DE3505662A1 - Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben - Google Patents
Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeubenInfo
- Publication number
- DE3505662A1 DE3505662A1 DE19853505662 DE3505662A DE3505662A1 DE 3505662 A1 DE3505662 A1 DE 3505662A1 DE 19853505662 DE19853505662 DE 19853505662 DE 3505662 A DE3505662 A DE 3505662A DE 3505662 A1 DE3505662 A1 DE 3505662A1
- Authority
- DE
- Germany
- Prior art keywords
- gas
- melt
- powder
- nozzle
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/06—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
- B05B7/062—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
- B05B7/066—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Nozzles (AREA)
Description
Verfahren zum Herstellen feinen Pulvers aus geschmolzenem Metall sowie Vorrichtung zum Zerstäuben
Die Erfindung bezieht sich allgemein auf die Herstellung von Pulvern aus einer flüssigen Schmelze durch Zerstäuben und Ver- r\
festigen. Mehr im besonderen bezieht sie sich auf die Herstellung von Materialien, die eine höhere Temperaturbeständigkeit
haben, in fein zerteilter Form durch Flüssigkeitszerstäubung, und sie bezieht sich auf die Vorrichtung zur Durchführung
eines solchen Verfahrens sowie das dabei erhaltene Produkt.
Die Erfindung kann zum Beispiel bei der Herstellung von Pulvern aus Schmelzen von Superlegierungen Anwendung finden.
Es gibt einen gut begründeten Bedarf für ein wirtschaftliches Mittel zum Herstellen von Pulvern aus Superlegierungen. Solche
Pulver können dazu benutzt werden, Gegenstände aus diesen Superlegierungen durch pulver-metallurgische Techniken herzustellen.
Der gegenwärtige industrielle Bedarf an solchen Pulvern nimmt zu und wird weiter zunehmen, da auch der Bedarf an
Gegenständen aus Superlegierungen zunimmt.
Derzeit sind nur etwa 3 % der industriell hergestellten Pulver kleiner als 10 μΐη, und die Kosten für ein solches Pulver
sind entsprechend sehr hoch.
Ein Hauptkostenpunkt der feinen durch Zerstäubung hergestellten und in industriellen Anwendungen brauchbaren Pulver ist
der des bei der Zerstäubung benutzten Gases. Derzeit nehmen die Kosten in dem Maße zu, wie der Anteil an feinem Pulver in
einer zerstäubten Probe zunimmt. Außerdem wird die Menge Gas pro Masseneinheit des erzeugten Pulvers umso größer, je feiner
die herzustellenden Pulver sein sollen. Die bei der Herstellung des Pulvers eingesetzten Gase, insbesondere die
Inertgase, wie Argon, sind sehr teuer.
Es gibt derzeit einen wachsenden industriellen Bedarf an feineren Pulvern. Es besteht daher eine Notwendigkeit, Gaszerstäubungstechniken
und Vorrichtungen dafür zu entwickeln, die die Wirksamkeit der Umwandlung einer geschmolzenen Legierung
in Pulver erhöht und die Menge des benötigten Gases bei der Herstellung von Pulver in einem erwünschten Größenbereich
konstant halten, insbesondere bei sich mehr und mehr verringernder Teilchengröße.
Die Herstellung von feinem Pulver wird durch die Oberflächenspannung
der Schmelze beeinflußt, aus der das feine Pulver hergestellt wird. Für Schmelzen hoher Oberflächenspannung ist
die Herstellung feinen Pulvers schwieriger und erfordert mehr Gas und Energie. Die derzeitige typische industrielle Ausbeute
an feinem Pulver mit einem mittleren Durchmesser von weniger als 37 um aus geschmolzenen Metallen mit hoher Oberflächenspannung
liegt im Bereich von 25 bis etwa 40 Gew.-%.
Feine Pulver mit einer Teilchengröße von weniger als 37 μΐη
werden beim Niederdruck-Plasmasprühen benutzt. Bei der Herstellung
solcher Pulver mit den derzeit verfügbaren industriellen Verfahren müssen 60 bis 75 % des Pulvers als zu groß
ausgeschieden werden. Diese Notwendigkeit, selektiv nur das feinere Pulver zu isolieren und das zu große Pulver auszu-
scheiden, erhöht die Kosten des brauchbaren Pulvers.
Feines Pulver hat auch Anwendungen in dem sich rasch ändernden und wachsenden Gebiet der sich rasch verfestigenden Materialien.
Je größer der Prozentanteil an feinem Pulver, der mit einem Verfahren oder einer Vorrichtung hergestellt werden
kann, umso brauchbarer ist dieses Verfahren oder die Vorrichtung im allgemeinen bei der Technologie der raschen Erstarrung.
Es ist bekannt, daß die Erstarrungsgeschwindigkeit eines geschmolzenen
Teilchens relativ geringer Größe in einer konvektiven Umgebung, wie einer strömenden Flüssigkeit oder einem
Flüssigkeitskörper in etwa proportional dem Kehrwert des Teilchendurchmessers zum Quadrat ist.
Für diese Beziehung gilt daher der folgende Ausdruck
T DoL
worin T die Abkühlungsgeschwindigkeit des Teilchens und D der Teilchendurchmesser ist.
Wenn daher die durchschnittliche Größe des Teilchendurchmessers der Zusammensetzung um die Hälfte verringert wird, dann
erhöht sich die Abkühlungsgeschwindigkeit um einen Faktor 4. Wird der mittlere Durchmesser dann nochmals halbiert, dann
erhöht sich die Gesamtabkühlgeschwindigkeit um das 16fache.
Für einige Anwendungen, insbesondere solche, bei denen die Abkühlungsgeschwindigkeit des Teilchens für die erzielten
Eigenschaften bedeutsam ist, ist es daher erwünscht, Pulver geringer Teilchengröße herzustellen. So gibt es einen Bedarf
für rasch erstarrende Pulver mit einer Teilchengröße von weniger als 37 um und insbesondere für die Herstellung solcher
Pulver in einer wirtschaftlichen Weise.
Für gewisse Anwendungen ist es auch wichtig, Teilchen zu haben, die ein enges Spektrum von Teilchengrößen aufweisen.
Wenn für gewisse Anwendungen Teilchen einer Größe von 100 μπι
erwünscht sind, dann hätte ein Verfahren, das die meisten Teilchen im Bereich von 80 bis 120 μπι erzeugt, für viele Anwendungen
solcher Teilchen einen deutlichen Vorteil gegenüber einem Verfahren, das die meisten Teilchen im Bereich
von 60 bis 140 um erzeugt. Es gibt also auch einen deutlichen
wirtschaftlichen Vorteil, wenn man in der Lage ist, Pulver herzustellen, die eine bekannte oder vorhersagbare
mittlere Teilchengröße sowie einen solchen Teilchengrößenbereich aufweisen.
Die vorliegende Erfindung verbessert die Möglichkeit zur Herstellung
eines solchen Pulvers in industriellem Maßstab.
Werden mit einem ersten Verfahren aus einer gegebenen Metallschmelze
für eine gegebene Anwendung Teilchen von 100 μπι Größe hergestellt, und lernt man dann Teilchen mit einer
mittleren Größe von 50 μπι herzustellen, dann gestattet dieses zweite Verfahren eine sehr viel raschere Abkühlung und
Erstarrung der aus der gleichen Metallschmelze hergestellten Teilchen.
Die vorliegende Erfindung lehrt ein Verfahren, mit dem kleinere Teilchen in einem höheren Prozentsatz aus Schmelzen
einschließlich Metallschmelzen hergestellt werden können. Das neue Verfahren gestattet daher eine raschere Erstarrungsgeschwindigkeit solcher Teilchen, teilweise deshalb, weil die
erzeugten Teilchen im Mittel kleiner sind und auch weil die Herstellung in einem industriellen Maßstab reproduzierbar
ist.
Das Herstellen einer kleinen Teilchengröße ist für das rasche Abkühlen und den Nutzen, den man aus einem raschen
Abkühlen gewisser geschmolzener Materialien zieht, vorteilhaft. Es können auf diese Weise neue Eigenschaften amorpher
Materialien erhalten werden. Die vorliegende Erfindung ermöglicht die Herstellung von Pulvern mit einer solchen geringen
Teilchengröße verbunden mit dem raschen Abkühlen.
Die Pulvermetallurgie-Technologie hat derzeit einen Bedarf an feinen und sehr feinen Teilchen sowie an Teilchen im
Größenbereich von 10 bis 37 um Durchmesser. Durch das Verfahren der vorliegenden Erfindung werden Teilchen mit einer
mittleren Teilchengröße im Bereich von 10 bis 37 μπι hergestellt.
Die Herstellung geringerer Teilchengrößen kann beim Pressen des Materials in der Pulvermetallurgie von Bedeutung sein,
da beobachtet wurde, daß Pulver mit einer geringeren Teilchengröße zu einer höheren Sintergeschwindigkeit führen kann.
Es kann beim Pressen des Materials geringer Teilchengröße mit einem Material größerer Teilchengröße auch von Bedeutung
sein, wo ein solches Zusammenpressen aufgrund der höheren Packungsdichte erwünscht ist.
Die derzeitigen Trends in der Pulvermetallurgie verursachen ein großes Interesse an feinen Metallpulvern, d.h. an Pulvern
mit Durchmessern von weniger als 37 um sowie an ultrafeinen
Pulvern, insbesondere Pulvern mit einem Durchmesser von weniger als 10 \im. Eine hohe Oberflächenspannung in
einer Schmelze macht die Herstellung kleinerer Teilchen schwieriger.
übliche Vorrichtungen zum Herstellen von Pulver aus geschmolzenen
Metallen durch Zerstäuben ergeben Produkte, die in Abhängigkeit vom Herstellungsverfahren und den Materialien ein
relativ weites Spektrum von Teilchengrößen aufweisen. Das breite Spektrum der Teilchengrößen wird in Fig. 3 durch die
Kurven A, B, C und D repräsentiert. Eine Betrachtung dieser Kurven ergibt, daß sich die Teilchengrößen über den ganzen
Bereich von weniger als 10 um bis zu mehr als 100 um erstrecken.
Der Anteil der feinen Teilchen, d.h. der mit einem
mittleren Durchmesser von weniger als 37 um, der nach der konventionellen Technologie erhalten wird, liegt im Bereich
von etwa 0 bis 40 % und der Prozentanteil an ultrafeinem Pulver, d.h. weniger als 10 um groß, liegt im Bereich von
etwa 0 bis 3 %. Wegen der geringen Ausbeute an Pulver geringerer Teilchengröße, das in solchen Produkten vorhanden
ist, können die Kosten für die Herstellung ultrafeinen Pulvers außerordentlich hoch sein und im Bereich von mehreren
100 und sogar mehreren 1000 Dollar pro 500 g liegen.
Die Kurven der Fig. 3 und beispielhaft die Kurve E der Fig. 3 zeigt, daß der Teilchengrößenbereich, der durch die erfindungsgemäßen
Verfahren erhalten wird, wenn man dieses zur Herstellung feinen Pulvers ausführt, deutlich besser ist als
der Teilchengrößenbereich der vorhandenen üblichen Verfahren. Die Daten der Kurven A, B, C und D der Fig. 3 beruhen auf
einem Artikel von H. Lawly, "Atomization of Specialty Alloy Powders", der im Januar 1981 im "Journal of Metals" erschien.
Die in dem Artikel im "Journal of Metals" enthaltenen Daten für die Kurven A, B, C und D gelten für Pulver, die aus
Schmelzen von Superlegierungen erhalten wurden. Die Daten, auf denen die Kurve E beruht, stammen ebenfalls von der Pulverherstellung
aus einer Superlegierungsschmelze, so daß diese beiden Sätze von Daten gut vergleichbar sind.
Es ist bekannt, daß es große Unterschiede bei der Leichtigkeit gibt, mit der Pulver aus verschiedenen Legierungsfamilien
hergestellt werden können.
Die Proben der Fig. 3 enthalten typische Teilchengrößenverteilungen
für Superlegierungspulver, die nach verschiedenen Zerstäubungstechniken hergestellt worden sind. So ist die
Kurve A für ein mit Argongas zerstäubtes Pulver erhalten. Die Kurven B, C und D wurden für Pulver erhalten, die nach
dem Verfahren mit rotierender Elektrode, dem Verfahren mit rascher Erstarrungsgeschwindigkeit bzw. der Vakuumzerstäubung
erhalten wurden.
Der schraffierte Bereich, der durch die Kurven E und F begrenzt ist, zeigt den Bereich von Pulver-Teilchengrößenverteilungen
an, die mit der vorliegenden Erfindung erhalten werden, wenn diese zur Herstellung eines feinen Pulvers ausgeführt
wird.
Aus den verschiedenen Kurven der Fig. 3 ergibt sich, daß das mit dem erfindungsgemäßen Verfahren und unter Einsatz
der erfindungsgemäßen Vorrichtung hergestellte Pulver einen Bereich von Teilchengrößen und kumulativen Teilchengrößen
aufweist, der sehr viel geringer ist, als der von Pulvern, die nach üblichen Verfahren hergestellt wurden, insbesondere
Pulvern im Bereich der kleineren Teilchengrößen von etwa 60 um oder weniger.
Der schraffierte Bereich der Fig. 3 zwischen den Kurven E und F ist eine Umgrenzungslinie, die den Bereich der graphischen
Darstellung zeigt, in dem die Pulverprodukte nach den Verfahren und Techniken der vorliegenden Erfindung zur Herstellung
feiner Pulver erhalten werden können.
Aus dieser Darstellung wird deutlich, daß das erfindungsgemäße Verfahren es ermöglicht, Pulver mit 10 bis 37 % der
Teilchen mit einer Teilchengröße von 10 um und darunter sowie
Pulver herzustellen, von denen kumulativ zwischen 44 und 70 % der Teilchen unterhalb einer Größe von 37 μΐη liegen.
Mit den erfindungsgemäßen Verfahren und der Vorrichtung dazu können höhere Ausbeuten an feinem Pulver erhalten werden als
mit anderen Gaszerstäuburigsverfahren und Vorrichtungen dafür,
da die Durchführung der Erfindung für eine wirksamere übertragung der Energie des zerstäubenden Gases zum zerstäubenden
flüssigen Metall sorgt. Ein Weg, auf dem diese verbesserte Herstellung von feinen Pulvern bewerkstelligt worden ist,
besteht darin, den Schmelzstrom in eine bisher nicht dagewesene enge Nachbarschaft mit der zerstäubenden Gasdüse zu
bringen. Diese enge Nachbarschaft der Gasdüse zur öffnung für
den Schmelzstrom wird in der vorliegenden Anmeldung als "enges Kuppeln" bezeichnet. Die Vorteile des Prinzips des
engen Kuppeins sind in der Literatur, wie sie weiter unten diskutiert ist, erkannt worden. Bis jetzt hat jedoch noch
keine Erfindung die Anwendung dieses Prinzips auf bei hoher Temperatur schmelzende Materialien gestattet. Dies liegt
zumindest zum Teil an dem Problem des Anwuchses der erstarrten Hochtemperatürschmelze an der zerstäubenden Gasdüse sowie
an anderen Stellen auf der Zerstäubungsvorrichtung.
Ein Hauptproblem im Zusammenhang mit den Gaszerstäubungsdüsen
und Verfahren nach dem Stand der Technik war die Erstarrung von Flecken und Kügelchen aus der zerstäubten
hochschmelzenden Legierung auf den Oberflächen der Düse. Der sich ergebende Aufbau auf der Düse hat manchmal zur Beendigung
des Zerstäubungsverfahrens geführt. Diese Beendigung ergab sich aus einem Verschluß der öffnung, durch die
die Schmelze gegossen wird oder durch eine zumindest teilweise Ablenkung der zerstäubenden Gase von einem direkten
Auftreffen bei hoher Energie auf den austretenden Strom des flüssigen Metalles. In schweren Fällen hat der Aufbau des
festen Niederschlages auf der Düsenspitze das Abbrechen dieses Niederschlages von der Düse verursacht. In einem solchen
Falle war das Ergebnis manchmal eine Verunreinigung des gebildeten Pulvers mit Material von der Düse oder dem System
zur Lieferung der Schmelze.
In der üblichen Vorrichtung wird das Problem des Aufbaus
erstarrten hochschmelzenden Materials an der Gasdüse oder der öffnung für das geschmolzene Metall dadurch gelöst, daß
man die Gasdüse ziemlich weit weg von der Zerstäubungsregion hält, wie weiter unten detaillierter erläutert wird.
Die Probleme eines fortschreitenden Anwuchses zahlreicher Flecken und Kügelchen aus erstarrter Schmelze auf der zerstäubenden
Düse sind am ausgeprägtesten für die Schmelzen sehr hoher Temperatur und insbesondere für die geschmolzenen
Metalle, die hohe Schmelztemperaturen haben.
Es gibt viele Unterschiede zwischen den Praktiken, die bei Tieftemperatur-Materialien benutzt werden können, um durch
Auftreffen von Gasströmen auf Flüssigkeitsströme zu zerstäuben und den Erscheinungen die bei höheren Temperatur auftreten.
Im allgemeinen kann die Idee eines Sprühnebels bei tiefer Temperatur Materialien einschließen, die bei Zimmertemperatur
flüssig sind sowie solche Materialien, die bei Temperaturen bis zu etwa 3000C flüssig werden. Die Zerstäubung
von Materialien bei diesen tieferen Temperaturen und insbesondere von Materialien, die bei Zimmertemperatur flüssig
sind, ist nicht im entferntesten zu dem Grade von einem Verschluß der Sprühdüse durch erstarrtes Metall begleitet,
wie dies bei hochschmelzenden Metallen oder anderen Hochtemperaturmaterialien der Fall ist. Der Anwuchs von Material
tieferer Temperatur an einer Zerstäubungsdüse führt nicht zur Zerstörung der Elemente der Düse. Auch gibt es bei den tieferen
Temperaturen sehr viel weniger Reaktion und Wechselwirkung zwischen dem zerstäubten Metall und dem Schmelzausgaberohr
oder den Materialien anderer Teile der Zerstäubungsdüse. Ein Schmelzzuführungsrohr aus Metall kann benutzt werden,
um Materialien bei oder unterhalb 3000C zu zerstäuben. Für die höhere Temperatur von 10000C, 15000C, 20000C und
darüber müssen jedoch keramische Ausgabesysteme benutzt werden.
Ein anderer Unterschied besteht darin, daß der thermische Gradient durch die Wandung des Schmelzausgaberohres von der
Schmelze zum zerstäubenden Gas hin in dem Maße zunimmt, in dem die Temperatur der zu zerstäubenden Schmelze zunimmt.
Für ein Zerstäubungssystem konstanter Geometrie ist eine stärkere Gasströmung für eine heißere Schmelze erforderlich,
da eine größere Wärmemenge entfernt werden muß. Eine größere Gasmenge pro Einheitsvolumen der zu zerstäubenden Schmelze
kann eine größere Neigung zum Spritzen und Spratzen der Schmelze in der Vorrichtung verursachen. Ist die Schmelze
sehr heiß, in der Größenordnung von 10000C oder mehr, dann
kann ein Tropfen an einer Oberfläche tieferer Temperatur augenblicklich erstarren und haften. Bei den höheren Tempera-
türen sind die Materialien chemisch aktiver und können festere
Bindungen an Oberflächen bilden, mit denen sie in Kontakt geraten als geschmolzene Materialien bei tieferen Temperaturen.
Obwohl die Anmelderin durch die Genauigkeit der im folgenden gegebenen Beschreibung nicht gebunden werden möchte, wird es
doch für hilfreich angesehen, zur Erläuterung der Art der vorliegenden Erfindung, eine allgemeine Beschreibung der Zerstäubungsmechanismen
zu geben, auf die Bezug genommen wurde und die mit Bezug auf den Stand der Technik beschrieben worden
sind. Weiter soll eine graphische Darstellung der Erscheinung gegeben werden, die bei der Zerstäubung nach dem Stand
der Technik stattfindet.
Zu diesem Zweck wird auf Fig. 4 Bezug genommen, in der die Erscheinung einer Zerstäubung nach dem Stand der Technik dargestellt
ist, wie sie nach eigenem Verstehen bei den Verfahren nach dem Stand der Technik aufgetreten ist.
In dieser Fig. 4 sind zwei Gasöffnungen 30 und 32 in einer
Weise mit Bezug auf einen Schmelzstrom 34 angeordnet, wie sie nach dem Stand der Technik üblich war. Im besonderen sind
die Gasdüsen 30 und 32 in einem Abstand von dem Schmelzstrom angeordnet und sie haben einen solchen Winkel" dazu, daß sie
in einem beträchtlichen Abstand von den Düsen auf den Schmelzstrom gerichtet sind. Die Fig. 4 ist etwas schematisch und
es sollte klar sein, daß die Düsen 30 und 32 tatsächlich auch eine einzige ringförmige Düse bilden können, die die Vorrichtung
zur Ausgabe der Schmelze umgibt und daß ihnen das Gas aus einer üblichen Gaskammer zugeführt werden kann. Die Vorrichtung
36 zur Ausgabe der Schmelze ist auch in schematischer Form gezeigt.
In dem Stand der Technik ist die Erscheinung der Bildung eines umgekehrten Hohlkegels im Schmelzstrom erkannt worden,
während er in den Bereich gelangt, in dem das Gas der Ströme 30 und 32 zutritt. Der Punkt des Zusammenfließens 38 ist der
Punkt, an dem die beiden zentralen Linien der beiden Gasströme sich treffen könnten, wenn es zwischen ihnen keine Interferenz
gäbe. Sie wirken jedoch auf den herunterkommenden Schmelzstrom ein und Teil dieser Aktion ist die Bildung des umgekehrten
Hohlkegels, wie er bei 40 in der Fig. 4 dargestellt ist.
Die nächste Erscheinung, die beim üblichen Zerstäubungsverfahren auftritt, ist das Aufreißen der Kegelwand in Bänder oder
Kugeln der Schmelze. Diese Erscheinung tritt in der Zone 42 in Fig. 4 auf.
Als nächste Erscheinung im konventionellen Zerstäuben ist das Aufbrechen oder Zerstäuben der Bänder in Tröpfchen festzustellen.
Dies ist in der Fig. als allgemein in der Zone unterhalb der geschehend dargestellt, in der die Bänder gebildet werden.
Die einzelnen Tröpfchen oder Teilchen sind als aus größeren Tropfen oder Kugeln gebildet dargestellt.
Nach dieser schematischen Darstellung ist die konventionelle Zerstäubung ein Mehrstufenprozess mit mehreren Erscheinungen,
deren erste die Bildung des umgekehrten Kegels, deren zweite das Aufreißen der Kegelwand in die Bänder und deren dritte
das Aufreißen der Bänder in Tröpfchen ist.
Hinsichtlich der Tröpfchenbildung kann der vorliegenden Beschreibung
entnommen werden, daß es in dem Sinne eine sekundäre Erscheinung ist als ein sehr hoher Prozentsatz der Tröpfchen
durch Zerreißen der Bänder oder Kugeln gebildet wird.
Die klarste Arbeit hinsichtlich der entfernt gekuppelten Zerstäubung flüssiger Metalle, die in der technischen Literatur
zitiert ist, hat den Titel "The Disintegration of Liquid Lead Streams by Nitrogen Jets" und sie stammt von J. B. See,
J. Rankle und T. B. King und ist veröffentlicht in "Met. Trans.*£, 2669 bis 2673 (1973). In dieser Arbeit sind die
Zerstäubungserscheinungen auf der Grundlage von Studien beschrieben, die mit Hilfe der Geschwindigkeitsphotographie
vorgenommen wurden.
Bei dem erfindungsgemäßen Verfahren findet eine stark verminderte sekundäre Teilchenbildung statt, und es hat einen
sehr hohen Grad der direkten primären Teilchenbildung unmittelbar aus der Schmelze und ohne die Notwendigkeit durch
eine zweite Stufe der Zerteilung der Schmelze zu gehen, wie dies schematisch in der Fig. 4 dargestellt und oben beschrieben
ist.
Um zu vermeiden, daß solche Hochtemperatur-Tröpfchen an dem Teil der Vorrichtung haften, die durch den Mechanismus zur
Gaszuführung gekühlt werden, hat die Vorrichtung zum Zerstäuben bei hoher Temperatur das Gas aus einem Strahl oder mehreren
Strahlen zugeführt, die sich relativ entfernt von der Oberfläche des Stromes befinden, auf den die Strahlen auftreffen.
Befindet sich die Düse entfernt von dem Zerstäubungsbereich, dann findet eine beträchtliche Energieverminderung des Gases
statt, während es sich von der Düse, aus der es austritt, zu dem Auftreffpunkt auf das zu zerstäubende flüssige Metall befindet.
Auf dem Wege von der Düse zum Schmelzstrom erleidet das Gas beträchtliche Diffusions- und Mitführverluste. Der
Energieverlust wurde zu mehr als 90 % der anfänglichen Energie für bestimmte Ausführungsformen der Vorrichtung zum Zerstäuben
von geschmolzenem Metall geschätzt, wie sie derzeit im Gebrauch sind. Die Verfahren, die Gasstrahlen benutzen,
die von einem Punkt entfernt vom Kontakt mit dem Strom oder Körper aus geschmolzenem Material ausgehen, der zu zerstäuben
ist, sind daher hinsichtlich der Nutzung des Gases unwirtschaftlich, da viel Gas erforderlich ist, um den Energieverlust
zu überwinden, der in dem Gasstrahl auftritt, bevor dieser den Strom aus geschmolzenem Metall trifft.
Ein solches entferntes Kuppeln eines Schmelzstromes mit öffnungen
für die Zuführung zerstäubenden Gases ist in den US-PSen 4 272 463, 3 588 951, 3 428 718, 3 646 176, 4 080 126,
4 191 516 und 3 340 338 dargestellt und beschrieben, obwohl es in diesen Schriften nicht als entferntes Kuppeln beschrieben
ist.
Der Einsatz von Düsen aus Metall und sogar Kunststoff, die
den Gasstrahl in sehr enger Nachbarschaft zu dem Rohr oder der öffnung haben, durch das die Flüssigkeit zugeführt wird,
war bereits bekannt. So kann zum Beispiel die Zerstäubung von Flüssigkeit bei Zimmertemperatur ohne ernstes Erstarren
und Aufbauen der Flüssigkeit auf der Düse ausgeführt werden. Einige Farbsprühdüsen haben zum Beispiel diese Konstruktion.
In dem Buch "The Production of Metal Powders by Atomization" von John Keith Beddow , Hayden Publishers, wird auf Seite 45
auf verschiedene Ausführungen von Düsen für die Herstellung von Pulvermetall aus einem Strom flüssigen Metalles Bezug genommen.
Eine solche Zerstäubung schließt eine Zerstäubung mit Gas bei hoher Temperatur ein.
Die Beddow-Düsen sind ringförmige Düsen, da sie eine zentrale öffnung für die Entwicklung und Ausgabe eines Stromes flüssi-Metalles
haben. Das Gas tritt aus einer ringförmigen öffnung als ringförmiger Gasstrahl aus, der die zentrale öffnung umgibt.
Die Beddow-Düsen haben eine oberflächliche Ähnlichkeit mit der in Fig. 1 dargestellten Düse. Das Problem des Aufbaus
erstarrten Materials auf ringförmigen Düsen, wie sie in dem Buch von Beddow gezeigt sind, wird unterhalb der Figuren auf
Seite 45 des Buches folgendermaßen geschildert: "Ein wesentliches Problem bei ringförmigen Düsen ist das des
'Aufbaues' auf dem metallischen Düsenkörper. Dies wird durch
Spritzen geschmolzenen Metalles auf die Innenseite der Düse, insbesondere nahe dem Rand am Boden verursacht. Diese Metallspritzer
erstarren, es wächst mehr flüssiges Metall an und in einem späteren Stadium dieses Verfahrens bringt der
Luftstrom das heiße angesammelte Metall zum Zünden. Auf diese Weise kann die Bedienungsperson einen Düsenblock ziemlich
leicht verlieren."
Obwohl daher eine solche Düsenausführung bekannt war, haben die Praktiker nach dem Stand der Technik dieses von Beddow
erwähnte Problem bei der Gaszerstäubung von Hochtemperatur-Material und speziell von solchen Metallen, nicht überwinden
können.
Andere Informationsquellen hinsichtlich der Konfiguration von Düsen zur Verwendung in der Zerstäubungstechnologie sind
US-Patentschriften. So ist in der US-PS 2 997 245 ein Verfahren zum Zerstäuben flüssigen Metalles beschrieben, das
sogenannte "Schockwellen" benutzt.
In der US-PS 3 988 084 ist ein Schema zum Erzeugen eines dünnen Metallstromes auf einem hohlen umgekehrten Kegel und
das Abfangen des Stromes durch einen ringförmigen Gasstrahl beschrieben. In dem Schema der US-PS 3 988 084 wird der zerstäubende
Gasstrahl nur gegen eine Seite des Kegels aus geschmolzenem Metall gerichtet, d.h. auf das Äußere des Kegels,
und es wird kein Gas gegen die andere Seite des Kegels aus geschmolzenem Metall gerichtet, d.h. gegen die Innenoberfläche
des Kegels aus geschmolzenem Metall.
Bei gewissen Ausführungsformen des erfindungsgemäßen Verfahrens wird das zerstäubende Gas gegen alle Oberflächen des
Schmelzströmes gerichtet.
Der umgekehrte Kegel der US-PS 3 988 084 ähnelt dem umgekehrten Kegel,der während der konventionellen Zerstäubung
durch entfernt gekuppeltes Gas gebildet wird, wie er oben beschrieben ist, bei dem das Gas nur auf eine Seite des
flüssigen Metalles an der Unterkante des umgekehrten Kegels einwirkt. Das Band aus flüssigem Metall erweitert sich über
den umgekehrten Kegel zu seiner Kante und das Gas spült Metall von dieser Kante in einen hohlen konvergierenden Konus.
Der Erfinder der vorliegenden Anmeldung hat eine These mit dem Titel "The Production and Consolidation of Amorphous
Metal Powder" verfaßt und diese dem Department of Mechanical Engineering an der Northeastern University, Boston, Massachusetts
im September 1980 vorgelegt. Diese These beschreibt den Einsatz einer ringförmigen Gasdüse mit einer keramischen
Metallzufuhrdüse und/oder einer solchen aus Graphit. In dieser These wird von Verbesserungen hinsichtlich der Herstellung
von Pulver mit einem höheren Anteil an feinem Pulver
durch Zerstäubung geschmolzenen Metalles mit einem ringförmigen Gasstrahl berichtet.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, feines Metallpulver direkt aus dem flüssigen Zustand herzustellen,
ohne daß ein sekundäres Verfahren benutzt werden muß, wie das Kommutieren oder anderes Aufteilen von Material, das anfänglich
in einem Band oder einer Folie oder einem Streifen aus ähnlich festem Zustand gebildet wird. Es soll ein Pulver aus
einer Schmelze mit einem beträchtlich höheren Anteil an feinen Teilchen hergestellt werden. Das Pulver soll direkt hergestellt
werden und eine gleichmäßigere Teilchengröße aufweisen. Die Gaszerstäubung zur Herstellung des Pulvers soll wirksamer
sein. Die Pulverherstellung soll zu geringen Kosten aus Schmelzen hoher Temperatur ermöglicht werden. Dabei soll auch
der Anwuchs der Schmelze auf der Zerstäubungsvorrichtung begrenzt werden. Der Zerstäubungsvorrichtung soll der kontinuierliche
Einsatz ermöglicht werden.
Eine weitere Aufgabe ist die Schaffung eines Verfahrens und
einer Vorrichtung zur Durchführung des Verfahrens, die eine effizientere Herstellung von Pulver erwünschter Teilchengröße
durch Gaszerstäubung gestatten. Weiter sollen brauchbare Gegenstände
aus Pulver geschaffen werden, die aus Legierungen stammen, die man mit konventionellen Techniken nicht zu
brauchbaren Gegenständen verarbeiten kann. Es soll die Herstellung von Pulver durch rasche Erstarrungstechniken ermöglicht
werden, um diese zur Herstellung neuer Gegenstände einzusetzen.
Eine weitere Aufgabe ist die Schaffung eines neuen Pulvers aus einer Schmelze durch Gaszerstäubung in wirtschaftlicher
Weise.
Eine weitere Aufgabe ist die Schaffung einer Zerstäubungsdüse und eines -Verfahrens, die selbstreinigend sind. Die Düse soll
eine lange Gebrauchsdauer haben und wiederverwendbar sein. Die Düse soll nicht so stark wie bekannte Düsen dem Anwuchs und
dem Angriff durch flüssige Metalle ausgesetzt sein. In einem seiner breiteren Aspekte löst die vorliegende Erfindung
diese Aufgaben durch Schaffung eines Rohrs zur Zuführung
der Schmelze direkt zur Zerstäubungszone, durch Zuführung des
zerstäubenden Gases zur Zerstäubungszone aus mindestens einer Gasöffnung in unmittelbarer Nähe zu dieser Zone und durch Ausbilden
der Oberflächen der Vorrichtung, die Spritzern aus dieser Zone ausgesetzt sind, aus Bornitrid.
Im folgenden wird die Erfindung unter Bezugnahme auf die
Zeichnung näher erläutert. Im einzelnen zeigen:
Zeichnung näher erläutert. Im einzelnen zeigen:
Fig. 1 eine vertikale Schnittansicht einer Ausführungsform
einer Gaszerstäubungsdüse zum Einsatz in der vorliegenden Erfindung,
Fig. 2 eine detaillierte Darstellung der Zerstaubungsspitze
wie in Fig. 1, die gewisse Abmessungen A und B
illustriert,
illustriert,
Fig. 3 eine graphische Darstellung verschiedener Parameter, die zur Teilchengrößenverteilung der kumulativen
Fraktion von Teilchen in Pulverproben in Beziehung stehen, die nach verschiedenen Verfahren erhalten
wurden, und
Fraktion von Teilchen in Pulverproben in Beziehung stehen, die nach verschiedenen Verfahren erhalten
wurden, und
Fig. 4 eine schematische Darstellung der Erscheinungen beim Zerstäuben nach dem Stand der Technik.
In Fig. 1 ist im Vertikalschnitt eine Ausführungsform einer
Zerstäubungsdüse 10 nach der vorliegenden Erfindung gezeigt. Bei der Ausführung der vorliegenden Erfindung können zahlreiche
Modifikationen an der Ausführungsform der Zerstäubungsdüse vorgenommen werden, wie an ———
anderer Stelle in dieser Beschreibung erläutert.
Die gezeigte Düse 10 hat eine innere keramische Auskleidung 12 mit einem oberen Endstück 14, in das das zu zerstäubende
flüssige Metall eingeführt wird, sowie ein unteres Endstück 16, aus dem das zu zerstäubende Metall als herabfallender
Strom austreten kann. Das untere Ende ist mit einer unteren Spitze 17 mit einer abgeschrägten äußeren Oberfläche 18 in Form
eines umgekehrten Kegelstumpfs versehen. Das an dem Endstück 16 aus dem Rohr 12 austretende geschmolzene Metall wird durch
Gas aus einem ringförmigen Gasöffnungsabschnitt der Düse 10 weggespült. Der ringförmige Gasstrahl besteht aus Gas, das
aus einer Kammer 20 durch eine öffnung 22 nach unten strömt/ die zwischen einer inneren abgeschrägten Oberfläche 24 und
der umgekehrt konischen oder abgeschrägten Oberfläche 18 des Metallzuführungsrohres 12 gebildet ist. Die ringförmige öffnung
22 für den Austritt von Gasstrahlen kann Oberflächen haben, die abgeschrägt ausgebildet sind, um sie allgemein an
die abgeschrägte Oberfläche 18 der Auskleidung 12 anzupassen. Die öffnung 22 kann daher durch die äußere, abgeschrägte
Oberfläche 18 der Auskleidung 12, die entsprechend abgeschrägte Oberfläche 26 des oberen Teiles der ringförmigen Gaskammer
20 und die gegenüberstehende Oberfläche 24 auf der Platte 32, die den unteren Verschluß der Kammer 20 bildet, bestimmt werden.
Die untere Oberfläche 18 der Auskleidung 12 bildet eine Seite eines schmalen Steges 19. Die andere Seite des Steges 19
wird durch die Schmelzöffnung 15 gebildet, die auch in 12 enthalten
ist.
Durch Zuführen eines Gases unter hohem Druck durch die Gasleitung 30 von einer nicht-gezeigten Quelle tritt das Gas in die
ringförmige Kammer 20 ein und tritt durch die ringförmige Gasöffnung 22 aus, um auf den Strom aus geschmolzenem Metall aufzutreffen,
der durch das Rohr 12 nach unten strömt und bei der Spitze 17 aus dem unteren Endstück 16 der Auskleidung 12 austritt.
Die Austrittsoberfläche 24 kann geeigneterweise auf der Innenkante
einer Verschlußplatte 32 für die Kammer 20 gebildet sein.
Die Platte 32 kann ein Außengewinde tragen, um ihr Einschrauben
in die untere Schraubkante 36 einer Seitenwand 34 der Kammer 20 zu gestatten. Das Anheben und Absenken der Platte
durch Drehen, um ihre Innenkante weiter in die Kammer 20 hinein- oder aus der Kammer 20 herauszuschrauben, hat die Wirkung des
Bewegens der Oberfläche 24 mit Bezug auf die Oberfläche 18 und entsprechend ein öffnen oder Schließen der ringförmigen Öffnung
22 sowie des Anhebens dieser Öffnung mit Bezug auf die untere Spitze 17 des Schmelzzuführungsrohres 12.
Das Kammergehäuse 34 besteht aus einem ringförmigen Oberteil mit einer integral daran angeformten vorspringenden inneren
Kante 40. Ein ringförmiger Kegel 42, der geeigneterweise aus Keramik oder Metall bestehen kann, ist Teil des Schmelzzuführungsrohres
12, und dieser Kegel wird durch den Flansch 44 des Schelfs 40 abgestützt. Die Gestalt der äußeren Oberfläche 26
des Kegels 42 ist von Bedeutung bei der Bildung der inneren ringförmigen Oberfläche der Kammer 20, aus der Gas der ringförmigen
Öffnung 22 zugeführt wird. Die äußere Oberfläche 26 des Kegels 42 kann mit der äußeren konischen Oberfläche 18 des
unteren Endes des Rohres 12 ausgerichtet sein, so daß die beiden Oberflächen eine kontinuierliche konische Oberfläche bilden,
entlang der das Gas aus der Kammer 20 strömt, wenn es durch die ringförmige Öffnung 22 austritt.
Außer der unteren Spitze 17 und einer äußeren unteren Oberfläche 18, die an die innere Oberfläche 26 des ringförmigen Kegels 42
angepaßt ist, hat das Rohr 12 auch einen Mittelflansch 46, der es gestattet, die vertikale Anordnung des Rohres genau zu bestimmen
und das Rohr mit Bezug auf die Düse 10 und die konische Oberfläche 26 einzustellen.
Ein oberer Ring 48 weist einen inneren nach unten gerichteten Vorsprung 50 auf, der auf den Flansch 46 drückt und Rohr und
Kegelteile der Vorrichtung in genauer Ausrichtung hält.
Die Mittel, um die Düsenbaueinheit in der Vorrichtung, in der geschmolzenes Metall zerstäubt wird, zu halten, sind üblich
und bilden keinen Teil der vorliegenden Erfindung.
Die Konfiguration und Form der Gasöffnung, die bei der Durchführung
der vorliegenden Erfindung brauchbar ist, ist nicht auf die in Fig. 1 dargestellte Ausführungsform beschränkt.
Für gewisse Anwendungen kann eine Düse in Form einer Laval-Düse bevorzugt sein, um die Expansion des aus der Öffnung 22
der Düse der Fig. 1 austretenden Gases zu steuern.
Außerdem braucht der ringförmige Gasstrahl nicht nur durch eine ringförmige Öffnung gebildet werden, obwohl eine solche
Öffnung bevorzugt ist. Der ringförmige Strahl kann auch durch einen Ring einzelner rohrförmiger Düsen erzeugt werden, die
jede gegen die Schmelzoberfläche gerichtet sind. Das Gas eines solchen Ringes kann einen einzelnen ringförmigen Gasstrahl bilden,
wenn das Gas der einzelnen Düsen an oder nahe der Schmelzoberfläche konvergiert.
Außerdem ist auch der Winkel, in dem das Gas von der Gasöffnung gegen die Oberfläche des Schmelzstromes gerichtet wird,
nicht auf den in der Figur gezeigten Winkel beschränkt. Während einige Winkel für gewisse Kombinationen von Düsenausführungsform
und zu zerstäubender Schmelze benutzt wurden, ist es bekannt, daß die Zerstäubung mit Auftreffwinkeln vom Bruchteil
eines Grades bis zu 90° bewerkstelligt werden kann. In der vorliegenden Erfindung wurde festgestellt, daß bei einer Düse, wie
sie in Fig. 1 veranschaulicht ist, ein Auftreffwinkel von 22° sehr wirksam bei der Herstellung höherer Konzentrationen feineren
Pulvers ist und damit wirksamer als die Verfahren nach dem Stand der Technik.
Bei vielen zerstäubten Metallen ergibt ein rascher erstarrtes Tröpfchen oder Teilchen eine Verbesserung hinsichtlich einiger
Eigenschaften verglichen mit einem langsamer abgekühlten Teilchen. Wie oben erläutert nimmt die Erstarrungsgeschwindigkeit
mit abnehmender Teilchengröße zu. Ein feineres Pulver hat daher als zusätzlichen Vorteil höhere Erstarrungsgeschwindigkeiten.
Feineres Pulver hat aber auch noch andere Vorteile gegenüber üblichen Materialien.
Bei höheren Erstarrungsgeschwindigkeiten beobachtet man eine sehr starke Abnahme der Segregation der Bestandteile einer
Legierung, aus der das Teilchen besteht. So kann die Abnahme der Segregation den beginnenden Schmelzpunkt der Legierung
erhöhen. Der beginnende Schmelzpunkt wird im wesentlichen deshalb erhöht, weil das erfindungsgemäße Verfahren eine homogene
Kernbildung ermöglicht, was im wesentlichen bedeutet, daß die Erstarrung tatsächlich augenblicklich stattfindet, so daß
die erstarrte Front rasch ohne Auftreten einer Segregation durch das flüssige Material wandert. Das Ergebnis ist eine
homogene Struktur. Das Erhalten einer homogenen Struktur vermindert den Unterschied zwischen der Liquidustemperatur und
der Solidustemperatur der Legierung und schließlich können sie sich einander nähern. Der Nutzen davon ist, daß schließlich
das beginnende Schmelzen bei der Solidustemperatur stattfindet. Diese wurde erhöht, und somit hat sich auch die potentielle
Betriebstemperatur der Legierung erhöht. Mit auf diese Weise hergestelltem Pulver kann man mit den derzeit existierenden
Verdichtungstechniken ein erfolgreiches Verdichten mit verbesserten Eigenschaften erhalten.
Versucht man ein rasch erstarrtes, feines, amorphes Pulver mit den in der Vergangenheit benutzten Techniken zu verdichten und
kommt dabei über die Übergangstemperatur, dann kristallisiert das Material. Bei den meisten amorphen Legierungen kann man
daher nicht das Material verdichten und die amorphe Struktur beibehalten. Einige amorphe Legierungen wurden verdichtet,
doch bleiben die Superlegierungen in der rasch erstarrten Form kristallin, und es sind einige nützliche oder verbesserte Eigenschaften
in dem verdichteten Material beobachtet worden, insbesondere in rasch erstarrten Werkzeugstählen.
Wenn man bei einer Probe eines sehr fein zerteilten Pulvers die Wirkungen der Abkühlungsgeschwindigkeit eliminiert und
sich nur mit der Teilchengröße befaßt, dann erhält man aufgrund der Tatsache, daß jedes Teilchen aus der Schmelze stammt,
von der man annimmt, daß sie homogen sei, bei zugelassener Segregation weniger Segregation bei einem sehr
kleinen Teilchen als in einem sehr großen Teilchen, einfach aufgrund der Definition des für das Segregieren verfügbaren
Materials.
Hinsichtlich der Vorteile einer geringen Teilchengröße wurde in der Literatur gezeigt, daß kleinere Metallteilchen bei geringeren
Temperaturen eher und innerhalb kürzerer Zeiten sintern als große Pulverteilchen. Es gibt eine große Antriebskraft
für den Sinterprozess. Dies ist ein wirtschaftlicher Vorteil.
Eines der Probleme im Zusammenhang mit der Pulvermetallurgie ist die Verunreinigung des Pulvers durch Fremdmaterialien. Diese
Fremdstoffe werden in das Pulver hineingemischt und gelangen beim Pressen in das Preßteil und repräsentieren schließlich eine
mögliche Stelle des Versagens in diesem Teil. Bei sehr feinem Pulver wird allgemein angenommen, daß man das Pulver sieben
bzw. sichten kann und größere Fremdgegenstände beseitigen, so daß man mit einem feineren Pulver eine Probe herstellen kann,
die potentiell kleinere Fehler aufweist als man bei einem groben Pulver erhält.
Erhält man das feine Pulver zu wirtschaftlichen Preisen und nimmt man 10 μπι Kügelchen gegen 100 μΐη Kügelchen an, dann
ist der Packungsfaktor der gleiche. Dementsprechend ist es
erwünscht, einen anderen Satz kleinerer Kügelchen zu haben, um diese in die Hohlräume zu packen. Es wird jedoch wieder Hohlräume
zwischen den kleineren Kügelchen und den großen Kügelchen geben, so daß man einen weiteren Satz kleinerer Kügelchen
brauchen würde, um die kleineren Hohlräume zu füllen.
Ein relativ neues Gebiet, das sich aufgrund der raschen Erstarrung
entwickelt hat, ist die Entwicklung ganzer neuer Reihen von Legierungen. Wegen der geringeren Erstarrungsgeschwindigkeiten
konventioneller Materialien segregieren die Bestandteile der Legierung entweder als spröde intermetallische
Verbindungen oder als lange Korngrenzen aus. Solche Materialien haben Eigenschaften, die in mancher Hinsicht gegenüber
den Eigenschaften rasch erstarrten Materials schlechter sind.
•au·
Mittels der raschen Erstarrung können einige dieser gelösten Materialien in Lösung gehalten werden, und als Verstärker
wirken, und als Ergebnis hat man neue Legierungszusammensetzungen durch die rasche Erstarrung. Die gleichen Legierungen nach
konventionellen Verfahren hergestellt, konnten spröde sein und daher unbrauchbar. Es wurde jedoch jetzt festgestellt, daß diese
Legierungen brauchbare Eigenschaften haben, wenn sie rasch erstarren. Diese Erscheinung variiert von Legierungssystem zu
Legierungssystem, von Erstarrungsgeschwindigkeit zu Erstarrungsgeschwindigkeit.
Schließlich beeinflussen auch noch die Verdichtungstechniken, ob man das Material benutzen kann oder
nicht.
Ein wesentliches Merkmal der vorliegenden Erfindung besteht darin, daß sie die Bildung von Pulver aus einer Schmelze mit
hohem Wirkungsgrad bei der Nutzung des Gases gestattet. Die erhaltene Verbesserung ist recht überraschend, da das fein
zerteilte Pulver einen höheren Prozentsatz an feinen Teilchen enthält und man vernünftigerweise sollte annehmen können, daß
zu einer solchen feineren Zerteilung eine sehr viel stärkere Gasströmung erforderlich sein würde. Mit einer sehr viel stärkeren
Gasströmung würde man natürlich einen geringeren Wirkungsgrad bei der Nutzung des Gases erhalten. Unter Anwendung
der erfindungsgemäßen Verfahren wurde jedoch überraschenderweise festgestellt, daß, verglichen mit den konventionellen
Verfahren, bei dem erfindungsgemäßen Verfahren sehr feine Teilchen in einem höheren Prozentsatz mit einer verminderten Gasmenge
hergestellt werden können.
Im allgemeinen ist es von Vorteil Pulver mit feineren Teilchen
relativ gleichförmiger Größe oder mit einem engeren Größenbereich zu haben. Die Teilchen gleichmäßigerer Größe haben eine
gleichmäßigere Kühlgeschichte. Die gleichmäßigere Kühlgeschichte macht die Teilchen gleichmäßiger hinsichtlich der metallurgischen
Eigenschaften.
Im allgemeinen sind die kleineren Teilchen rascher abgekühlt, wie sich aus der Gleichung zu Beginn dieser Beschreibung ergibt.
Ist in einem Pulver ein weiter Bereich von Teilchengrößen vorhanden
und wird das Pulver mit pulvermetallurgischen Techniken verarbeitet, dann gibt es eine Grenze hinsichtlich der erwünschten
Eigenschaften, die der Zusammensetzung verliehen werden können, und diese Grenze steht in Beziehung zur Zusammensetzung
und den Eigenschaften der größeren Teilchen des Pulvers, die in die Zusammensetzung eingehen. Die größeren Teilchen bilden
eine potentiell schwache Stelle oder eine Stelle, bei der geringere Werte des beginnenden Schmelzens oder andere Eigenschaften
auftreten werden.
Als allgemeine Regel gilt, daß je kleiner die Teilchengröße und je enger die mittlere Teilchengröße und je gleichmäßiger die
Größe der kleineren Teilchen eines Pulvers sind, das zur Herstellung eines festen Gegenstandes eingesetzt wird, umso wahrscheinlicher
weisen die aus diesem Pulver hergestellten festen Gegenstände gewisse Kombinationen erwünschter Eigenschaften auf.
Wenn im Idealfall alle Teilchen genau einen Durchmesser von 20 μπι hätten, dann haben sie im wesentlichen alle die gleiche
thermische Geschichte und die aus diesen Teilchen hergestellten Gegenstände würden Eigenschaften haben, die charakteristisch
für die gleichmäßige Teilchengröße wären, aus denen sie gebildet wurden.
Es würde natürlich erwünscht sein, größere Teilchenkörper zu haben, die mit Geschwindigkeiten rasch erstarrt sind, die mit
kleineren Teilchenkörpern möglich sind. Wegen der internen Segregation der metallurgischen Bestandteile, die in einem
größeren Teilchenkörper beim Erstarren dieser größeren Körper auftritt und weil es eine Grenze hinsichtlich der Geschwindigkeit
gibt, mit der Wärme von den größeren Teilchenkörpern entfernt werden kann, um eine solche Erstarrung zu erzielen,
stellt die Bildung solcher größeren Teilchenkörpern aus geschmolzenem Metall nach konventionellen Zerstäubungstechniken
eine Begrenzung hinsichtlich des Charakters des damit erhaltenen Pulvers sowie eine Begrenzung hinsichtlich der Einsätze,
die mit einem solchen Pulver bei der Herstellung größerer Körper durch Pulvermetallurgie aus einem solchen Pulver vorgenom-
''IrIIIi
men werden können, dar. Der Einsatz der pulvermetallurgischen
Techniken ist derzeit der Hauptweg, auf dem hervorragende Produkte aus Pulver erhalten werden, die rasch erstarrt sind.
Die vorliegende Erfindung verbessert sowohl die Herstellung solcher kleineren Teilchen als auch die Bildung größerer Körper
mit der hocherwünschten Kombination von Eigenschaften rasch erstarrter Metalle. Die gebildeten Gegenstände haben
gleichmäßigere Eigenschaften, da sie aus Teilchen einer gleichmäßigeren Größe hergestellt worden sind.
Eines der einzigartigen Merkmale der Technologie, die durch die vorliegende Erfindung ermöglicht wird, besteht darin, daß
es eine engere Steuerung einer Anzahl von Parametern eines Pulverproduktes gestattet, das durch Zerstäuben gemäß der vorliegenden
Erfindung erhalten ist.
So wurde es möglich, die etwas willkürliche Verteilung der Teilchengrößen, die in nach dem Stand der Technik hergestellten
Pulvern angetroffen wird, zu ändern, um eine größere Konzentration der Teilchengröße eines ausgewählten Wertes zu gestatten.
Die Herstellung einer höheren Ausbeute einer ausgewählten Teilchengröße
wird ungeachtet der ausgewählten Größe möglich. Wird zum Beispiel eine Teilchengröße von 10 μΐη als die Hauptgröße
für ein Pulver ausgewählt, dann macht es die Steuerung der Variablen der vorliegenden Erfindung möglich, Teilchen der ausgewählten
Größe besonders herzustellen. Sollen andererseits Teilchen von 50 oder 100 μΐη als die erwünschte Produktgröße
ausgewählt werden, dann können die Verfahrensparamter in Übereinstimmung mit der Lehre nach der vorliegenden Erfindung so
geändert werden, daß man Pulver erhält, die höhere Konzentrationen an Teilchen innerhalb des ausgewählten Größenbereiches
enthalten.
Durch Anwendung der Verfahren nach dem Stand der Technik ist es möglich, einen weiten Bereich von Teilchengrößen in einem
Ansatz herzustellen. Der wirtschaftliche Vorteil liegt jedoch
darin, in der Lage zu sein, eine Teilchengröße mit einer relativ geringen Standardabweichung von einer ausgewählten Teilchengröße
herzustellen. Die vorliegende Erfindung ermöglicht die Herstellung wirtschaftlich wertvollerer Pulver mit einem
gegebenen Durchgang einschließlich des Verbrauches einer gewissen Menge an Energie und Materialien.
Ein abgeleiteter Nutzen der Herstellung von Pulver nach der Lehre der vorliegenden Erfindung besteht darin, daß sie nicht
nur die Herstellung eines Pulvers mit einer relativ engen Teilchengrößenverteilung
ermöglicht, sondern daß damit außerdem die Teilchen ein ausgewähltes Gefüge haben. Es ist durch die
vorliegende Erfindung auch möglich, Teilchen herzustellen, die eine relativ große Teilchengröße und eine enge Teilchengrößenverteilung
innerhalb einer gegebenen Probe haben. Die größeren Teilchen haben wegen ihres langsameren Abkühlens
eine gröbere kristalline Struktur als Teilchen, die rascher abkühlen.
Durch Auswahl solcher Bedingungen, unter denen man feinere Teilchengrößen erhält, ist es daher möglich, ein Pulver herzustellen,
das amorph ist, weil die kleineren Teilchen rascher abkühlen und weil es eine sehr enge Größenverteilung um die
vorausgewählte Größe herum gibt.
Im Bereich des Zusammenfließens des Stromes aus geschmolzenem Metall und des Ringstrahles aus zerstäubendem Gas, der am
Boden der Gaszufuhrkammer 28 durch die Ringöffnung 22 austritt, wird eine Zerstäubungszone gebildet. Das Schmelzzuführungsrohr
12 führt den Strom flüssigen Metalles durch den Hals der Gasdüse der Zerstäubungszone zu. Ein Element der vorliegenden
Erfindung ist die Schaffung eines Gasdüsenkörpers, der mit einem geformten Ende eines Schmelzführungsrohres zusammenarbeitet,
um eine Gasdüse mit einem ringförmigen Gasstrahl zu bilden, der mit dem geformten Ausgangsende des Schmelzführungsrohres
zusammenarbeitet.
In anderen Worten ist das Vorsehen von geformten und konfigu-
rierten und zusammenarbeitenden Enden am unteren Teil des Schmelzführungsrohres ein Element der vorliegenden Erfindung,
wie es in der vorliegenden Anmeldung näher erläutert ist. Dies ist eine von mehreren unabhängig funktionierenden Erscheinungen,
die benutzt werden, eine hervorragende Zerstäubung einer Vielfalt von Schmelzen zu erzielen.
Das dichte Anordnen von Gasöffnung und Schmelzöffnung gestattet es der Oberfläche des Schmelzführungsrohres, einen Teil
der ringförmigen Gasöffnung zu bilden und dadurch dem Gasstrahl zu gestatten, über das geformte Ende des Schmelzführungsrohres
aus der Gaskammer auszutreten. Diese spülende Wirkung des Gasstrahles auf und gegen das untere Ende des
Schmelzführungsrohres hat sich als wirksam erwiesen, zu einem starken Grade Teilchen erstarrenden oder erstarrten Metalls
wegzutragen, die sich sonst auf dem unteren Ende des Schmelzführungsrohres bilden oder abscheiden und dort anwachsen würden.
Es ist nicht bekannt, daß solche Teilchen an dem unteren Ende des Rohres nicht anwachsen, und es ist bekannt, daß ein
solches Anhaften bei den Zerstäubungsdüsen nach dem Stand der Technik stattfindet, wie es im oben genannten Buch von Beddow
erläutert ist. Wegen der vorgenannten Maßnahme als eines mehrerer kombinierter Elemente bei der Ausführung der vorliegenden
Erfindung ist das Anhaften solcher flüssigen oder erstarrten Teilchen jedoch vermindert, und das spülende Gas kann das
Abscheiden solcher Teilchen entweder verhindern oder abgeschiedene oder angewachsene Teilchen auf dem unteren Ende des
Schmelzzuführungsrohres entfernen.
In der in Fig. 1 gezeigten, besonderen Konfiguration gibt es eine Kontinuität, Konformität und Ausrichtung zwischen der
geformten unteren Oberfläche des Schmelzführungsrohres 18 und der geformten umgebenden Oberfläche 26 der Gaszufuhrkammer 20.
Der Ringgasstrahl kann aus einer Anzahl von Konfigurationen bestehen und in einer Anzahl von Weisen hergestellt werden.
Das wesentliche Merkmal gemäß diesem Aspekt, der in dieser Anmeldung als enges Kuppeln bezeichnet ist, ist ein ringförmiger
Gasstrahl, der zumindest teilweise durch das untere geformte
Ende des Schmelzführungsrohres und nahe der Schmelzoberfläche
gebildet wird.
Die Hauptkriterien eines Materials für ein Schmelζzuführungsrohr
bestehen darin, daß das Material gegenüber der bei hoher Temperatur befindlichen Schmelze beständig ist und daß es
eine starke Beständigkeit gegenüber thermischen Schock hat. Erwünschte Eigenschaften sind, daß das Material maschinell
bearbeitet oder gegossen werden kann mit einer glatten Oberfläche,
um ein mechanisches Verriegeln mit angewachsenem Material zu verhindern. Weiter sollte dieses Material hinsichtlich
der Schmelze nicht benetzend sein und einen geringen Koeffizienten der Wärmeleitung haben.
Bornitrid erfüllt all diese Kriterien. Es hat sich als außerordentlich
geeignet als Material für eine Düse bei der Herstellung von Düsen erwiesen, die zur Gaszerstäubung hochschmelzender
Metalle brauchbar sind.
Ein Schmelzzuführungsrohr, wie das Rohr 12 der Fig. 1, wurde aus Bornitrid hergestellt und es erwies sich als außerordentlich
brauchbar, besonders hinsichtlich der Erfüllung der beiden oben genannten Hauptkriterien. Das Material war beständig gegenüber
Schmelzen von Metallen bei hoher Temperatur von 1350 bis 17500C. Weiter erwies sich das Rohr aus Bornitrid in hohem
Maße beständig gegenüber thermischem Schock, wenn das 17500C
heiße Metall in und durch das Innere des Rohres gegossen wurde, während das zerstäubende Gas bei einer Temperatur von etwa
-2000C über die äußere Oberfläche strömte. Relativ zu den meisten
Metallen hat das Bornitrid einen geringen Koeffizienten der Wärmeübertragung.
Ein Bornitrid, das im Handel von der Union Carbide Corp. unter der Handelsbezeichnung HBRvS) erhältlich ist, kann zu der in
Fig. 1 gezeigten Konfiguration maschinell bearbeitet werden und hat danach glatte Oberflächen.
Ein anderes Bornitrid, HBC, das ebenfalls von der Union
Carbide Corp. erhältlich ist, ist auch als Düsenmaterial brauchbar, obwohl es nur etwa die Hälfte der Bruchfestigkeit
des HBR-Materials aufweist.
Das Bornitrid, das beim Herstellen der Schmelzzuführungsrohre benutzt wurde, wurde augenscheinlich zu einem beschränkten
Grade durch das heiße, flüssige Metall benetzt, doch erfolgte das Benetzen nicht in einem solchen Maße, daß es seinen Einsatz
als Schmelzzuführungsrohr und als Oberflächenkomponente,
die der Metallzerstäubungsatmosphäre ausgesetzt ist, verhinderte.
In der letztgenannten Hinsicht erwies sich das Bornitird als außergewöhnlich gut. Es widerstand dem Anwuchs geschmolzenen
Metalles hoher Temperatur besser als jedes andere untersuchte Material.
Die vorliegende Erfindung umfaßt das Bilden jeglicher Oberflächen einer Zerstäubungsdüse aus Bornitrid, um dem Anwuchs von
Spritzern zu widerstehen, unabhängig davon, ob die Düse die Ausführungsform nach Fig. 1 hat oder irgendeine andere Ausführungsform.
So umfaßt die vorliegende Erfindung auch das Bilden einzelner Gasdüsen mit Bornitrid-Oberflächen, um den Anwuchs zu verhindern.
Das Bilden des Teiles mit der Bezugsziffer 32 der Fig. 1 aus Bornitrid, um das Haften von Flecken geschmolzenen Metalles
und das fortschreitende Anwachsen solcher Flecken zu verhindern, ist ebenfalls vorgesehen.
Allgemein ist der Einsatz von Bornitrid auf Oberflächen vorgesehen,
die Spritzern beim Gaszerstäuben ausgesetzt sind und auf denen ein Anwuchs von erstarrten Teilchen stattfinden
kann, sowie wo ein solcher Anwuchs den Fortgang der Zerstäubung beeinträchtigt.
Die Oberfläche 18 der Fig. 1 ist beispielhaft für eine solche Oberfläche aus den vorstehend angegebenen Gründen. Das Gas aus
der Ringdüse kann solche Teilchen, die sich auf der Oberfläche absetzen, von dieser wegspülen, weil es zwischen der Schmelzabscheidung
und der Bornitrid-Oberfläche nur eine sehr geringe Haftung gibt.
Oberflächen eines Teiles, wie des Teiles 32 in Fig. 1, können mit Bornitrid überzogen oder mit einem Bornitrideinsatz versehen
werden, um die Vorteile der mangelnden Haftung zu erhalten, wenn die anderen Vorteile der Beständigkeit gegenüber
thermischem Schock und dergleichen für die Funktion des Teiles nicht wesentlich sind.
Es liegt im Rahmen der vorliegenden Erfindung, eine ringförmige Öffnung zu bilden, die völlig aus einem inerten keramischen
Material besteht, wie Bornitrid. Zumindest sollte das inerte keramische Material, wie Bornitrid, an der Oberfläche vorgesehen
oder abgeschieden sein, auf der der Anwuchs der erstarrten Metalles am wahrscheinlichsten ist. Dieser Teil ist der
Teil, der am nächsten zum Austritt des geschmolzenen Metalles liegt. Dies ist an und auf der abgeschrägten Oberfläche 18 des
unteren Endes 16 des Schmelzzuführungsrohres.
Die vorliegende Anmeldung steht in Beziehung zu den mit der gleichen Priorität eingereichten Patentanmeldungen, die auf
den US-Anmeldungen mit den Serial~Nummern 584 691, 584 689
und 584 687 beruhen. Diese Patentanmeldungen werden durch diese Bezugnahme in die vorliegende Anmeldung aufgenommen.
- Leerseite -
Claims (8)
1. Verfahren zum Herstellen feinen Pulvers aus geschmolzenem
Metall,
dadurch gekennzeichnet, daß man eine Quelle zu zerstäubenden, geschmolzenen Metalles
schafft,
man geschmolzenes Metall von dieser Quelle durch ein Schmelzzuführungsrohr
einer Zerstäubungszone zuführt,
wobei der Teil des Schmelzzuführungsrohres, der der Zerstäubungszone ausgesetzt ist, im wesentlichen aus Bornitrid
besteht und
man einen Strom aus dem zerstäubenden Gas gegen den Strom geschmolzenen
Metalles in der genannten Zone richtet, um das geschmolzene Metall zu zerstäuben.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß alle Oberflächen, die Spritzern aus geschmolzenem Metall
ausgesetzt sind, aus Bornitrid bestehen.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß das Schmelzzuführungsrohr aus Bornitrid besteht.
4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die ausgesetzten Oberflächen der Quelle des Stromes des
zerstäubenden Gases aus Bornitrid bestehen.
5. Gegenüber hoher Temperatur beständige Zerstäubungsdüse, gekennzeichnet durch ein
Schmelzzuführungsrohr aus Bornitrid und eine Gasöffnung, die das Schmelzzuführungsrohr umgibt.
6. Düse nach Anspruch 5,
dadurch gekennzeichnet, daß die Gasöffnung in enger Kupplung zum Schmelzzuführungsrohr
steht.
7. Düse nach Anspruch 5,
dadurch gekennzeichnet, daß alle Oberflächen, die von dem Gas aus der Gasöffnung überspült
werden, aus Bornitrid bestehen.
8. Bei hoher Temperatur beständige Zerstäubungsdüse, gekennzeichnet durch ein
Schmelzzuführungsrohr und eine periphere Gasausgabeöffnung, wobei die Oberfläche der Düse, auf die austretende Schmelze
auftreffen kann, zumindest mit Bornitrid überzogen ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58468884A | 1984-02-29 | 1984-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3505662A1 true DE3505662A1 (de) | 1985-08-29 |
Family
ID=24338414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19853505662 Withdrawn DE3505662A1 (de) | 1984-02-29 | 1985-02-19 | Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPH0819445B2 (de) |
DE (1) | DE3505662A1 (de) |
FR (1) | FR2560087B1 (de) |
GB (1) | GB2154902B (de) |
IL (1) | IL74268A (de) |
IT (1) | IT1185526B (de) |
SE (1) | SE8500972L (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0192383B1 (de) * | 1985-02-18 | 1990-12-05 | National Research Development Corporation | Verfahren zum Verteilen von Flüssigkeiten auf Substrata |
US4778516A (en) * | 1986-11-03 | 1988-10-18 | Gte Laboratories Incorporated | Process to increase yield of fines in gas atomized metal powder |
US4784302A (en) * | 1986-12-29 | 1988-11-15 | Gte Laboratories Incorporated | Gas atomization melt tube assembly |
US4780130A (en) * | 1987-07-22 | 1988-10-25 | Gte Laboratories Incorporated | Process to increase yield of fines in gas atomized metal powder using melt overpressure |
US5289975A (en) * | 1992-06-18 | 1994-03-01 | General Electric Company | Method and apparatus for atomizing molten metal |
US7913884B2 (en) | 2005-09-01 | 2011-03-29 | Ati Properties, Inc. | Methods and apparatus for processing molten materials |
JP5060726B2 (ja) * | 2006-01-10 | 2012-10-31 | 不二パウダル株式会社 | スプレーノズルおよびインサート |
DE102006023483A1 (de) * | 2006-05-18 | 2007-11-22 | Linde Ag | Vorrichtung zum Kaltgasspritzen |
NL1036267C2 (en) * | 2008-12-02 | 2010-06-03 | Oce Tech Bv | Device for ejecting droplets of a fluid having a high temperature. |
EP3504020B1 (de) | 2016-08-24 | 2023-04-19 | 5n Plus Inc. | Pulverzerstäubungsherstellungsverfahren mit metallen oder legierungen mit niedrigem schmelzpunkt |
US11084095B2 (en) | 2018-02-15 | 2021-08-10 | 5N Plus Inc. | High melting point metal or alloy powders atomization manufacturing processes |
CN108751960B (zh) * | 2018-07-10 | 2021-08-31 | 哈尔滨工业大学 | 一种高温熔体水雾法制备氧化铝基固溶体陶瓷微米粉的方法 |
CN111054930A (zh) * | 2019-12-24 | 2020-04-24 | 航天海鹰(哈尔滨)钛业有限公司 | 一种惰性气体环形雾化喷嘴 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1262520B (de) * | 1963-10-10 | 1968-03-07 | Basf Ag | Vorrichtung zum Verspruehen bzw. Zerstaeuben von Schmelzen, insbesondere fluessigen Metallen |
DE2556960A1 (de) * | 1974-12-18 | 1976-07-01 | Int Nickel Ltd | Verfahren zum herstellen von metallzerstaeubungspulver |
US4272463A (en) * | 1974-12-18 | 1981-06-09 | The International Nickel Co., Inc. | Process for producing metal powder |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1455543A (fr) * | 1965-11-16 | 1966-04-01 | Toho Zinc Co Ltd | Procédé et appareil pour préparer des poudres fines à grande pureté de métaux à point de fusion bas |
CA1014290A (en) * | 1972-06-23 | 1977-07-19 | Thomas A. Myles | Refractory moldable insulation |
BE888630A (fr) * | 1981-04-29 | 1981-08-17 | Centre Rech Metallurgique | Perfectionnements aux dispositifs pour la coulee continue des metaux. |
-
1985
- 1985-02-06 IL IL74268A patent/IL74268A/xx unknown
- 1985-02-08 GB GB08503276A patent/GB2154902B/en not_active Expired
- 1985-02-19 DE DE19853505662 patent/DE3505662A1/de not_active Withdrawn
- 1985-02-27 IT IT19672/85A patent/IT1185526B/it active
- 1985-02-27 SE SE8500972A patent/SE8500972L/xx not_active Application Discontinuation
- 1985-02-28 JP JP60037798A patent/JPH0819445B2/ja not_active Expired - Lifetime
- 1985-02-28 FR FR8502916A patent/FR2560087B1/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1262520B (de) * | 1963-10-10 | 1968-03-07 | Basf Ag | Vorrichtung zum Verspruehen bzw. Zerstaeuben von Schmelzen, insbesondere fluessigen Metallen |
DE2556960A1 (de) * | 1974-12-18 | 1976-07-01 | Int Nickel Ltd | Verfahren zum herstellen von metallzerstaeubungspulver |
US4272463A (en) * | 1974-12-18 | 1981-06-09 | The International Nickel Co., Inc. | Process for producing metal powder |
Also Published As
Publication number | Publication date |
---|---|
SE8500972L (sv) | 1985-10-11 |
IL74268A (en) | 1988-01-31 |
IT8519672A0 (it) | 1985-02-27 |
FR2560087B1 (fr) | 1988-07-01 |
FR2560087A1 (fr) | 1985-08-30 |
SE8500972D0 (sv) | 1985-02-27 |
GB2154902B (en) | 1988-01-13 |
GB8503276D0 (en) | 1985-03-13 |
GB2154902A (en) | 1985-09-18 |
JPH0819445B2 (ja) | 1996-02-28 |
JPS60211004A (ja) | 1985-10-23 |
IL74268A0 (en) | 1985-05-31 |
IT1185526B (it) | 1987-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3505659A1 (de) | Schmelz-zerstaeubung mit reduzierter gasstroemung sowie vorrichtung zum zerstaeuben | |
DE3505660A1 (de) | Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme | |
DE68917132T2 (de) | Verfahren und vorrichtung zum zerstäuben einer metallschmelze. | |
DE4102101C2 (de) | Einrichtung zum Herstellen von Pulvern aus Metallen | |
US4801412A (en) | Method for melt atomization with reduced flow gas | |
DE3434110A1 (de) | Verfahren und vorrichtung zum herstellen eines metallgegenstandes | |
DE69202728T2 (de) | Metallische spritzung mittels mehrerer düsen. | |
DE3505662A1 (de) | Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben | |
DD232554A5 (de) | Sondengeraet und verfahren zur erzeugung eines aerosolpulvers | |
WO1999030858A1 (de) | Verfahren und vorrichtung zur herstellung feiner pulver durch zerstäubung von schmelzen mit gasen | |
DE2555715A1 (de) | Verfahren und vorrichtung zur pulverherstellung durch verspruehen eines geschmolzenen materials | |
DE102009010600A1 (de) | Herstellung von rundlichen Metallpartikeln | |
DE4105419A1 (de) | Verfahren zum herstellen von scheiben aus zwei legierungen | |
DE2556960A1 (de) | Verfahren zum herstellen von metallzerstaeubungspulver | |
DE3505661C2 (de) | ||
DE10340606A1 (de) | Vorrichtung zum Verdüsen eines Schmelzestrahls und Verfahren zum Verdüsen von hochschmelzenden Metallen oder Keramiken | |
DE3211861A1 (de) | Verfahren und vorrichtung zur herstellung von hochreinen keramikfreien metallpulvern | |
DE2412079B2 (de) | Verfahren und vorrichtung zur herstellung von kompositionsmetallpulver | |
EP0007536A1 (de) | Verfahren und Vorrichtung zur Granulierung einer Metallschmelze zwecks Pulverherstellung | |
DE3424061C2 (de) | ||
DE102018125605A1 (de) | Verfahren zur additiven Fertigung eines Bauteils | |
DE10017414A1 (de) | Sputtertarget auf der Basis eines Metalls oder einer Metalllegierung und Verfahren zu dessen Herstellung | |
EP1239983B1 (de) | Herstellung eines pulvers aus geschmolzenem metall durch zerstäubung mit reaktivem gas | |
EP2689873A1 (de) | Verfahren zur Herstellung eines Pulvers einer Metalllegierung | |
WO2005123305A2 (de) | Verfahren zum herstellen von erzeugnissen aus metall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
8128 | New person/name/address of the agent |
Representative=s name: SIEB, R., DIPL.-CHEM. DR.RER.NAT., PAT.-ANW., 6947 |
|
8130 | Withdrawal | ||
8120 | Willingness to grant licences paragraph 23 |