DE3100751A1 - "METHOD FOR OPERATING A STATIONARY GAS TURBINE AND POWER SUPPLY SYSTEM EQUIPPED WITH THIS" - Google Patents
"METHOD FOR OPERATING A STATIONARY GAS TURBINE AND POWER SUPPLY SYSTEM EQUIPPED WITH THIS"Info
- Publication number
- DE3100751A1 DE3100751A1 DE19813100751 DE3100751A DE3100751A1 DE 3100751 A1 DE3100751 A1 DE 3100751A1 DE 19813100751 DE19813100751 DE 19813100751 DE 3100751 A DE3100751 A DE 3100751A DE 3100751 A1 DE3100751 A1 DE 3100751A1
- Authority
- DE
- Germany
- Prior art keywords
- oxygen
- air
- burner
- low
- air mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04539—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
- F25J3/04545—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
- F25J3/04575—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04593—The air gas consuming unit is also fed by an air stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/40—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/42—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/80—Hot exhaust gas turbine combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
Description
Verfahren zum Betreiben einer stationären Gasturbine und mit dieser ausgerüstete Stromversorgungsanlage Method for operating a stationary gas turbine and equipped with it Power supply system
Die Erfindung betrifft ein Verfahren zum Betreiben einer stationären Gasturbine sowie eine Stromversorgungsanlage mit Sauerstoffblas-Kohlevergasungsanlage und stationärer Gasturbine und eine Stromversorgungsanlage mit einer Gasturbine. The invention relates to a method for operating a stationary gas turbine and a power supply system with oxygen blowing coal gasification plant and stationary Gas turbine and a power supply system with a gas turbine.
Das Senken der Emissionen, insbesondere von Stickoxiden (NOx) gewinnt zunehmende Aufmerksamkeit und es werden beträchtliche Mittel auf die zugeordneten Probleme verwandt.Lowering emissions, particularly nitrogen oxides (NOx), is gaining increasing attention and becoming considerable Funds are used to address the associated problems.
Die Untersuchung der Stickoxidbildungsmechanismen in den Brennern von stationären Gasturbinen hat gezeigt, daß es grundsätzlich zwei unterschiedliche Stickoxidquellen gibt. Thermisches Stickoxid wird durch Reaktionen zwischen dem Stickstoff und dem Sauerstoff in der Luft gebildet, dieThe investigation of the mechanisms of nitrogen oxide formation in the burners of stationary gas turbines has shown that it there are basically two different sources of nitrogen oxide. Thermal nitric oxide is produced by reactions between the Nitrogen and the oxygen in the air are formed that
130061/0316130061/0316
durch die hohe Flamintemperatur eingeleitet werden. Brennstoff stickoxid ergibt sich andererseits aus der Oxidation von organischen Stickstoffverbindungen in dem Brennstoff. In flüssigem Brennstoff kann der Brennstoff stickstoff in Form von irgendwelchen Stickstoff enthaltenden Wasserstoffverbindungen vorliegen, für die Pyridin ein Beispiel ist. In gasförmigem Brennstoff kann der Brennstoff st ick stoff in Form von Ammoniak oder irgendeiner anderen Stickstoffverbindung vorliegen.initiated by the high flame temperature. Fuel nitrogen oxide, on the other hand, results from oxidation of organic nitrogen compounds in the fuel. In liquid fuel, the fuel can be nitrogen in the form of any nitrogen-containing hydrogen compounds exist, of which pyridine is an example. In gaseous fuel, the fuel can stick substance in the form of ammonia or any other nitrogen compound are present.
Die zulässigen Stickoxidemissionen von stationären Gasturbinen sind in verschiedenen Anträgen oder Vorschriften geregelt. Beispielsweise hat dieThe permissible nitrogen oxide emissions from stationary gas turbines are in various applications or regulations regulated. For example, the
United States Environmental Protection Agency ein Gesetz vorgeschlagen, das die Stickoxidemissionen auf 75 ppm bei 15% Sauerstoff mit einer Wirkungsgradkorrektur begrenzt. In Südkalifornien begrenzt die Los Angeles County Air Pollution Control District's Los Angeles County Rule No. 67 die Stickoxidemissionen auf 63,5 kg (140 lbs.) pro Stunde. Gegenwärtig zur Verfügung stehende stationäre Gasturbinen können diese Gesetzesforderungen ohne Wasser- oder Dampfinjektion nicht erfüllen, wobei aber eine solche Prozedur unerwünscht ist, weil die Wasser- und Dampfinjektion eine nachteilige Auswirkung auf die Heizleistung hat und weil es außerdem schwierig ist, eine angemessene Menge Wasser ausreichender Reinheit zu liefern, um eine Beschädigung der Turbine zu verhindern. Faktoren, die den Grad der Stickoxidemissionen in stationären Gasturbinen und anderen Turbinen beeinflussen, sind bekannt,und es sind verschiedene Versuche gemacht worden, um die Struktur von verbrannten Ausgangsstoffen zu modifizieren, vgl. beispielsweise die US-PSen 3 969 892, 3 949 548 und 3 792 581. Solche Versuche haben unterschiedliche Erfolge gebracht.United States Environmental Protection Agency proposed a law that limits nitrogen oxide emissions to 75 ppm 15% oxygen limited with an efficiency correction. In Southern California, the Los Angeles County limits air pollution Control District's Los Angeles County Rule No. 67 the nitrogen oxide emissions to 63.5 kg (140 lbs.) Per hour. Stationary gas turbines currently available can meet these legal requirements without water or steam injection do not meet, but such a procedure is undesirable because the water and steam injection one has an adverse effect on heating performance and because it is also difficult to get an adequate amount of water of sufficient purity to prevent damage to the turbine. Factors affecting the level of nitrogen oxide emissions in stationary gas turbines and other turbines are known and there are several Attempts have been made to modify the structure of burned raw materials, see, for example, US Pat U.S. Patents 3,969,892, 3,949,548 and 3,792,581. Such attempts have met with varying degrees of success.
130061/0316130061/0316
Stationäre Gasturbinen können in Verbindung mit einem Brennstoff benutzt werden, der in einer Kohlevergasungsanlage hergestellt worden ist. Die Vergasungsanlage ist grundsätzlich aus zwei Einheiten aufgebaut. Die erste Einheit ist eine Luftzerlegungseinheit,in welcher Sauerstoff -/on der übrigen Luft getrennt wird, und die zweite Einheit ist eine Sauerstoffblas-Kohlengaserzeugungseinheit, in welcher der abgeschiedene Sauerstoff und die Kohle verarbeitet werden, um einen Brennstoff herzustellen, der einen Mittleren Heizwert (in BTU oder Wärmeeinheiten) von etwa 189,9 bis 316,5 kJ (180-300 BTUs) pro 0,028 m (cubic foot) aui'weist. Die Spitzenflammtemperatur, die in dem Brenner der Gasturbine erreicht wird, ist für Brenngas mit mittlerem Heizwert und für Destillatöle beinahe dieselbe. Infolgedessen reagiert Stickstoff in der Verbrennungsluft und bildet Stickoxide in der Hochtemperaturflammzone, und dieselben Probleme der Bildung von thermischen Stickoxiden, die auftreten, wenn ein Destillatölbrennstoff benutzt wird, treten auf. Die Wasser- oder Dampfinjektion als eine Maßnahme zum Verringern der Bildung von thermischen Stickoxiden ist keine zuverlässige Alternative bei Kohlengasbrennstoffen, weil zusätzlich zu der Einbuße an thermischem Wirkungsgrad die Injektion von solchen Fluids Verdichterpumpen hervorrufen kann. Im allgemeinen ist das Verhältnis von Brennstoff zu Luft bei Kohlengasbrennstoffen höher als bei Öl oder Erdgas, so daß die anfängliche Masseninjektion ( von Wasser oder von Dampf) den Gegendruck bis nahe an die Verdichterpumplinie erhöht, was eine Umkonstruktion entweder des Kompressors oder der anderen Ausrüstung erfordern würde, um es zu überwinden. Darüber hinaus wird gasförmiger Stickstoff als ein Nebenprodukt der Sauerstoffabscheidung aus der Luft erzeugt und muß in geeigneter Weise beseitigt werden.Stationary gas turbines can be used in conjunction with fuel produced in a coal gasifier. The gasification plant is basically composed of two units. The first unit is an air separation unit in which oxygen - / from the remaining air is separated, and the second unit is an oxygen blast coal gas generation unit in which the separated oxygen and coal are processed to produce a fuel that has an average calorific value ( in BTU or thermal units) from about 189.9 to 316.5 kJ (180-300 BTUs) per 0.028 m (cubic foot). The peak flame temperature reached in the gas turbine burner is almost the same for medium calorific value fuel gas and distillate oils. As a result, nitrogen in the combustion air reacts to form nitrogen oxides in the high temperature flame zone, and the same thermal nitrogen oxide formation problems that occur when a distillate oil fuel is used occur. Water or steam injection as a measure to reduce the formation of thermal nitrogen oxides is not a reliable alternative for coal gas fuels because, in addition to the loss of thermal efficiency, the injection of such fluids can cause compressor pumps. Generally, the fuel to air ratio of coal gas fuels is higher than that of oil or natural gas, so the initial bulk injection (of water or steam) increases the back pressure close to the compressor pumping line, requiring redesign of either the compressor or other equipment would to overcome it. In addition, nitrogen gas is generated as a by-product of oxygen separation from the air and must be appropriately disposed of.
Es ist Aufgabe der Erfindung, ein Verfahren und eine Vor-It is the object of the invention to provide a method and a pre
130081/0316130081/0316
richtung zum Senken der Stickoxidemissionen einer stationären Gasturbine zu schaffen, insbesondere wenn der Brennstoff für den Brenner der Gasturbine ein Brenngas mit mittlerem Heizwert ist, das in einer Kohlevergasungsanlage erzeugt wird.direction to lower the nitrogen oxide emissions of a stationary gas turbine, especially when the fuel for the burner of the gas turbine is a fuel gas with a medium calorific value, which is in a coal gasification plant is produced.
Mehrere Ausführungsbeispiele der Erfindung werden im folgenden unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigtSeveral embodiments of the invention are set forth below described in more detail with reference to the accompanying drawings. It shows
Fig. 1 ein Strömungsdiagramm einer ersten AusFig. 1 is a flow diagram of a first Aus
führungsform der Erfindung,implementation of the invention,
Fig. 2 ein Strömungsdiagramm einer zweitenFig. 2 is a flow diagram of a second
Ausführungsform der Erfindung,Embodiment of the invention,
Fig. 3 ein Strömungsdiagramm einer dritten AusFig. 3 is a flow diagram of a third out
führungsform der Erfindung,implementation of the invention,
Fig. 4 ein Diagramm, in welchem die StickoxidFig. 4 is a diagram in which the nitrogen oxide
emissionen über der Sauerstoffmenge aufgetragen sind, undemissions are plotted against the amount of oxygen, and
Fig. 5 ein Diagramm, in welchem die prozentuaFig. 5 is a diagram in which the percentua
le Verringerung der Stickoxidemissionen über der Sauerstoffmenge aufgetragen ist.le reduction in nitrogen oxide emissions plotted against the amount of oxygen is.
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Verringern der Stickoxidemissionen einer stationären Gasturbine und betrifft insbesondere die Verwendung eines sauerstoffarmen Luftgemisches als Ersatz für einen Teil der Verbrennungsluft, insbesondere in einer Anlage, in der der Brennstoff ein Brenngas mit mittlerem Heizwert ist, das durch die Vergasung von Kohle erzeugt wird, und in welcher das sauerstoffarme Luftgemisch ein Nebenprodukt derThe invention relates to a method and an apparatus for reducing nitrogen oxide emissions from a stationary one Gas turbine and specifically relates to the use of a low-oxygen air mixture as a replacement for one Part of the combustion air, especially in a system, in in which the fuel is a fuel gas of medium calorific value produced by the gasification of coal, and in which the low-oxygen air mixture is a by-product of the
130061/0316130061/0316
Sauerstoffabscheidung ist, die einen Teil der Vergasungseinheit bildet. Is oxygen separation that forms part of the gasification unit.
Kohlengasbrennstoffe mit mittlerem Heizwert werden in Sauerstoffblas-Vergasungsapparaten erzeugt und in Mischzyklusgasturbinen zur Stromerzeugung benutzt. Der Sauerstoff wird an Ort und Stelle durch Abscheiden aus Luft erzeugt und das verbleibende sauerstoffarme Luftgemisch, das hauptsächlich aus Stickstoff, Argon und einem kleinen Prozentsatz an Sauerstoff besteht, wird in die Atmosphäre abgelassen. Die vorliegende Erfindung macht vorteilhaften Gebrauch von dem normalerweise vergeudeten sauerstoffarmen Luftgemisch, um die Stickoxidemissionen der Gasturbinen zu steuern. Beispielsweise besteht ein typisches sauerstoffarmes Luftgemisch, das aus einem Luftzerleger gewonnen wird, vor allem aus Stickstoff, weniger als 10% Sauerstoff und weniger als 2% Argon sowie anderen Luftbestandteilen. Das sauerstoffarme Luftgemisch besteht daher aus ungefähr 90% Stickstoff (N-). Demgemäß umfaßt der hier verwendete Begriff "sauerstoffarmes Luftgemisch" hauptsächlich Stickstoff.Medium calorific value coal gas fuels are used in Oxygen blower gasifiers and used in mixed cycle gas turbines to generate electricity. The oxygen is generated on the spot by separation from air and the remaining oxygen-poor air mixture, which consists mainly of nitrogen, argon and a small percentage of oxygen is released into the atmosphere drained. The present invention makes advantageous use of what is normally wasted low oxygen Air mixture to control the nitrogen oxide emissions of the gas turbines. For example, there is a typical low-oxygen air mixture produced by an air separator is obtained, mainly from nitrogen, less than 10% oxygen and less than 2% argon and other air components. The low-oxygen air mixture therefore consists of around 90% nitrogen (N-). Accordingly, this includes the term "low-oxygen air mixture" used mainly nitrogen.
Die Fig. 1-3 sind Strömungsdiagramme von drei Ausführungsformen der Erfindung, und eine herkömmliche Elektrizitätserzeugungsanlage mit einer Sauerstoffblas-Kohlevergasungsanlage und einer Gasturbine kann unter Bezugnahme auf diese Figuren beschrieben werden. Luft aus irgendeiner geeigneten Quelle wird in eine Luftzerlegungseinheit 1 eingeleitet, in der der Sauerstoff für den Kohlevergasungsapparat abgeschieden und das sauerstoffarme Luftgemisch, das insgesamt mit dem Symbol N_ bezeichnet ist, in die Atmosphäre abgelassen wird. Der auf diese Weise abgeschiedene Sauerstoff wird dann zusammen mit Kohle in einer Gaserzeugungseinheit 2 benutzt, um das Brenngas mit mittlerem Heizwert (medium BTU) zu erzeugen. Luft aus derselben oder aus einer anderen Quelle wird in einen Verdichter 3 eingeleitetFigures 1-3 are flow diagrams of three embodiments of the invention and a conventional electricity generating plant with an oxygen-blowing coal gasification plant and a gas turbine can be described with reference to these figures. Air from any suitable Source is fed into an air separation unit 1, in which the oxygen for the coal gasifier deposited and the oxygen-poor air mixture, which is designated as a whole with the symbol N_, into the atmosphere is drained. The oxygen separated out in this way is then used together with coal in a gas generating unit 2 to produce the fuel gas with a medium calorific value (medium BTU). Air from the same or a different source is introduced into a compressor 3
130061/0316130061/0316
und die sich ergebende verdichtete Luft wird zusammen mit dem Brenngas mittleren Heizwertes in den Brenner 4 einer stationären Gasturbine 5 eingeleitet. Die Verbrennungsprodukte werden dann in der Gasturbine 5 benutzt, um Energie zu erzeugen (elektrische Energie oder allgemein Antriebsenergie).and the resulting compressed air is together with the fuel gas middle calorific value in the burner 4 a stationary gas turbine 5 initiated. The combustion products are then used in the gas turbine 5 to Generate energy (electrical energy or drive energy in general).
Gemäß der Erfindung wird das sonst vergeudete sauerstoffarme Luftgemisch aus der Luftzerlegungseinheit 1 dem Einlaß des Verdichters 3 der Gasturbine 5 zugeführt. Das wird erreicht, indem ein Steuerventil 6 oder eine andere geeignete Steuervorrichtung in der Auslaßleitung vorgesehen wird, die die Luftzerlegungseinheit 1 mit dem Ablaß zur Atmosphäre verbindet. Das Steuerventil 6 wird so betätigt, daß ein Teil des sauerstoffarmen Luftgemisches zum Einlaß des Verdichters 3 abgezweigt wird.According to the invention, the otherwise wasted low-oxygen air mixture from the air separation unit 1 becomes the inlet of the compressor 3 is supplied to the gas turbine 5. This is achieved by using a control valve 6 or some other suitable one Control device is provided in the outlet line, which the air separation unit 1 with the outlet for Atmosphere connects. The control valve 6 is operated so that part of the low-oxygen air mixture to the inlet of the compressor 3 is branched off.
Die in den Fig. 2 und 3 gezeigten Ausführungsformen sind zusätzlich so ausgelegt, daß das sauerstoffarme Luftgemisch in der Flammzone des Brenners 4 konzentriert wird, um das verfügbare sauerstoffarme Luftgemisch zur Steuerung der Stickoxidemissionen noch wirksamer auszunutzen. In der Ausführungsform von Fig. 2 wird ein Teil des sauerstoffarmen Luftgemisches von der Auslaßleitung der Luftzerlegungseinheit 1 abgezweigt und zu einem Gasverdichter 7 gefördert. Das verdichtete sauerstoffarme Luftgemisch, das hauptsächlich aus verdichtetem Stickstoff besteht, wird dann über den Brennereinlaß in den Brenner 4 eingeleitet. Die Ausführungsform von Fig. 3 hat den gleichen Aufbau wie die Ausführungsform von Fig. 2, mit der Ausnahme, daß der verdichtete Stickstoff mit dem Brenngas mittleren Heizwertes vermischt und das sich ergebende Gemisch in den Brenner 4 eingeleitet wird.The embodiments shown in Figs. 2 and 3 are additionally designed so that the low-oxygen air mixture is concentrated in the flame zone of the burner 4, the available low-oxygen air mixture for control to make even more effective use of nitrogen oxide emissions. In the embodiment of Fig. 2, a portion of the oxygen depleted Air mixture branched off from the outlet line of the air separation unit 1 and conveyed to a gas compressor 7. The compressed oxygen-poor air mixture, which consists mainly of compressed nitrogen, is then introduced into the burner 4 via the burner inlet. The embodiment of Fig. 3 has the same structure as the embodiment of Fig. 2, with the exception that the compressed nitrogen with the fuel gas medium calorific value mixed and the resulting mixture is introduced into the burner 4.
Die verschiedenen Ausführungsformen der Erfindung dienenThe various embodiments of the invention serve
130061/0318130061/0318
dem Zweck, einen Teil der normalen Brennerluftströmung durch das sauerstoffarme Luftgemisch zu ersetzen. Obgleich die Bildung von thermischen Stickoxiden das Ergebnis der Verbrennung von Stickstoff in dem Brenner ist und die Erfindung die Menge an Stickstoff in dem Brenner erhöht, werden die Stickoxidemissionen verringert. Der Grund dafür ist, daß durch das Verdünnen der Verbrennungsluft mit Stickstoff der Sauerstoffgehalt der Verbrennungsluft verringert wird, wodurch wiederum die Spitzenverbrennungstemperatur gesenkt und dadurch die Bildung thermischer Stickoxide wesentlich verringert wird. Die Menge an benutztem Stickstoff hängt von dem gewünschten Grad der Stickoxidverringerung ab. Luft enthält etwa 21 Vol.% Sauerstoff. Es hat sich gezeigt, daß der Sauerstoffgehalt durch Stickstoff auf etwa 17 Vol.% verringert werden kann, ohne daß das irgendwelche nennenswerten nachteiligen Auswirkungen auf das Verbrennungssystem hat. Es hat sich weiter gezeigt, daß innerhalb des Bereiches von etwa 17 bis 20% Sauerstoff die Stickoxidemissionen der stationären Gasturbine wesentlich verringert werden. Demgemäß wird ausreichend Stickstoff in den Brenner eingeleitet, um den Sauerstoffgehalt von etwa 21% auf etwa 17-20% und vorzugsweise auf etwa 17-19% zu verringern. Es werden also etwa 5-20 Vol.% und vorzugsweise etwa 10-20 Vol.% der Luft durch Stickstoff ersetzt.the purpose of replacing part of the normal burner air flow with the low-oxygen air mixture. Although the formation of thermal oxides of nitrogen is the result of the combustion of nitrogen in the burner and which Invention increases the amount of nitrogen in the burner, nitrogen oxide emissions are reduced. The reason for this is that by diluting the combustion air with nitrogen, the oxygen content of the combustion air is reduced which in turn lowers the peak combustion temperature and thereby the formation of thermal Nitrogen oxides is significantly reduced. The amount of nitrogen used depends on the desired level of Nitric oxide reduction. Air contains about 21% by volume of oxygen. It has been shown that the oxygen content can be reduced to about 17% by volume by nitrogen without any appreciable adverse effects on the combustion system. It has also been shown that within the range of about 17 up to 20% oxygen the nitrogen oxide emissions of the stationary gas turbine can be significantly reduced. Accordingly, will Sufficient nitrogen is introduced into the burner to raise the oxygen level from about 21% to about 17-20% and preferably decrease to about 17-19%. So there will be about 5-20 vol.% And preferably about 10-20 vol.% Of the air Replaced nitrogen.
Zum Demonstrieren der Erfindung wurde ein im Handel erhältlicher Gasturbinenbrenner bei einer Turbinenbrenntemperatur von 1010 0C (18500F) betrieben und zum Nachbilden der Maschinenbedingungen wurde Stickstoff der Brennereinlaßluft deutlich stromaufwärts des Brenners zugesetzt, um ein homogenes Gemisch zu gewährleisten, und Luft wurde in der Nähe des Brennerauslasses abgelassen, um einen konstanten Massendurchfluß durch den Brenner aufrechtzuerhalten. Durch dieses Zusetzen von Stickstoff wird der MassendurchflußTo demonstrate the invention, a commercially available gas turbine burner was operated at a turbine burn temperature of 1010 0 C (1850 0 F) and to simulate the engine conditions, nitrogen was added to the burner inlet air well upstream of the burner to ensure a homogeneous mixture, and air was added to the Drained near the burner outlet to maintain a constant mass flow rate through the burner. This addition of nitrogen increases the mass flow rate
130061/0316130061/0316
nicht nennenswert geändert, es wird aber der Sauerstoff in der Luft verdünnt. Der Volumenprozentsatz an Sauerstoff in der Luft wurde an mehreren Testpunkten gemessen und die erzielten Ergebnisse sind in den Fig. 4 und 5 gezeigt. Fig. 4 zeigt die Menge an Sauerstoff in der Brennerluft bei dem gemessenen feuchten Stickoxid in Teilen pro Million (ppm), und Fig. 5 zeigt dieselben Daten als Prozentsatz der Verringerung an Stickoxid in bezug auf die bei nicht mit Stickstoff verdünnter Luft gemessenen Daten.Der Staudruck,der Musterfaktor (pattern factor) und die (XH Bnissionen wurden während dieses Tests ebenfalls überwacht und es zeigte sich, daß sie sich gegenüber den Basisluftdaten nicht nennenswert änderten. Die Extrapolation der in Fig. 5 dargestellten Daten zum Vorhersagen der Stickoxidemissionseigenschaften der Maschine über dem Belastungsbereich auf der Grundlage des ungünstigsten Falles zeigte, daß die Stickoxidemissionen für die gesamte Kurve unter der von der U.S. Environmental Protection Agency vorgeschlagenen Stickoxidgrenze liegen werden.not significantly changed, but the oxygen in the air is diluted. The volume percentage of oxygen Measurements in the air were carried out at several test points and the results obtained are shown in FIGS. 4 shows the amount of oxygen in the burner air for the measured wet nitrogen oxide in parts per million (ppm), and Figure 5 shows the same data as a percentage reduction in nitric oxide with respect to the data measured with air that has not been diluted with nitrogen: the dynamic pressure, the pattern factor and the (XH Emissions were also monitored during this test and were found to differ from the baseline air data did not change significantly. The extrapolation of the data presented in Figure 5 to predict nitrogen oxide emission properties the machine showed over the load area on a worst-case basis that the nitrogen oxide emissions for the entire curve are below that of the U.S. Environmental Protection Agency proposed Nitrogen oxide limit will be.
Für den Fachmann ist zu erkennen, daß die Fig. 4 und 5 auf den Fall angewandt werden können, in welchem das sauerstoffarme Luftgemisch homogen mit der Verdichterluft vermischt wird. Die Diagramme können jedoch ausgedehnt werden, um die Auswirkungen der Kopfendeinjektion und der Vermischung des sauerstoffarmen Luftgemisches mit dem Brennstoff anzunähern, indem die Abszisse als Volumenprozent Sauerstoff in Luft für die stöchiometrische Flammzone betrachtet wird, wobei angenommen wird, daß das gesamte sauerstoffarme Luftgemisch in die Flammzone eintritt.It will be appreciated by those skilled in the art that Figures 4 and 5 may be applied to the case in which the deoxygenated Air mixture is mixed homogeneously with the compressor air. However, the diagrams can be expanded the effects of head-end injection and the mixing of the low-oxygen air mixture with the Approximate fuel by taking the abscissa as the volume percent oxygen in air for the stoichiometric flame zone is considered, assuming that all of the low-oxygen air mixture enters the flame zone.
130061/0316130061/0316
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11363780A | 1980-01-21 | 1980-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3100751A1 true DE3100751A1 (en) | 1982-01-07 |
Family
ID=22350641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19813100751 Withdrawn DE3100751A1 (en) | 1980-01-21 | 1981-01-13 | "METHOD FOR OPERATING A STATIONARY GAS TURBINE AND POWER SUPPLY SYSTEM EQUIPPED WITH THIS" |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS56115825A (en) |
DE (1) | DE3100751A1 (en) |
GB (1) | GB2067668A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3408937A1 (en) * | 1984-01-31 | 1985-08-08 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | COMBINED GAS / VAPOR POWER PLANT |
DE3416182A1 (en) * | 1984-02-28 | 1985-09-12 | Ruhrkohle Ag, 4300 Essen | Energy generating system |
DE3416181A1 (en) * | 1984-02-28 | 1985-09-12 | Ruhrkohle Ag, 4300 Essen | Energy generating system |
US4566267A (en) * | 1983-06-03 | 1986-01-28 | Kraftwerk Union Aktiengesellschaft | Power generating plant with an integrated coal gasification plant |
US4590760A (en) * | 1983-05-31 | 1986-05-27 | Kraftwerk Union Aktiengesellschaft | Medium-load power generating station with an integrated coal gasification plant |
US4608818A (en) * | 1983-05-31 | 1986-09-02 | Kraftwerk Union Aktiengesellschaft | Medium-load power-generating plant with integrated coal gasification plant |
US4651519A (en) * | 1983-05-31 | 1987-03-24 | Kraftwerk Union Aktiengesellschaft | Combined gas-turbine plant preceded by a coal gasification plant |
US4663931A (en) * | 1983-06-03 | 1987-05-12 | Kraftwerk Union Aktiengesellschaft | Power generating station with an integrated coal gasification plant |
DE3545524A1 (en) * | 1985-12-20 | 1987-07-02 | Kraftwerk Union Ag | Multi-stage combustion chamber for the combustion of nitrogen-containing gas with reduced NOx emission and process for the operation thereof |
US4861369A (en) * | 1986-11-25 | 1989-08-29 | Korf Engineering Gmbh | Process for gaining electric energy in addition to producing molten pig iron and an arrangement for carrying out the process |
RU2463463C2 (en) * | 2010-12-24 | 2012-10-10 | Валерий Игнатьевич Гуров | Combined power system |
DE102014211266A1 (en) * | 2014-06-12 | 2015-12-17 | Siemens Aktiengesellschaft | Supply of nitrogen from an air separation plant in a stationary gas turbine |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3331152A1 (en) * | 1983-08-30 | 1985-03-07 | Brown, Boveri & Cie Ag, 6800 Mannheim | METHOD FOR OPERATING A GAS TURBINE PLANT COMBINED WITH A FUEL GASIFICATION PLANT |
DE3415224A1 (en) * | 1984-04-21 | 1985-10-24 | Kraftwerk Union AG, 4330 Mülheim | GAS TURBINE AND STEAM POWER PLANT WITH AN INTEGRATED COAL GASIFICATION PLANT |
US5402631A (en) * | 1991-05-10 | 1995-04-04 | Praxair Technology, Inc. | Integration of combustor-turbine units and integral-gear pressure processors |
FR2690711B1 (en) * | 1992-04-29 | 1995-08-04 | Lair Liquide | METHOD FOR IMPLEMENTING A GAS TURBINE GROUP AND COMBINED ENERGY AND AT LEAST ONE AIR GAS ASSEMBLY. |
US5388395A (en) * | 1993-04-27 | 1995-02-14 | Air Products And Chemicals, Inc. | Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output |
US5459994A (en) * | 1993-05-28 | 1995-10-24 | Praxair Technology, Inc. | Gas turbine-air separation plant combination |
US5406786A (en) * | 1993-07-16 | 1995-04-18 | Air Products And Chemicals, Inc. | Integrated air separation - gas turbine electrical generation process |
AU3568395A (en) * | 1995-09-16 | 1997-04-01 | Krupp Uhde Gmbh | Power-generation method using combined gas and steam turbines |
US5740673A (en) * | 1995-11-07 | 1998-04-21 | Air Products And Chemicals, Inc. | Operation of integrated gasification combined cycle power generation systems at part load |
GB9523573D0 (en) * | 1995-11-17 | 1996-01-17 | Boc Group Plc | Gas manufacture |
US5666823A (en) * | 1996-01-31 | 1997-09-16 | Air Products And Chemicals, Inc. | High pressure combustion turbine and air separation system integration |
US5901547A (en) * | 1996-06-03 | 1999-05-11 | Air Products And Chemicals, Inc. | Operation method for integrated gasification combined cycle power generation system |
US6217681B1 (en) | 1998-04-14 | 2001-04-17 | Air Products And Chemicals, Inc. | Method for oxygen-enhanced combustion using a vent stream |
US7690204B2 (en) * | 2005-10-12 | 2010-04-06 | Praxair Technology, Inc. | Method of maintaining a fuel Wobbe index in an IGCC installation |
US20090223201A1 (en) * | 2008-03-10 | 2009-09-10 | Anand Ashok K | Methods of Injecting Diluent Into A Gas Turbine Assembly |
-
1980
- 1980-12-09 GB GB8039427A patent/GB2067668A/en not_active Withdrawn
-
1981
- 1981-01-09 JP JP126781A patent/JPS56115825A/en active Pending
- 1981-01-13 DE DE19813100751 patent/DE3100751A1/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4590760A (en) * | 1983-05-31 | 1986-05-27 | Kraftwerk Union Aktiengesellschaft | Medium-load power generating station with an integrated coal gasification plant |
US4676063A (en) * | 1983-05-31 | 1987-06-30 | Kraftwerk Union Aktiengesellschaft | Medium-load power generating station with an integrated coal gasification plant |
US4651519A (en) * | 1983-05-31 | 1987-03-24 | Kraftwerk Union Aktiengesellschaft | Combined gas-turbine plant preceded by a coal gasification plant |
US4608818A (en) * | 1983-05-31 | 1986-09-02 | Kraftwerk Union Aktiengesellschaft | Medium-load power-generating plant with integrated coal gasification plant |
US4566267A (en) * | 1983-06-03 | 1986-01-28 | Kraftwerk Union Aktiengesellschaft | Power generating plant with an integrated coal gasification plant |
US4663931A (en) * | 1983-06-03 | 1987-05-12 | Kraftwerk Union Aktiengesellschaft | Power generating station with an integrated coal gasification plant |
DE3408937A1 (en) * | 1984-01-31 | 1985-08-08 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | COMBINED GAS / VAPOR POWER PLANT |
EP0150340B1 (en) | 1984-01-31 | 1988-05-18 | Asea Brown Boveri Ag | Method of operating a combined gas/steam turbine power plant |
DE3416181A1 (en) * | 1984-02-28 | 1985-09-12 | Ruhrkohle Ag, 4300 Essen | Energy generating system |
DE3416182A1 (en) * | 1984-02-28 | 1985-09-12 | Ruhrkohle Ag, 4300 Essen | Energy generating system |
DE3545524A1 (en) * | 1985-12-20 | 1987-07-02 | Kraftwerk Union Ag | Multi-stage combustion chamber for the combustion of nitrogen-containing gas with reduced NOx emission and process for the operation thereof |
US4861369A (en) * | 1986-11-25 | 1989-08-29 | Korf Engineering Gmbh | Process for gaining electric energy in addition to producing molten pig iron and an arrangement for carrying out the process |
RU2463463C2 (en) * | 2010-12-24 | 2012-10-10 | Валерий Игнатьевич Гуров | Combined power system |
DE102014211266A1 (en) * | 2014-06-12 | 2015-12-17 | Siemens Aktiengesellschaft | Supply of nitrogen from an air separation plant in a stationary gas turbine |
Also Published As
Publication number | Publication date |
---|---|
JPS56115825A (en) | 1981-09-11 |
GB2067668A (en) | 1981-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3100751A1 (en) | "METHOD FOR OPERATING A STATIONARY GAS TURBINE AND POWER SUPPLY SYSTEM EQUIPPED WITH THIS" | |
EP0150340B1 (en) | Method of operating a combined gas/steam turbine power plant | |
DE2743830C2 (en) | Method for operating a combined gas-steam power plant and gas-steam power plant for carrying out the method | |
DE69400252T2 (en) | Use of nitrogen from an air separation plant to cool the supply air to the compressor of a gas turbine and thereby increase the efficiency | |
DE69403719T2 (en) | Gas turbine | |
DE69907843T2 (en) | Thermal power plant | |
DE69722270T2 (en) | METHOD FOR GENERATING FORCE AND / OR HEAT DEACTIVATING A CONDUCTIVE MIXED MEMBRANE REACTOR | |
DE69910441T2 (en) | METHOD FOR RECOVERING CARBON DIOXIDE | |
DE3047148A1 (en) | Energy recovery from in-situ retorting by-prod. gas - involving partial combustion by catalytic oxidn. | |
DE3702654A1 (en) | METHOD FOR OPERATING A GAS TURBINE PLANT WITH LOW-VALUE FUEL | |
DE2408635B2 (en) | Process for burning gaseous or liquid fuel | |
DE2524723A1 (en) | COMBINED GAS-STEAM POWER PLANT WITH COMPRESSED GAS GENERATOR | |
DE2261591A1 (en) | INCINERATION PROCESS AND BURNER FOR CARRYING OUT THE PROCESS | |
DE102011115363A1 (en) | Power plant and process for its operation | |
DE69231982T2 (en) | Adding steam to a gas turbine | |
DD270561A5 (en) | GAS TURBINE PLANT ENGINEERABLE BY WATER-SUPPRESSIVE FUEL AND METHOD FOR EXPLOITING THE HEATING VALUE OF SAID FUEL | |
CH698638A2 (en) | A method for injecting a diluent into a gas turbine arrangement. | |
EP2690158A1 (en) | Multistage method for producing a hydrogen-containing gaseous fuel and thermal gas generator plant | |
CH661097A5 (en) | METHOD FOR DISTRIBUTING RESIDUAL GAS INTO THE ATMOSPHERA. | |
DE2554848A1 (en) | THERMAL POWER PLANT WITH OXYGEN-FUELED COMPRESSED GAS GENERATOR | |
DE3139209A1 (en) | "METHOD FOR OPERATING A COMBINED GAS-VAPOR TURBINE PLANT AND PLANT FOR CARRYING OUT THE METHOD | |
DE102007060550A1 (en) | System and process for low emission combustion | |
EP0272410A2 (en) | Steam generator with fluidised-bed combustion | |
DE1792020A1 (en) | Process for gasifying hydrocarbons | |
DE3340892C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8139 | Disposal/non-payment of the annual fee |