[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE2366118C2 - Method of manufacturing a three-layer optical fiber - Google Patents

Method of manufacturing a three-layer optical fiber

Info

Publication number
DE2366118C2
DE2366118C2 DE2366118A DE2366118A DE2366118C2 DE 2366118 C2 DE2366118 C2 DE 2366118C2 DE 2366118 A DE2366118 A DE 2366118A DE 2366118 A DE2366118 A DE 2366118A DE 2366118 C2 DE2366118 C2 DE 2366118C2
Authority
DE
Germany
Prior art keywords
layer
optical fiber
tube
manufacturing
layer optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2366118A
Other languages
German (de)
Inventor
Kunio Fujiwara
Shiro Osaka Kurosaki
Satoshi Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US404567A external-priority patent/US3877912A/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to DE2366118A priority Critical patent/DE2366118C2/en
Application granted granted Critical
Publication of DE2366118C2 publication Critical patent/DE2366118C2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/14Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

1515th

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer optischen Dreischichtfaser, die durch Ausziehen eines Rohres hergestellt wird, in dessen innerem Raum zwei weitere zylindrische Teile konzentrisch zueinander angeordnet werden.The invention relates to a method of manufacturing a three-layer optical fiber, which by Pulling out a pipe is made, in the inner space of which two more cylindrical parts are concentric be arranged to each other.

Es sind dreischichtige Lichtleiter bekannt (US-PS 37 37 293 sowie DE-OS 19 13 358), welche aus einem Kern, einer mittleren Schicht sowie einer äußeren Schicht gebildet sind. Bei diesen Lichtleitern dient der Kern zur Übertragung des Lichtes, und demzufolge weist das Material der mittleren Schicht einen Brechungsindex auf, der kleiner als der des Kerns und niedriger oder gleich groß als bzw. wie der der äußeren Schicht ist. Infolge der relativ kleinen Abmessungen des Kerns können bei der Übertragung von Licht durch Abmessungsschwankungen relativ große und nicht vorhersehbare Verzerrungen auftreten.There are three-layer light guides known (US-PS 37 37 293 and DE-OS 19 13 358), which consists of a Core, a middle layer and an outer layer are formed. The is used for these light guides Core for the transmission of light, and consequently the material of the middle layer has a Refractive index that is smaller than that of the core and lower than or equal to that of the outer Shift is. Due to the relatively small dimensions of the core, light can be transmitted through it Dimensional fluctuations cause relatively large and unpredictable distortions.

Der Erfindung liegt daher die Aufgabe zugrunde, ein einfaches und billiges Verfahren zur Herstellung einer optischen Dreischichtenfaser zu schaffen.The invention is therefore based on the object of a simple and cheap method for producing a to create three-layer optical fiber.

Gelöst wird diese Aufgabe durch die in dem Patentanspruch gegebene Lehre. Durch Verwendung eines Vollzylinders und eines Rohres mit einer zwischen beiden Teilen befindlichen Schicht aus einem Material mit einem höheren Brechungsindex als dem des Mantels und des Kerns, wird eine optische Dreischichtenfaser geschaffen, bei welcher die Übertragung des Lichtes in dieser Schicht erfolgt. Diese Schicht hat im Vergleich zu einer Faser mit Übertragung im Kern einen relativ « großen Durchmesser, und entsprechend sind die Verzerrungen bei der Übertragung gering.This problem is solved by the teaching given in the patent claim. By using a solid cylinder and a tube with a layer of one material located between the two parts having a refractive index higher than that of the clad and the core, becomes a three-layer optical fiber created, in which the transmission of light takes place in this layer. This layer has compared to a fiber with transmission in the core has a relatively large diameter, and accordingly they are Low distortion during transmission.

Nach einem älteren Vorschlag (DE-PS 23 51 354) wird eine optische Dreischichtenfaser hergestellt, bei welcher ebenfalls die mittlere Schicht zur Übertragung des Lichtes dient. Die Herstellung dieser Faser ist jedoch verhältnismäßig kompliziert, da auf einem inneren Vollzylinder nacheinander mehrere Schichten aufgebracht werden müssen, bevor der äußere Hohlzylinder mit dem beschichteten Vollzylinder ausgezogen werden kann.According to an older proposal (DE-PS 23 51 354), a three-layer optical fiber is produced at which also serves the middle layer to transmit the light. The manufacture of this fiber is however, it is relatively complicated, since several layers are placed one after the other on an inner solid cylinder must be applied before the outer hollow cylinder is pulled out with the coated solid cylinder can be.

Die Erfindung wird nachstehend an Hand der Zeichnung beispielsweise erläutertThe invention is explained below with reference to the drawing, for example

In der Figur ist ein Rohr 11 dargestellt, das aus Quarzglas besteht Mit 12 ist eine Schicht bezeichnet die einen Brechungsindex hat, der um mehrere Prozent z. B. bis 10%, größer als der des Materials des Rohres 11 ist Die Schicht 12 befindet sich an der Innenfläche des Rohres 11 und weist eine gleichmäßige Dicke auf. Ein Vollzylinder 13 aus dem gleichen Material wie dem des Rohres 11 ist konzentrisch zu diesem angeordnet Mit 15 ist ein Hochtemperaturofen bezeichnet und mit 16 ist die gesponnene Faser aus den Schichten 1, 2, 3 bezeichnet Der Vollzylinder 13 und das Rohr 11 werden in dem Hochtemperaturofen 15 rundum derartig erhitzt, daß sie dünnflüssig werden und zu einer fadenartigen Gestalt verschmelzen. Die Querschnitte des Rohres 11, der Schicht 12- und des Vollzylinders 13 werden so verringert, daß diese drei Elemente miteinander vesponnen werden, wobei die Elemente einander berühren, ohne daß Zwischenräume vorhanden sind Das entstandene Gebilde kann nochmals erhitzt werden, um den Durchmesser weiter auf eine gewünschte Abmessung zu verringern. Auch kann eine weitere Wärmebehandlung durchgeführt werden, um die optischen Übertragungseigenschaften der Schicht 12 zu verbessern, beispielsweise kann eine Wärmebehandlung über mehr als 30 Minuten bei einer Temperatur von 500 bis 1000° C durchgeführt werden.In the figure, a tube 11 is shown, which consists of Quartz glass consists of 12 with a layer which has a refractive index that is several percent z. B. up to 10%, greater than that of the material of the tube 11 The layer 12 is located on the inner surface of the tube 11 and has a uniform thickness. A Solid cylinder 13 made of the same material as that of the tube 11 is arranged concentrically to this with 15 a high-temperature furnace is designated and 16 is the spun fiber from layers 1, 2, 3 The solid cylinder 13 and the tube 11 are heated all around in the high-temperature furnace 15 in such a way that that they become thin and melt into a thread-like shape. The cross sections of the pipe 11, the layer 12 and the solid cylinder 13 are reduced so that these three elements with each other are spun, the elements touching each other without any gaps The resulting structure can be heated again to further reduce the diameter to a desired one Reduce dimension. A further heat treatment can also be carried out in order to improve the optical properties To improve the transmission properties of the layer 12, for example a heat treatment be carried out for more than 30 minutes at a temperature of 500 to 1000 ° C.

Als Beispiel wird ein Verfahren beschrieben, bei welchem auf die Innenfläche des Rohres 11 eine Schicht aus S1O2, welches Titandioxid enthält aufgebracht wird. Ein Dampfgemisch aus Siliciumtetrachlorid und Titantetrachlorid wird zusammen mit Sauerstoff durch eine Sauerstoff-Wasserstoff-Flamme geführt, um das Gemisch zu hydrolysieren, so daß Siliciumdioxid und Titandioxid vorliegen. Die oxidischen Partikel werden am Rohr 11 an der Innenwand bei 16000C unter einer Sauerstoffatmosphäre zusammengeschmolzen.As an example, a method is described in which a layer of S1O2, which contains titanium dioxide, is applied to the inner surface of the tube 11. A vapor mixture of silicon tetrachloride and titanium tetrachloride is passed along with oxygen through an oxygen-hydrogen flame to hydrolyze the mixture so that silicon dioxide and titanium dioxide are present. The oxidic particles are melted together on the inner wall of the tube 11 at 1600 ° C. under an oxygen atmosphere.

Beim vorgenannten Beispiel wird in zwei Schritten gearbeitet, die Temperatur der Sauerstoff-Wasserstoff-Flamme kann jedoch auch höher sein, so daß beide Schritte gleichzeitig durchgeführt werden.The above example works in two steps, the temperature of the oxygen-hydrogen flame however, it can also be higher so that both steps are carried out at the same time.

Es ist auf diese Weise möglich, an der Innenfläche des Zylinders 11 eine Schicht 12 zu bilden, die einen Brechungsindex hat, der um mehrere Prozent größer als der Brechungsindex des Zylinders 11 ist Es wird dann eine runde Stange 13 in das Innere des Zylinders 11 eingesetzt und gleichachsig dort gehalten. Das Material der runden Stange 13 ist das gleiche wie das Material des Zylinders 11. Das Material für die Schicht 12 kann optisches Glas oder geschmolzene Kieselsäure, welche mit einem oder mehreren Metalloxiden, wie den Oxiden von Titan, Tantal, Zinn, Niob, Zirkonium, Aluminium oder Alkali- oder Erdalkalimetallen oder dgl. dotiert ist, um den gewünschten Brechungsindex zu erhalten.In this way it is possible to work on the inner surface of the Cylinder 11 to form a layer 12 which has a refractive index that is several percent greater than The index of refraction of the cylinder 11 is It will then a round rod 13 inserted into the interior of the cylinder 11 and held equiaxed there. The material of the round rod 13 is the same as the material of the cylinder 11. The material for the layer 12 can optical glass or fused silica, which is mixed with one or more metal oxides, such as the oxides is doped with titanium, tantalum, tin, niobium, zirconium, aluminum or alkali or alkaline earth metals or the like, to get the desired index of refraction.

Hierzu 1 Blatt Zeichnungen1 sheet of drawings

Claims (1)

Patentanspruch:Claim: Verfahren zur Herstellung einer optischen Dreischichtenfaser, die durch Ausziehen eines Rohres hergestellt wird, in dessen innerem Raum zwei weitere zylindrische Teile konzentrisch zueinander angeordnet werden, dadurch gekennzeichnet, daß als innerster Teil ein Vollzylinder verwendet wird und daß auf dem Vollzylinder oder an der inneren Wandung des Rohres eine Schicht mit einem Brechungsindex, der größer ist als der des Vollzylinders und des Rohres, aufgebracht wird.A method of manufacturing a three-layer optical fiber formed by drawing out a tube is produced, in the inner space of which two further cylindrical parts concentric to one another are arranged, characterized in that a full cylinder as the innermost part is used and that on the solid cylinder or on the inner wall of the tube a layer with a refractive index that is greater than that of the solid cylinder and the tube.
DE2366118A 1973-10-09 1973-10-17 Method of manufacturing a three-layer optical fiber Expired DE2366118C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2366118A DE2366118C2 (en) 1973-10-09 1973-10-17 Method of manufacturing a three-layer optical fiber

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US404567A US3877912A (en) 1973-10-09 1973-10-09 Method of producing an optical transmission line
GB4717273A GB1427826A (en) 1973-10-09 1973-10-09 Method of producing an optical transmission line
FR7336053A FR2246507B1 (en) 1973-10-09 1973-10-09
DE2366118A DE2366118C2 (en) 1973-10-09 1973-10-17 Method of manufacturing a three-layer optical fiber
DE2352003A DE2352003C3 (en) 1973-10-09 1973-10-17 Method of manufacturing a multilayer optical fiber

Publications (1)

Publication Number Publication Date
DE2366118C2 true DE2366118C2 (en) 1983-12-08

Family

ID=27510324

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2366118A Expired DE2366118C2 (en) 1973-10-09 1973-10-17 Method of manufacturing a three-layer optical fiber

Country Status (1)

Country Link
DE (1) DE2366118C2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913358A1 (en) * 1968-03-15 1969-11-20 Nihon Itagarasu Kabushiki Kais Light-guiding glass structure and method for making same
US3737293A (en) * 1972-01-03 1973-06-05 Corning Glass Works Method of forming an economic optical waveguide fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913358A1 (en) * 1968-03-15 1969-11-20 Nihon Itagarasu Kabushiki Kais Light-guiding glass structure and method for making same
US3737293A (en) * 1972-01-03 1973-06-05 Corning Glass Works Method of forming an economic optical waveguide fiber

Similar Documents

Publication Publication Date Title
DE2906070C2 (en) Process for manufacturing optical waveguides
DE2919080A1 (en) METHOD OF MANUFACTURING OPTICAL FIBER
DE2945804C2 (en) Single mode optical fiber
DE2711295A1 (en) METHOD OF MANUFACTURING AN OPTICAL FIBER WITH IMPROVED CIRCULAR SHAPE IN CROSS SECTION
DE2313203A1 (en) LIGHT-FOCUSING OPTICAL FIBER
CH656232A5 (en) PROTECTION AGAINST UNAUTHORIZED TAP, RADIATION-RESISTANT LIGHT-FIBER.
DE2313276A1 (en) METHOD OF MANUFACTURING OPTICAL GLASS
DE19537379A1 (en) Optical fiber preform and method of making the same
DE2352003B2 (en) Method of manufacturing a multilayer optical fiber
EP0474986A1 (en) Process for producing glass optical fibres of increased tensile strength
CH641427A5 (en) METHOD FOR PRODUCING A MONO MODE LICHTLEITFASER elliptical core CROSS SECTION.
DE2434717A1 (en) Process for the production of optical fibers and their preliminary stages
DE2351354A1 (en) METHOD OF MANUFACTURING A LIGHT GUIDE
DE2358880B2 (en) Fused Silica Optical Fiber Using Dopant Material and Process for Making It
EP0017742B1 (en) Method for fabricating a multiple-core optical fiber
DE2625010C3 (en) Process for the manufacture of an optical fiber preform
DE2804467B2 (en) Optical fiber with an intermediate layer which is arranged between the core and the cladding and is produced by chemical vapor reaction and which has essentially the same refractive index as the cladding, as well as a process for the production of such a fiber
DE2714804A1 (en) MANUFACTURING METHOD OF A LIGHT GUIDE PREFORM
DE2906523A1 (en) METHOD OF MANUFACTURING OPTICAL FIBERS
DE2335142C2 (en) Optical fiber and its method of manufacture
DE3008416A1 (en) METHOD FOR PRODUCING A FIBERGLASS FIBER
DE2827303C2 (en) Process for the production of a glass object and its application
DE2930816C2 (en) Optical fiber with a cladding glass, mainly made of quartz glass, and a core glass made of quartz glass, doped with Ge0? 2? and P? 2? 0? 5?, Ti0? 2?, Al? 2? 0? 3? and / or Ga? 2? 0? 3?
WO2001040126A1 (en) Quartz glass blank for a light-conducting fiber and a method for production of said blank
DE2730346A1 (en) METHOD OF MANUFACTURING OPTICAL FIBERS

Legal Events

Date Code Title Description
OI Miscellaneous see part 1
OD Request for examination
8125 Change of the main classification

Ipc: C03B 37/025

8126 Change of the secondary classification

Ipc: G02B 5/14

8181 Inventor (new situation)

Free format text: SHIRAISHI, SATOSHI FUJIWARA, KUNIO KUROSAKI, SHIRO, OSAKA, JP

8128 New person/name/address of the agent

Representative=s name: KOHLER, M., DIPL.-CHEM. DR.RER.NAT., 8000 MUENCHEN

AC Divided out of

Ref country code: DE

Ref document number: 2352003

Format of ref document f/p: P

D2 Grant after examination
8364 No opposition during term of opposition