-
Die Erfindung betrifft ein gegossenes Bauteil mit einer Markierung und eine Gruppe von Bauteilen.
-
Bauteile, sowie auch gegossene Bauteile weisen seitens des Herstellers oft eine Identifikationsnummer auf, um das Bauteil unverwechselbar zu kennzeichnen und damit zu registrieren.
-
Die
DE 102 07 279 A1 offenbart ein Verfahren zum Herstellen eines gegossenen Bauteils, das eine sich fortschreibende Identifikationsnummer aufweist. Dabei wird die jeweils unterschiedliche Identifikationsnummer beim Gießen in das Bauteil eingebracht.
-
Es ist daher Aufgabe der Erfindung ein vereinfachtes gegossenes Bauteil mit einer Markierung aufzuzeigen.
-
Die Aufgabe wird gelöst durch ein gegossenes Bauteil gemäß Anspruch 1 und durch eine Gruppe von Bauteilen gemäß Anspruch 14.
-
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die in vorteilhafter Art und Weise miteinander kombiniert werden können, um weitere Vorteile zu erzielen.
-
Beim erfindungsgemäßen Bauteil sind die unterschiedlichen Identifikationsnummern erst nachträglich eingebracht, nachdem, das Gussverfahren des Bauteils erfolgreich abgeschlossen wurde. Der Schritt des Einbringens oder die Vorbereitungen des Einbringens der Identifikationsnummer sind damit unabhängig von Ausschussraten des Gussverfahrens.
-
Das Bauteil hat daher gegenüber der
DE 102 07 279 A1 folgende Vorteile. Wenn eine Identifikationsnummer festgelegt wird, so muss diese beim Stand der Technik schon in der Gussform enthalten sein. Dieses entsprechende Gussmuster muss jedes Mal individuell in die Keramikform eingebracht werden. Auch Gussformen unterliegen einer gewissen Ausschussrate, so dass eine mit einer Identifikationsnummer versehene Gussform gegebenenfalls nicht verwendet wird oder erneut hergestellt werden muss. Somit können keine einheitlichen Gussformen für dasselbe Bauteil verwendet werden.
-
Ebenso kommt es vor, dass ein gegossenes Bauteil nach dem Gießen nicht verwendet werden kann, da es Risse, Lunker oder Formabweichungen aufweist, so dass das Bauteil verworfen wird. In dem Fall wurde aber schon eine Identifikationsnummer vergeben, die dann nochmals in einer Keramikform verwendet werden kann oder nicht mehr verwendet wird. Insbesondere bei einer durchgehenden Nummerierung, wie z. B. bei 20 Turbinenschaufeln für die Reihe 1 einer Turbine, also Stufe 1, Leit 1, Leit 2, ... Leit 20 muss entweder beim Stand der Technik das fehlerhafte Bauteil, z. B. Leit 15 noch mal hergestellt werden oder die Nummerierung Leit 15 wird nicht verwendet, sondern Leit 21 wird hinzugefügt. Dies führt jedoch immer zur Unübersichtlichkeit in der Nummerierung.
-
Das nachträgliche Einbringen der Identifikationsnummer weist fast keine oder keine Ausschussrate auf; hingegen weist die Herstellung von keramischen Gussformen eine deutlich verschiedene Ausschussrate auf.
-
Es zeigen
-
1 der Ablauf eines Verfahrens für die Herstellung eines gegossenen Bauteils,
-
2, 3, 4, 5 Bauteile.
-
6 eine Gasturbine,
-
7 perspektivisch eine Turbinenschaufel,
-
8 perspektivisch eine Brennkammer,
-
9 eine Liste von Superlegierungen.
-
1 zeigt den ersten Schritt des Verfahrens zur Herstellung eines gegossenen Bauteils 7, 120, 130, 155 (6, 7, 8) mit einer Markierung 11.
-
Die Markierung 11 weist ein feststehendes, also ein für viele Bauteile 7, 120, 130, 155 immer wiederverwendetes Logo 10 mit einer noch festzulegenden Identifikationskennzeichnung 13 auf. Das Logo 10 wird für eine Gruppe von Bauteilen 7, 120, 130, 155 nur einmal verwendet, wobei jedoch jeweils unterschiedliche Identifikationskennzeichnungen 13 verwendet werden.
-
Für die Herstellung des Bauteils 120, 130, 155 wird geschmolzenes Metall 4 in eine Gussform 1 eingebracht, die ein entsprechendes Negativ eines feststehenden Logos 10 aufweist. Für das Gießverfahren kann jedes beliebige Verfahren nach dem Stand der Technik verwendet werden.
-
Das Logo kann von der Oberfläche des Bauteils 7, 120, 130, 155 erhaben oder vertieft sein.
-
Neben CC-Legierungen können auch kolumnar erstarrte oder einkristalline Bauteile 7, 120, 130 mit dem Gussverfahren hergestellt werden.
-
Nach dem Gießen und Abkühlen wird die Gussform 1 entfernt und das Bauteil 7, 120, 130, 155 weist ein gewünschtes feststehendes Logo 10 auf. Das Logo 10 ist beispielsweise der Firmenname des Gießers oder der Auftraggeber des Gießers, wie z. B. SIEMENS oder der Name des Kunden des Turbinenherstellers.
-
In einem weiteren Verfahrensschritt, der sich nach dem Gießen anschließt, wird die Identifikationskennzeichnung 13 eingebracht.
-
Diese Identifikationskennzeichnung 13 wird für jedes Bauteil 7, 120, 130, 155 festgelegt. Dadurch wird die Markierung 11, die vorzugsweise nur aus dem Logo 10 und der Identifikationskennzeichnung 13 besteht, unverwechselbar.
-
Wenn die Identifikationskennzeichnung 13 erhaben sein soll, wird vorzugsweise beim Guss an der entsprechenden Stelle lokal mehr Material vorgesehen (4), das dann partiell abgetragen wird.
-
Ebenso kann Material aufgetragen werden, z. B. durch Schweißen, Löten, Beschichten mit Maskierung (5), das dann ggf. bearbeitet wird, um die Identifikationsnummer 13 herauszuarbeiten oder das Schweiß- bzw. Lotgut wird direkt so aufgetragen, dass es eine Zeichenfolge, eine Nummer oder einen Strichcode darstellt.
-
Die Identifikationskennzeichnung 13 ist vorzugsweise ein Strichcode, eine Nummer aber eine alphanumerische Abfolge und kann erhoben (2) oder vertieft (3) sein.
-
Erhoben bedeutet, dass sich die Identifikationskennzeichnung 13 von der umgebenden Oberfläche 19 um die Identifikationsnummer 13 des Bauteils 7, 120, 130, 155 abhebt. Entsprechendes gilt für eine vertiefte Identifikationskennzeichnung 13.
-
Die Identifikationsnummer 13 kann mittels verschiedener Bearbeitungsverfahren, wie z. B. Laser, EDM, Stanzung, Gravierung oder dgl. eingebracht werden.
-
Vorzugsweise werden das Logo 10 und die Identifikationskennzeichnung 13 bei einer Turbinenschaufel 120, 130 im Wurzelbereich 400 angebracht. Die Identifikationsnummer 13 kann auch vorzugsweise ein RFID sein.
-
In 4 auf der linken Seite ist eine Erhebung 16 (z. B. beim Gießen mit abgegossen oder aufgeschweißt oder gelötet) vorhanden, aus der dann die Identifikationskennzeichnung 13, hier ein Strichcode, herausgearbeitet wird (4 rechts).
-
5 zeigt das Beschichten eines Bauteils 7 mit Beschichtungsmaterial 25, welches aus einer Beschichtungsdüse 22 tritt. Oberhalb eines Bauteils 7, 120, 130, 155 ist eine Maske 28 mit einem bestimmten Muster vorhanden, dass der Identifikationskennzeichnung 13 entspricht.
-
Dies kann auch beim Beschichten des Bauteils 7 erfolgen, d. h., die Identifikationsnummer besteht aus dem gleichen Material wie eine Beschichtung (MCrAl und/oder keramische Beschichtung) des Bauteils, deren Legierungen in 8 aufgelistet sind.
-
Die 6 zeigt beispielhaft eine Gasturbine 106 in einem Längsteilschnitt.
-
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
-
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
-
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
-
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
-
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
-
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
-
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
-
Die dem heilen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
-
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d. h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur). Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
-
Solche Superlegierungen sind beispielsweise aus der
EP 1 204 776 B1 ,
EP 1 306 454 ,
EP 1 319 729 A1 ,
WO 99/67435 oder
WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierungen Teil der Offenbarung.
-
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.
-
Die 7 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
-
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
-
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
-
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
-
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
-
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
-
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
-
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
-
Solche Superlegierungen sind beispielsweise aus der
EP 1 204 776 B1 ,
EP 1 306 454 ,
EP 1 319 729 A1 ,
WO 99/67435 oder
WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen. Zusammensetzung der Legierung Teil der Offenbarung.
-
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
-
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
-
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z. B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d. h. zum, einkristallinen Werkstück, oder gerichtet erstarrt.
-
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d. h. Körner, die über die ganze Länge, des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d. h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
-
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
-
Solche Verfahren sind aus der
US-PS 6,024,792 und der
EP 0 892 090 A1 bekannt; diese Schriften sind bzgl. des Erstarrungsverfahrens Teil der Offenbarung.
-
Ebenso können die Schaufeln
120,
130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der
EP 0 486 489 B1 ,
EP 0 786 017 B1 ,
EP 0 412 397 B1 oder
EP 1 306 454 A1 , die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen. Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
-
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown Oxide layer).
-
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d. h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
-
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. Durch geeignete Beschichtungsverfahren wie z. B. Elektronen strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
-
Andere Beschichtungsverfahren sind denkbar, z. B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.
-
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.
-
Die 8 zeigt eine Brennkammer 110 der Gasturbine 100. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
-
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
-
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitze-Schildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
-
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
-
Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf). Solche Legierungen sind bekannt aus der
EP 0 486 489 B1 ,
EP 0 786 017 B1 ,
EP 0 412 397 B1 oder
EP 1 306 454 A1 , die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen.
-
Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d. h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
-
Durch geeignete Beschichtungsverfahren wie z. B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
-
Andere Beschichtungsverfahren sind denkbar, z. B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.
-
Wiederaufarbeitung (Refurbishment) bedeutet, dass Turbinenschaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z. B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155.
-
In 9 werden Superlegierungen aufgelistet, mittels deren das Gießverfahren durchgeführt werden kann.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- DE 10207279 A1 [0003, 0008]
- EP 1204776 B1 [0045, 0055]
- EP 1306454 [0045, 0055]
- EP 1319729 A1 [0045, 0055]
- WO 99/67435 [0045, 0055]
- WO 00/44949 [0045, 0055]
- US 6024792 [0061]
- EP 0892090 A1 [0061]
- EP 0486489 B1 [0062, 0072]
- EP 0786017 B1 [0062, 0072]
- EP 0412397 B1 [0062, 0072]
- EP 1306454 A1 [0062, 0072]