[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE3707396C2 - - Google Patents

Info

Publication number
DE3707396C2
DE3707396C2 DE19873707396 DE3707396A DE3707396C2 DE 3707396 C2 DE3707396 C2 DE 3707396C2 DE 19873707396 DE19873707396 DE 19873707396 DE 3707396 A DE3707396 A DE 3707396A DE 3707396 C2 DE3707396 C2 DE 3707396C2
Authority
DE
Germany
Prior art keywords
weight
tio
workpieces
ceramic
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE19873707396
Other languages
German (de)
Other versions
DE3707396A1 (en
Inventor
Georg Dr. 5190 Stolberg De Kalawrytinos
Constantin Dr. 5100 Aachen De Zografou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19873707396 priority Critical patent/DE3707396A1/en
Publication of DE3707396A1 publication Critical patent/DE3707396A1/en
Application granted granted Critical
Publication of DE3707396C2 publication Critical patent/DE3707396C2/de
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines keramischen Werkstoffes, der zu mehr als 90 Gew.-% aus β-Al2TiO5 besteht, und erstreckt sich auf dessen Verwendung zur Beschichtung von Werkstücken aus Metall, Keramik, Holz, Kunststoff oder anorganischen Fasermaterialien.The invention relates to a method for producing a ceramic material, which consists of more than 90 wt .-% of β-Al 2 TiO 5 , and extends to its use for coating workpieces made of metal, ceramic, wood, plastic or inorganic fiber materials .

Als Werkstoff zur Herstellung von feuerfesten Gegenständen ist es allgemein bekannt, silikathaltiges Aluminium-Titanat zu verwenden. Je nach Zusammensetzung des Werkstoffes weisen daraus hergestellte keramische Metallverbundkörper eine gute Temperaturbeständigkeit, eine hohe Korrosions­ festigkeit und eine ausreichende mechanische Festigkeit auf.As a material for the manufacture of refractory objects it is well known, aluminum titanate containing silicate to use. Depending on the composition of the material exhibit ceramic metal composite bodies produced therefrom good temperature resistance, high corrosion strength and sufficient mechanical strength.

Aus der DE-AS 27 50 290 ist es bereits bekannt, durch die kombinierte Zugabe von Oxidverbindungen die Eigenschaften von Aluminium-Titanat zu verbessern. Danach läßt sich silikathaltiges Aluminium-Titanat, bestehend aus Rohstoffen mit einer Korngröße unter 0,6 µ und einer chemischen Zusammensetzung von 50 bis 60 Gew.-% Al2O3, 40 bis 45 Gew.-% TiO2, 2 bis 5 Gew.-% Kaolin und 0,1 bis 1 Gew.-% Magnesiumsilikat als Werkstoff zur Herstellung von Gegenständen verwenden, die einen Temperaturschock­ koeffizienten von R = 130 bis 180 (W/cm), eine Wärmedämmung von λ = 0,01 bis 0,03 (W/cm K), einen Ausdehnungs­ koeffizienten von AK = ⁺ 0,5 × 10-6/°C, einen E-Modul von ca. 13 × 103 (N/mm2) und eine Biegefestigkeit von σB = 40 (N/mm2) bzw. eine Druckfestigkeit von σD = 700 (N/mm2), ferner eine Nichtbenetzbarkeit gegenüber den meisten NE-Metallen und Laugenbeständigkeit besitzen.From DE-AS 27 50 290 it is already known to improve the properties of aluminum titanate by the combined addition of oxide compounds. Thereafter, silicate-containing aluminum titanate, consisting of raw materials with a grain size of less than 0.6 μm and a chemical composition of 50 to 60 wt.% Al 2 O 3 , 40 to 45 wt.% TiO 2 , 2 to 5 wt .-% kaolin and 0.1 to 1 wt .-% magnesium silicate as a material for the production of objects that have a temperature shock coefficient of R = 130 to 180 (W / cm), a thermal insulation of λ = 0.01 to 0, 03 (W / cm K), an expansion coefficient of AK = ⁺ 0.5 × 10 -6 / ° C, an elastic modulus of approx. 13 × 10 3 (N / mm 2 ) and a bending strength of σ B = 40 (N / mm 2 ) or a compressive strength of σ D = 700 (N / mm 2 ), furthermore non-wettability compared to most non-ferrous metals and alkali resistance.

Der bekannte Werkstoff hat die Vorteile, daß er einfach herzustellen ist und daraus auch Körper geformt werden können, ohne ein teures Heißpressen oder andere aufwendige Verfahren benutzen zu müssen. Deshalb wird auch vorgeschlagen, aus dem silikathaltigen Aluminium-Titanat mit Zugaben von Oxidverbindungen in vorteilhafter Weise Feuerfestprodukte, insbesondere Gießereiartikel, wie Thermoelementenschutzrohre, Gaseinleitungsrohre, Verschlußstopfen, Steigrohre, Ventilstopfen, Gießlöffel, Gießauskleidungen und Steigereinsätze herzustellen. Auch wird der bekannte Werkstoff zur Herstellung von Metall-Keramik-Verbundkörpern, insbesondere Zylinderkopf-Abgasstränge und Abgassammelleitungen, empfohlen. Bei diesen Anwendungsfällen muß aber aus dem Werkstoff zunächst ein Formkörper hergestellt werden, der sodann zu sintern ist. Der gesinterte Formkörper kann in flüssiges Aluminium eingetaucht oder nach bekannten Gießereiverfahren in eine Gießform eingesetzt werden, worauf geschmolzenes Aluminium in den verbleibenden Formenhohlraum eingegossen wird. Auf diese Weise läßt sich ein mit Keramik ausgekleideter, wärmeisolierter Metallhohl­ körper herstellen. The known material has the advantages that it is simple is to be produced and bodies are formed from it can, without an expensive hot pressing or other elaborate Having to use procedures. Therefore, too suggested from the silicate-containing aluminum titanate with additions of oxide compounds in an advantageous manner Refractory products, especially foundry items such as Thermocouple protection tubes, gas inlet tubes, Sealing plugs, riser pipes, valve plugs, watering spoons, To produce casting linings and riser inserts. Also becomes the well-known material for the production of Metal-ceramic composite bodies, in particular Cylinder head exhaust lines and exhaust manifolds, recommended. In these applications, however, the First, a molded article is made of then to sinter. The sintered molded body can be in liquid aluminum immersed or according to known Foundry processes are used in a mold, whereupon molten aluminum in the remaining Mold cavity is poured. In this way a heat-insulated metal hollow lined with ceramics make body.  

Wegen der dabei erforderlichen Vorfertigung der Keramik­ auskleidung als kompaktes Konstruktionsteil, gestaltet sich der Herstellungsprozeß derartiger Produkte insgesamt als sehr aufwendig, wogegen es produktionstechnisch wesentlich vorteilhafter wäre, die Keramikauskleidung durch eine thermische Spritzbeschichtung des Werkstückes zu erzielen, zumal sich dabei im Gegensatz zu kompakten Konstruktionsteilen wesentlich geringere Ausschußraten ergeben.Because of the required prefabrication of the ceramics lining as a compact structural part, designed the manufacturing process of such products as a whole very complex, whereas it is essential in terms of production technology it would be more advantageous to use a ceramic lining to achieve thermal spray coating of the workpiece, especially since in contrast to compact Construction parts significantly lower rejection rates surrender.

Obschon auch Spritzbeschichtungsverfahren dieser Art allgemein bekannt sind, läßt sich damit silikathaltiges Aluminium-Titanat aus Rohstoffen mit einer Korngröße unter 0,6 µ nicht auftragen, weil die geringe Korngröße zu einer Agglomeration der Werkstoffpartikel führt, bevor diese eine homogene Beschichtung auf der Werkstückoberfläche bilden können.Even spray coating processes of this kind are generally known, it can be silicate-containing Aluminum titanate from raw materials with a grain size below Do not apply 0.6 µ because of the small grain size Agglomeration of the material particles leads before this one Form a homogeneous coating on the workpiece surface can.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines keramischen Werkstoffes für eine Ausklei­ dung von Werkstücken vorzuschlagen, der es insbesondere er­ laubt, im thermischen Spritzverfahren auf eine zu beschich­ tende Oberfläche von Werkstücken aufgetragen zu werden.The invention has for its object a method for Production of a ceramic material for a lining to propose workpieces, which he especially leaves to coat on one in the thermal spray process to be applied to the surface of workpieces.

Zur Lösung dieser Aufgabe wird von einem Verfahren gemäß dem Oberbegriff des Anspruchs 1 ausgegangen und erfindungsgemäß vorgeschlagen, aus dem so erhaltenen Zwischenprodukt Granalien mit einer Größe zwischen 10 und 90 µ zu separieren und die separierten Granalien für die Dauer von 5 bis 120 min einer Glühbehandlung mit einer Temperatur zwischen 400 und 900°C zu unterwerfen. To solve this problem, a method according to Preamble of claim 1 based and according to the invention proposed from the intermediate so obtained Separate granules with a size between 10 and 90 µ and the separated granules for a period of 5 to 120 min of an annealing treatment with a temperature between To be subjected to 400 and 900 ° C.  

Durch die erfindungsgemäße Glühbehandlung der separierten Granalien erfolgt eine Veredlung bzw. Modifikation des Werkstoffes, wobei sich vermutlich der organische Binder rückstandslos auflöst. Die Dauer der Gühbehandlung ist um so kürzer je größer der Anteil der Granalien ist, die sich der unteren Grenze des Kornspektrums nähern. Keinesfalls darf die Glühbehandlung zu einer Agglomeration der Granalien führen.Through the annealing treatment according to the invention of the separated Granules are refined or modified Material, presumably the organic binder dissolves without residue. The duration of the heat treatment is the shorter the greater the proportion of the granules, the approach the lower limit of the grain spectrum. Under no circumstances may the annealing treatment lead to an agglomeration of the granules.

Durch Versuche konnte nachgewiesen werden, daß sich der nach dem erfindungsgemäßen Verfahren hergestellte Werkstoff bei ausreichender Haftung und Dichte in Schichten ab 0,03 mm bis über 3,00 mm auftragen läßt, wobei die Thermoschockbeständigkeit und der Korrosionsschutz dieser Schichten hervorragende Werte erreichen.Tests have shown that the after material produced by the method according to the invention sufficient adhesion and density in layers from 0.03 mm can be applied to over 3.00 mm, the Resistance to thermal shock and protection against corrosion Layers achieve excellent values.

Der erfindungsgemäße Beschichtungswerkstoff eignet sich besonders zur Spritzbeschichtung von Werkstücken aus Metall, Keramik, Holz, Kunststoff oder anorganischen Fasermaterialien, wobei auf den zu beschichtenden Flächen der Werkstücke zunächst eine Schicht aus einem Haftvermittler, beispielsweise eine Chrom-Nickel-Schicht, und darauf der die Oberfläche bildende Beschichtungswerkstoff aufgebracht wird.The coating material according to the invention is suitable especially for spray coating of Workpieces made of metal, ceramic, wood, plastic or inorganic fiber materials, whereby to the coating surfaces of the workpieces first a layer from an adhesion promoter, for example one Chrome-nickel layer, and then the surface forming coating material is applied.

Trotz des Erfordernisses, auf die zu beschichtenden Flächen der Werkstücke zunächst eine Schicht aus einem Haftver­ mittler aufzubringen, ermöglicht die erfindungsgemäße Verwendung eine größere Wirtschaftlichkeit, insbesondere für bestimmte Einsatzgebiete, wie z. B. Stellen an Auspuffkrümmern oder an Auslaßventilsitzen, im Vergleich zu kompakten Keramikteilen, die nach dem Gieß- und Sinterverfahren hergestellt sind, zumal der Einsatz von Modellen und Formen zur Herstellung einer keramischen Auskleidung gänzlich entfällt. Aufgrund der erfindungsgemäßen Verwendung hergestellte Beschichtungen zeichnen sich auch durch eine Duktilität und somit gewisse Elastizität gegenüber der bekannten Kompaktkeramik aus.Despite the requirement, on the surfaces to be coated the workpieces first a layer of an adhesive Applying medium enables the invention  Use a greater economy, especially for certain areas of application, such as B. Places on exhaust manifolds or on exhaust valve seats, in Comparison to compact ceramic parts, which after the casting and sintering processes, especially since the use of Models and molds for making a ceramic Lining completely eliminated. Because of the invention Coatings made use also stand out through a ductility and thus a certain elasticity compared to the known compact ceramic.

Schließlich können nach einer Ausgestaltung der erfindungs­ gemäßen Verwendung zur Pufferung des Ausdehnungs­ koeffizienten und zur Verbesserung der Thermo-Schock- Beständigkeit mehrere Schichten aufeinanderfolgend auf die Werkstücke aufgebracht werden.Finally, according to an embodiment of the invention appropriate use for buffering the expansion coefficients and to improve the thermal shock Resistance to successive layers on the Workpieces are applied.

Nach dem erfindungsgemäßen Verfahren hergestellter und aufgespritzter Werkstoff aus schmelzgegossenem mullithaltigem β-Aluminium-Titanat kann somit in besonders einfacher Weise dazu dienen, Werkstücke aus unterschiedichstem Material mit einer temperatur-, korrosions- und verschleißbeständigen Beschichtung zu versehen.Manufactured by the method according to the invention and sprayed material from melt cast mullite-containing β-aluminum titanate can therefore be particularly useful simply serve to work out different material with a temperature, corrosion and wear resistant coating too Mistake.

Claims (3)

1. Verfahren zur Herstellung eines keramischen Werk­ stoffes, der zu mehr als 90 Gew.-% aus β-Al2TiO5 besteht, eine chemische Zusammensetzung aus 53,00- 55,50 Gew.-% Al2O3 und 34,75-43,90 Gew.-% TiO2 aufweist und folgende zusätzliche Oxide enthält: 0,05-3,00 Gew.-% ZrO2
0,15-7,90 Gew.-% SiO2
0,01-3,00 Gew.-% MgO
0,01-0,05 Gew.-% CaO
0,20-0,50 Gew.-% Fe2O3
0,20 Gew.-% Na2Ound dessen mineralogische Gesamtzusammensetzung aus mit MgO oder Fe2O3 stabilisiertem β-Al2TiO5 und β-Al2TiO5 mit 3 Al2O3-2 SiO2, Mg Al2O4, Al2O3 und ZrO2 besteht, wobei aus diesem Ausgangsstoff eine Schmelze erzeugt wird, die nach ihrem Erstarren zerkleinert und mit einem Anteil von 0,5-3,0 Gew.-% eines organischen Binders mit mehr als 4 C-Atomen in eine Suspension überführt wird, aus der durch Sprühtrocknung etwa kugelförmige Granalien mit einem Kornspektrum zwischen 10 und 250 µ erzeugt werden, dadurch gekennzeichnet, daß aus diesem Zwischenprodukt Granalien mit einer Größe zwischen 10 und 90 µ separiert und für die Dauer von 5-120 min einer Glühbehandlung mit einer Temperatur zwischen 400 und 900°C unterworfen werden.
1. A process for producing a ceramic material which consists of more than 90% by weight of β-Al 2 TiO 5 , a chemical composition of 53.00-55.50% by weight of Al 2 O 3 and 34, 75-43.90% by weight of TiO 2 and contains the following additional oxides: 0.05-3.00% by weight of ZrO 2
0.15-7.90% by weight of SiO 2
0.01-3.00 wt% MgO
0.01-0.05 wt% CaO
0.20-0.50 wt% Fe 2 O 3
0.20% by weight of Na 2 O and its overall mineralogical composition of β-Al 2 TiO 5 and β-Al 2 TiO 5 stabilized with MgO or Fe 2 O 3 with 3 Al 2 O 3 -2 SiO 2 , Mg Al 2 O 4 , Al 2 O 3 and ZrO 2 , a melt being produced from this starting material, which after it has solidified is broken up and contains 0.5-3.0% by weight of an organic binder with more than 4 C - Atoms are converted into a suspension, from which approximately spherical granules with a particle size range between 10 and 250 µ are produced by spray drying, characterized in that granules with a size between 10 and 90 µ are separated from this intermediate product and for a period of 5-120 be subjected to an annealing treatment at a temperature between 400 and 900 ° C.
2. Verwendung eines nach Anspruch 1 hergestellten Werkstoffes zur Beschichtung von Werkstücken aus Metall, Keramik, Holz, Kunststoff oder anorganischen Fasermaterialien, dadurch gekennzeichnet, daß auf den zu beschichtenden Flächen der Werkstücke zunächst eine Schicht aus einem Haftvermittler, beispielsweise eine Chrom-Nickel-Schicht, und darauf der die Oberfläche bildende Beschichtungswerkstoff aufgespritzt wird.2. Use of a material produced according to claim 1 for coating workpieces made of metal, Ceramic, wood, plastic or inorganic Fiber materials, characterized in that on the surfaces of the workpieces to be coated first a layer of an adhesion promoter, for example a chrome-nickel layer, and on top of it the coating material forming the surface is sprayed on. 3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß zur Pufferung des Ausdehnungskoeffizienten und zur Verbesserung der Thermoschockbeständigkeit mehrere Schichten aufeinanderfolgend auf die Werkstücke aufgebracht werden.3. Use according to claim 2, characterized in that to buffer the expansion coefficient and Improvement of thermal shock resistance several Layers successively on the workpieces be applied.
DE19873707396 1987-03-09 1987-03-09 Process for producing a ceramic material and process for coating of workpieces with this material Granted DE3707396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873707396 DE3707396A1 (en) 1987-03-09 1987-03-09 Process for producing a ceramic material and process for coating of workpieces with this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873707396 DE3707396A1 (en) 1987-03-09 1987-03-09 Process for producing a ceramic material and process for coating of workpieces with this material

Publications (2)

Publication Number Publication Date
DE3707396A1 DE3707396A1 (en) 1988-09-22
DE3707396C2 true DE3707396C2 (en) 1992-11-19

Family

ID=6322536

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873707396 Granted DE3707396A1 (en) 1987-03-09 1987-03-09 Process for producing a ceramic material and process for coating of workpieces with this material

Country Status (1)

Country Link
DE (1) DE3707396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008892B4 (en) 2014-06-12 2019-10-10 Technische Universität Bergakademie Freiberg Process for improving the thermal shock resistance of refractory products

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600787B2 (en) * 1988-04-11 1997-04-16 松下電器産業株式会社 Magnetic recording media
US5288672A (en) * 1988-04-26 1994-02-22 Bayer Aktiensesellschaft Ceramics based on aluminum titanate, process for their production and their use
DE3914010C2 (en) * 1989-04-26 1995-09-14 Osaka Fuji Corp Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
JPH04305054A (en) * 1991-03-29 1992-10-28 Ngk Insulators Ltd Aluminum titanate structure and production thereof
DE4436823C1 (en) * 1994-10-14 1996-05-02 Haldenwanger Tech Keramik Gmbh Support body made of SiC and its use
DE19516790C2 (en) * 1995-05-08 2000-05-18 Haldenwanger Tech Keramik Gmbh Process for minimizing corrosion of ceramic components
JP3489030B1 (en) 2002-04-26 2004-01-19 勉 福田 Method for producing aluminum titanate-based sintered body
FR2933398B1 (en) * 2008-07-04 2011-02-18 Saint Gobain Ct Recherches OXIDE-FILLED GRAINS COMPRISING AL, TI AND MG AND CERAMIC PRODUCTS COMPRISING SUCH GRAINS
FR2947260A1 (en) * 2009-06-26 2010-12-31 Saint Gobain Ct Recherches Etudes OXIDE-FILLED GRAINS COMPRISING AL, IT, SI AND CERAMIC PRODUCTS COMPRISING SUCH GRAINS
FR2948657B1 (en) * 2009-07-28 2013-01-04 Saint Gobain Ct Recherches OXIDE-FILLED GRAINS COMPRISING AL, IT AND CERAMIC PRODUCTS COMPRISING SUCH GRAINS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750290C3 (en) * 1977-11-10 1987-07-09 Hoechst CeramTec AG, 8672 Selb Use of a fired ceramic molded body for the production of metal-ceramic composite bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008892B4 (en) 2014-06-12 2019-10-10 Technische Universität Bergakademie Freiberg Process for improving the thermal shock resistance of refractory products

Also Published As

Publication number Publication date
DE3707396A1 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
DE2750290C3 (en) Use of a fired ceramic molded body for the production of metal-ceramic composite bodies
DE69404164T2 (en) COATED ARTICLES MADE OF GRAPHITE ALUMINUM OXIDE FIREPROOF MATERIAL
DE3707396C2 (en)
DE3914010C2 (en) Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
EP0119499A1 (en) Cylinder head and manufacturing method
DE112007000923B4 (en) Composite material of metal and ceramic, process for its production, its use and energy absorption component
DE1758845B2 (en) PROCESS FOR MANUFACTURING PRECISION CASTING FORMS FOR REACTIVE METALS
DE3638658C1 (en) Heat-insulating lining for a gas turbine
DE3829039C2 (en) Composite component, process for its preparation and its use
EP0615959B1 (en) Fire-resistant or refractory brick for use as tin bath bottom block
DE69024526T2 (en) Ceramic material and process for its manufacture
EP0014236A1 (en) Process for the qualitative treatment of abrasive grains
DE1185775B (en) Process for the production of precision casting molds with lost models
DE68902981T2 (en) MASK MOLDS FOR MOLDING METALS.
DE19605149C2 (en) Process for the production of porous ceramic moldings, moldings made therefrom from titanium dioxide and their uses
DE102005036394B4 (en) Process for the production of a thermal shock and corrosion resistant ceramic material based on a zirconia-free refractory oxide
DE2244773A1 (en) METAL-CERAMIC SHAPED BODY
US2826512A (en) Method of coating and resulting product
DE102009009559B4 (en) Process for extending the service life of technical surfaces
DE2544437B2 (en) Process for the production of silicon nitride-containing objects coated with a self-glaze
EP0742187B1 (en) Ceramic element
EP0101911A2 (en) Thermal shock-resistant ceramic linings
DE3715198C2 (en)
EP0373354B1 (en) Process for the production of moulded ceramic refractory articles
WO2011020832A1 (en) Pressed carbonaceous or carbon-bonded fireproof aluminum oxide products, and method for producing same

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: C04B 35/49

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee