which are odd-numbered multiples. By breaking the echo down into its frequency components and determining the phase angle of the signals with respect to one another, it is possible to determine the phase angle of the complete signal, as a result of which a separation sensor constructed in this manner achieves a resolution which is less than the wavelength of the highest frequency used.

Description

Stand der TechnikState of the art

Ultraschall-Entfernungsmeßgeräte, wie sie heute in der Industrie schon vielfach eingesetzt werden, haben eine Auflösung und eine Meßgenauigkeit, die zwei- bis fünfmal so grob ist wie die Wellen­ länge der verwendeten Frequenz. Stand der Technik ist es, durch Gleichrichtung und Glättung die Hüllkurve des Echos zu bilden. Das Hüllkurvensignal wird mit einem Komparator auf eine Mindest­ höhe abgefragt. Ein starkes Echo schaltet daher den Komparator zwangsläufig früher durch als ein schwaches Echo aus gleicher Entfernung, wodurch Meßfehler entstehen.Ultrasonic distance measuring devices, such as those used in industry today already used many times, have a resolution and a Measuring accuracy that is two to five times as large as the waves length of the frequency used. State of the art is through Rectification and smoothing to form the envelope of the echo. The envelope signal is minimized with a comparator height queried. A strong echo therefore switches the comparator inevitably earlier than a weak echo from the same Distance, which causes measurement errors.

Um diese Nachteile zu verhindern, wird das Echo erfindungsgemäß in seinem gesamten Verlauf ausgewertet. Da sich der zeitliche Anfang eines Echos nicht exakt ermitteln läßt, kann bei Verwendung von nur einer Frequenz ein Fehler auftreten, der genau einer Schwingungslänge entspricht. Erfindungsgemäß wird darum ein Ultraschall-Signal verwendet, das aus zumindest zwei Frequenzen besteht, die in einem ungradzahligen Verhältnis zueinander stehen.To avoid these disadvantages, the echo is invented evaluated in its entire course. Since the temporal If the beginning of an echo cannot be determined exactly, it can be used an error occurs from just one frequency, which is exactly one Vibration length corresponds. According to the invention is therefore a Ultrasonic signal is used, which consists of at least two frequencies exists that are in an odd ratio to each other.

Das in Bild 1 dargestellte Echo besteht aus zwei Frequenzen im Verhältnis 1 zu 1,6. Bild 2 und Bild 3: Die beiden dargestellten Frequenzen (Bild 2 und 3) haben nur alle 5 bzw. 8 Schwingungen den gleichen Phasenbezug zueinander. Die Auswertung kann in der nachfolgend beschriebenen Weise erfolgen: Das Echosignal (Bild 1) wird in seine Frequenzanteile zerlegt (Bild 2 und 3). Die ermittelten Sinussignale (Bild 2 und 3) werden in Rechtecksignale gewandelt (Bild 4 und 5), aus deren abfallender oder ansteigender Flanke werden Nadelimpulse gebildet (Bild 6 und 7). Über eine Und-Verknüpfung wird ermittelt, ob in den Signalen (Bild 6 und 7) gleichzeitig Nadelimpulse auftreten. Das Ergebnis der Und-Verknüpfung ist in dem Bild 8 dargestellt. Die technische Schaltung ist in Bild 10 dargestellt.The echo shown in Figure 1 consists of two frequencies in a ratio of 1 to 1.6. Fig. 2 and Fig. 3: The two frequencies shown ( Fig. 2 and 3) only have the same phase relationship to each other every 5 or 8 vibrations. The evaluation can be carried out in the manner described below: The echo signal ( Figure 1) is broken down into its frequency components ( Figures 2 and 3). The sinusoidal signals determined (Figure 2 and 3) are converted into rectangular signals (Figure 4 and 5), from whose falling or rising edge needle pulses are formed (Figure 6 and 7). An AND link is used to determine whether needle signals are occurring in the signals ( Figures 6 and 7) at the same time. The result of the AND operation is shown in Figure 8. The technical circuit is shown in Figure 10.

Ultraschall-Empfänger (1), Verstärker (2), Filter (3) (4), Komparator zur Bildung der Rechtecksignale (5), (6) mit nachfolgenden Differenzier- Gliedern zur Nadelimpulsbildung, Und-Gatter (7).Ultrasonic receiver ( 1 ), amplifier ( 2 ), filter ( 3 ) ( 4 ), comparator for forming the square wave signals ( 5 ), ( 6 ) with subsequent differentiators for needle pulse formation, and gate ( 7 ).

Der so gewonnene Nadelimpuls kann hervorragend zur Messung der Laufzeit genutzt werden.The needle pulse obtained in this way can be used to measure the running time be used.

Claims (6)

1. Abstandsmeßgerät, das auf demPrinzip einer Ultraschall- Laufzeitmessung beruht, dadurch gekennzeichnet, daß ein Ultraschall-Signal abgestrahlt wird, das aus einer Summe von Frequenzen besteht, wodurch ein typischer Signalverlauf gebildet wird und das somit typische Echo in seine Frequenzanteile zerlegt und der Zeitpunkt zur Laufzeitmessung ver­ wendet wird, an dem die Signalverläufe aller verwendeten Frequenzen gleichzeitig die Sinuswinkel 0 Grad durchlaufen und dieser Zeitpunkt dadurch ermittelt wird, daß die Signale durch Komparatoren in Rechteckimpulse gewandelt werden, aus deren abfallender oder an­ steigender Flanke Nadelimpulse gebildet werden und das gleichzeitige Auftreten der Nadelimpulse durch ein Und-Gatter ermittelt wird, wodurch die Abstandsmessung in ihrer Auflösung kleiner wird als die Wellenlänge der größten verwendeten Frequenz.1. Distance measuring device, which is based on the principle of an ultrasonic transit time measurement, characterized in that an ultrasonic signal is emitted which consists of a sum of frequencies, whereby a typical signal curve is formed and the typical echo is thus broken down into its frequency components and the time ver is used for transit time measurement, at which the waveforms of all frequencies used simultaneously pass through the sine angle 0 degrees and this point in time is determined by the fact that the signals are converted by comparators into rectangular pulses, from whose falling or rising flank needle pulses are formed and the simultaneous occurrence the needle pulse is determined by an AND gate, whereby the distance measurement in its resolution is smaller than the wavelength of the largest frequency used. 2. Abstandsmeßgerät nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Ultraschall-Empfänger ver­ wendet werden, die selektiv jeweils nur eine Frequenz empfangen, wodurch die Filter eingespart werden.2. Distance measuring device according to claim 1, characterized in that several ultrasonic receivers ver are used that selectively receive only one frequency at a time, which saves the filters. 3. Abstandsmeßgerät nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Echoverlauf von einem Transienten­ rekorder, dessen Abtastrate ein Vielfaches der verwendeten Ultraschall- Frequenz ist, aufgezeichnet wird und anschließend von einem Rechner auf seine Phasenlage und seinen typischen Verlauf untersucht wird, wodurch die Abstandsmessung in ihrer Auflösung kleiner wird als die Wellenlänge der größten verwendeten Frequenz und die Störsicherheit gegenüber Fremdschall erheblich steigt. 3. Distance measuring device according to claim 1 and 2, characterized in that the echo curve from a transient recorder, whose sampling rate is a multiple of the ultrasound Frequency is recorded and then by a computer is examined for its phase position and its typical course, whereby the distance measurement in its resolution is smaller than that Wavelength of the largest frequency used and noise immunity increases significantly compared to external noise.   4. Abstandsmeßgerät nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß der Rechner die Frequenzen und Phasen­ lagen durch eine Laplace-Transformation ermittelt und den Zeitpunkt zur Laufzeitmessung verwendet, an dem die Signalverläufe bestimmter Frequenzen gleichzeitig bestimmte Sinuswinkel, z. B. 0 Grad, durch­ laufen.4. Distance measuring device according to claim 1 to 3, characterized in that the calculator the frequencies and phases were determined by a Laplace transformation and the point in time used for runtime measurement, on which the signal curves of certain Frequencies simultaneously determined sine angles, e.g. B. 0 degrees to run. 5. Abstandsmeßgerät nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Rechner die Echolaufzeit durch eine Autokorelationsberechnung bestimmt.5. Distance measuring device according to claim 1 to 4, characterized in that the calculator the echo time by determines an auto-correlation calculation. 6. Abstandsmeßgerät nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß dem Transientenrekorder ein Auto­ korelations-Register vorgeschaltet wird und das Ausgangssignal des Autokorelations-Registers im Transientenrekorder gespeichert wird, was den Rechner von der Berechnung der Korelation entlastet.6. Distance measuring device according to claim 1 to 5, characterized in that the transient recorder is a car correlation register is connected upstream and the output signal of the autocorelation register is saved in the transient recorder becomes what relieves the computer of the calculation of the correlation.
DE19873726670 1987-08-01 1987-08-01 Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement Withdrawn DE3726670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873726670 DE3726670A1 (en) 1987-08-01 1987-08-01 Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873726670 DE3726670A1 (en) 1987-08-01 1987-08-01 Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement

Publications (1)

Publication Number Publication Date
DE3726670A1 true DE3726670A1 (en) 1989-02-09

Family

ID=6333507

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873726670 Withdrawn DE3726670A1 (en) 1987-08-01 1987-08-01 Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement

Country Status (1)

Country Link
DE (1) DE3726670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797105A2 (en) * 1996-03-21 1997-09-24 Siemens Aktiengesellschaft Method for measuring the time of flight of electric, electromagnetic or acoustic signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797105A2 (en) * 1996-03-21 1997-09-24 Siemens Aktiengesellschaft Method for measuring the time of flight of electric, electromagnetic or acoustic signals
EP0797105A3 (en) * 1996-03-21 1999-09-22 Siemens Aktiengesellschaft Method for measuring the time of flight of electric, electromagnetic or acoustic signals

Similar Documents

Publication Publication Date Title
EP0797105B1 (en) Method for measuring the time of flight of electric, electromagnetic or acoustic signals
DE69516366T2 (en) Measuring method and measuring device
EP0647857B1 (en) High-precision range measurement radar
DE69211599T2 (en) Ultrasound high speed flow correlation measurement using coded pulses
DE4242700A1 (en) Procedure for measuring the distance and speed of objects
DE3812293A1 (en) LEVEL MEASURING DEVICE
DE2607187B2 (en) Method for measuring the time interval between two electrical pulses
DE2853170C2 (en)
DE19833921A1 (en) Fast Fourier transformation device for measuring response characteristics Input signal frequency spectrum, e.g. a filter in a communication system
CH634922A5 (en) DEVICE FOR MEASURING THE ACOUSTIC PROPERTIES AND THEIR CHANGES TO A SAMPLE.
DE3119343C2 (en) Ultrasonic wall thickness measurement method
DE4315794C2 (en) Method and device for the non-destructive testing of objects with ultrasound
DE3726670A1 (en) Separation measurement apparatus which operates on the principle of ultrasound propagation-time measurement
DE3800800A1 (en) Method and device for distance measurement (separation measurement)
US3924183A (en) Frequency measurement by coincidence detection with standard frequency
DE911663C (en) Method for checking, in particular for determining the distance of objects according to the reflection principle by pulse-wise emission and re-reception of high-frequency oscillations
DE202020003474U1 (en) Measuring device, in particular flow meter, with at least one ultrasonic transducer
DE10249544B4 (en) Method for level measurement according to the transit time principle
DE3304520A1 (en) ULTRASONIC GAUGE
DE3700086C1 (en) Method for measuring the wall thickness of a workpiece using ultrasound
DE69519767T2 (en) Sawtooth signal generator and signal interpolation device using the same
EP0367860B1 (en) Amplitude measuring process of a periodic electrical signal g(t) in a band of signals u(t)
DE3008876A1 (en) Mechanical speed measurement circuit - uses speed to frequency conveyor and dual interval measurement cycle avoiding pulse interval inversion
DE3877843T2 (en) METHOD AND DEVICE FOR MEASURING THE DOUBLE BREAKING PROPERTIES OF A SUBSTANCE BY MEASURING TIME.
DE2656982A1 (en) Analysis of pulse sequences from digital probe pair - by phase shifting and modifying pulse sequences into up-down counter

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee