DE19956802A1 - Waschmitteltabletten - Google Patents
WaschmitteltablettenInfo
- Publication number
- DE19956802A1 DE19956802A1 DE19956802A DE19956802A DE19956802A1 DE 19956802 A1 DE19956802 A1 DE 19956802A1 DE 19956802 A DE19956802 A DE 19956802A DE 19956802 A DE19956802 A DE 19956802A DE 19956802 A1 DE19956802 A1 DE 19956802A1
- Authority
- DE
- Germany
- Prior art keywords
- acid
- contain
- weight
- detergent tablets
- granules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/32—Protein hydrolysates; Fatty acid condensates thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0073—Tablets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Vorgeschlagen werden Waschmitteltabletten, welche sich dadurch auszeichnen, daß sie Tensidgranulate enthalten, die man durch Granulation und Kompaktierung von Proteinen und/oder Proteinderivaten in Gegenwart von Sprengmitteln enthält.
Description
Die Erfindung befindet sich auf dem Gebiet der geformten Waschmittel und betrifft Tabletten mit spezi
ellen Tensidgranulaten.
Zur Herstellung von festen Wasch-, Spül- und Reinigungsmitteln werden heutzutage bevorzugt Tenside
in granularer, praktisch wasserfreier Form ein gesetzt. Zur Herstellung solcher Anbietungsformen ha
ben sich die unterschiedlichsten Verfahren als geeignet erwiesen. Gemeinsam ist den im Handel be
findlichen Tensidgranulaten jedoch, daß sie über eine unzureichende Auflösegeschwindigkeit insbe
sondere in kaltem Wasser verfügen. Waschmitteltabletten, die auf Basis von anionischen oder nichtio
nischen Tensidgranulaten hergestellt werden, können aus diesem Grunde trotz Mitverwendung von
erheblichen Mengen an Sprengmitteln nicht direkt in die Einspülkammer der Waschmaschine einge
setzt, sondern müssen der Waschflotte direkt zugesetzt werden.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, Waschmitteltabletten zur Verfü
gung zu stellen, die bei Kontakt mit kaltem Wasser besonders schnell ohne Bildung einer Gelphase
zerfallen, so daß die Nachteile des Stands der Technik zuverlässig überwunden werden.
Gegenstand der Erfindung sind Waschmitteltabletten, die sich dadurch auszeichnen, daß sie Tensid
granulate enthalten, die man durch Granulation und Kompaktierung von Proteinen und/oder Proteinde
rivaten, gegebenenfalls zusammen mit anionischen und/oder nichtionischen Tensiden in Gegenwart
von Sprengmitteln enthält.
Überraschenderweise wurde gefunden, daß Waschmitteltabletten auf Basis der neuen Tensidgranulate
eine so hohe Auflösegeschwindigkeit zeigen, daß sie beispielsweise direkt über die Einspülkammer der
Waschmaschine eindosiert werden können und sich dort rasch und rückstandslos auflösen. Dieser
Effekt kann natürlich grundsätzlich auch bei anderen Anwendungen, beispielsweise beim maschinellen
Geschirrspülen genutzt werden. Unter dem Begriff Waschmittel werden dabei im folgenden auch ande
re Anwendungen im Bereich der Reinigung harter Oberflächen, insbesondere aber Spül- und Reini
gungsmittel verstanden.
Als Proteinkomponente kommen vorzugsweise Proteinhydrolysate sowie deren Kondensationsprodukte
mit Fettsäuren, untergeordnet auch Proteinhydrolysatester und quaternierte Proteinfettsäurekonden
sate in Frage. Proteinhydrolysate stellen Abbauprodukte von tierischen oder pflanzlichen Proteinen,
beispielsweise Collagen, Elastin oder Keratin und vorzugsweise Mandel- und Kartoffelprotein sowie
insbesondere Weizen-, Reis- und Sojaprotein dar, die durch saure, alkalische und/oder enzymatische
Hydrolyse gespalten werden und danach ein durchschnittliches Molekulargewicht im Bereich von 600
bis 4000, vorzugsweise 2000 bis 3500 aufweisen. Obschon Proteinhydrolysate in Ermangelung eines
hydrophoben Restes keine Tenside im klassischen Sinne darstellen, finden sie wegen ihrer dispergie
renden Eigenschaften vielfach Verwendung zur Formulierung oberflächenaktiver Mittel. Übersichten zu
Herstellung und Verwendung von Proteinhydrolysaten sind beispielsweise von G. Schuster und
A. Domsch in Seifen Öle Fette Wachse 108, 177 (1982) bzw. Cosm. Toil. 99, 63 (1984), von
H. W. Steisslinger in Parf. Kosm. 72, 556 (1991) und F. Aurich et al. in Tens. Surf. Det. 29, 389 (1992)
erschienen. Vorzugsweise werden pflanzliche Proteinhydrolysate auf Basis von Weizengluten oder
Reisprotein eingesetzt, deren Herstellung in den beiden Deutschen Patentschriften DE 195 02 167 C1
und DE 195 02 168 C1 (Henkel) beschrieben wird. Aus der Proteinhydrolysaten lassen sich durch Kon
densation mit C6-C22-, vorzugsweise C12-C18-Fettsäuren anionische Tenside, sogenannte Proteinfett
säurekondensate herstellen, die mit Seifen vergleichbare Eigenschaften aufweisen. Vorzugsweise
werden Kondensate der genannten Hydrolysate mit Capronsäure, Caprylsäure, 2-Ethylhexansäure,
Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäu
re, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäu
re, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure eingesetzt.
Typische Beispiele für anionische Tenside, welche ebenfalls in den Tensidgranulaten enthalten sein
können, sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glyce
rinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkysulfate, Fettalkoholethersulfate, Glyce
rinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate,
Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen,
Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-
Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Al
kyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenba
sis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, kön
nen diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
Vorzugsweise werden Alkylbenzolsulfonate, Alkylsulfate, Seifen, Alkansulfonate, Olefinsulfonate, Me
thylestersulfonate sowie deren Gemische eingesetzt. Bevorzugte Alkylbenzolsulfonate folgen vor
zugsweise der Formel (I),
R-Ph-SO3X (I)
in der R für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen,
Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium,
Alkanolammonium oder Glucammonium steht. Insbesondere von diesen geeignet sind Dodecylbenzol
sulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in
Form der Natriumsalze. Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate
bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verste
hen, die vorzugsweise der Formel (II) folgen,
R2O-SO3Y (II)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22,
vorzugsweise 12 bis 18 Kohlenstoffatomen und Y für ein Alkali- und/oder Erdalkalimetall, Ammonium,
Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die
im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol,
Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo
leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl
alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die
durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen
Oxosynthese erhalten werden. Die Suffatierungsprodukte können vorzugsweise in Form ihrer Alkali
salze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate
auf Basis von C16/18-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung
in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalko
hole, wie sie z. B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine
nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Han
delsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®,
25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der
Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten
werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alko
holen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete
Alkoholmischungen sind Lial 91®,111®, 123®,125®,145®.
Bei den nichtionischen Tensiden, die im Sinne der vorliegenden Erfindung ebenfalls als zusätzliche
Tensidkomponente der Granulate in Frage kommen, kann es sich beispielsweise um Fettalkohol
polyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether,
Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglyko
side, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizen
basis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide handeln. Sofern
die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vor
zugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden solche
nichtionische Tenside eingesetzt werden, welche sich abtrocknen lassen, insbesondere Alkyl- und/oder
Alkenyloligoglykoside, die vorzugsweise der Formel (III) folgen,
R3O-[G]p (III)
in der R3 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest
mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlä
gigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfang
reiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkyl-
und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen
stoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside
sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (III) gibt
den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für
eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß
und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo
glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt.
Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad
p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyl
oligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen
1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R3 kann sich von primären Alkoholen mit 4 bis 11, vor
zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca
prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie bei
spielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung
von Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli
goglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von
technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-
Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole
(DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R3 kann sich ferner auch von primären Alkoholen mit 12 bis
22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My
ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal
kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal
kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt
sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Werden Proteine und/oder Proteinderivate einerseits und anionische und/oder nichtionische Tenside
andererseits gemeinsam verwendet, so empfiehlt es sich, diese im Gewichtsverhältnis 1 : 10 bis 10 : 1,
vorzugsweise 1 : 5 bis 5 : 1 und insbesondere 1 : 2 bis 2 : 1 einzusetzen. Dabei können die Tenside -
einzeln oder gemeinsam - sowohl als wäßrige Pasten mit Feststoffgehalten ( = Aktivsubstanzgehalten)
von beispielsweise 1 bis 60, vorzugsweise 5 bis 50 und insbesondere 15 bis 35 Gew.-% oder als troc
kene Feststoffe mit Restwassergehalten von typischerweise unter 10 und vorzugsweise unter 5 Gew.-%
eingesetzt werden.
Unter dem Begriff Sprengmittel sind Stoffe zu verstehen, die in den Tensidgranulaten enthalten sind,
um deren Zerfall beim Inkontaktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich
z. B. in J. Pharm. Sci. 61 (1972) oder Römpp Chemielexikon, 9. Auflage, Band 6, S. 4440. Die
Sprengmittel können im Granulat makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch
gesehen können sie jedoch herstellungsbedingt Zonen erhöhter Konzentration bilden. Zu den bevor
zugten Sprengmitteln gehören Polysaccharide, wie z. B. natürliche Stärke und deren Derivate (Car
boxymethylstärke, Stärkeglycolate in Form ihrer Alkalisalze, Agar Agar, Guar Gum, Pektine usw.), Cel
lulosen und deren Derivate (Carboxymethylcellulose, mikrokristalline Cellulose), Polyacrylaten, Po
lyvinylpyrrolidon, Kollidon, Alginsäure und deren Alkalisalze-(Alginate), amorphe oder auch teilweise
kristalline Schichtsilicate (Bentonite), Polyurethane, Polyethylenglycole sowie gaserzeugende Systeme.
Weitere Sprengmittel, die im Sinne der Erfindung zugegen sein können, sind beispielsweise den
Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und
WO 98/40463, DE 197 09 991 und DE 197 10 254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird
ausdrücklich Bezug genommen. Zur Herstellung der erfindungsgemäßen Granulate kann man die Ten
side und die Sprengmittel - jeweils bezogen auf den Feststoffgehalt - im Gewichtsverhältnis 1 : 10 bis
10 : 1, vorzugsweise 1 : 5 bis 5 : 1 und insbesondere 1 : 2 bis 2 : 1 einzusetzen. Es empfiehlt sich wei
terhin, den Wassergehalt der Sprengmittel bzw. der Tensidgranulate so einzustellen, daß bei Lagerung
nicht automatisch eine Quellung einsetzt. Vorzugsweise sollte der Restwassergehalt 10 Gew.-% nicht
übersteigen.
Die Herstellung der Tensidgranulate, also die Granulierung und Kompaktierung kann in der für Wasch
mittel bekannten Art und Weise erfolgen. Dabei ist es insbesondere möglich, die Granulate vor, wäh
rend oder nach der Granulierung zu kompaktieren. Die Kompaktierung ist zwingend erforderlich, um
eine hinreichende Steigerung der Auflösegeschwindigkeit zu erreichen. Aus anwendungstechnischer
Sicht hat es sich als sehr günstig erwiesen, wenn die eingesetzten Tensidgranulate eine Korngröße im
Bereich von 0,01 bis 6, vorzugsweise 0,1 bis 5 mm aufweisen und insbesondere der Anteil, welcher
nicht im Bereich von 0,1 bis 5 mm liegt, weniger als 25 Gew.-% ausmacht.
Eine besonders bevorzugte Möglichkeit zur Herstellung der Tensidgranulate besteht darin, die Mi
schungen einer Wirbelschichtgranulierung ("SKET"-Granulierung) zu unterwerfen. Hierunter ist eine
Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugsweise batchweise oder kontinu
ierlich erfolgt. Dabei können die Mischungen aus Tensiden und Sprengmitteln sowohl in getrocknetem
Zustand als auch als wäßrige Zubereitung eingesetzt werden. Bevorzugt eingesetzte Wirbelschicht-
Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die Granulie
rung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granu
late aus der Wirbelschicht erfolgt vorzugsweise über eine Größenklassierung der Granulate. Die Klas
sierung kann beispielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luft
strom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße
aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. Übli
cherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der be
heizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 80 und 400, vorzugsweise
90 und 350°C. Vorteilhafterweise wird zu Beginn der Granulierung eine Startmasse, beispielsweise ein
Tensidgranulat aus einem früheren Versuchsansatz, vorgelegt.
In einer anderen Variante werden die Gemische erst nach der Granulierung, beispielsweise in einem
Mischer oder einem Fließbett, einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe
den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung der Inhalts
stoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerationsverfah
ren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch unterworfen wird, kann dabei in
verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden
unterschiedliche Preßagglomerationsverfahren unterschieden. Die drei häufigsten und im Rahmen der
vorliegenden Erfindung bevorzugten Preßagglomerationsverfahren sind dabei die Extrusion, das Wal
zenpressen bzw. -kompaktieren, und das Lochpressen (Pelletieren), so daß im Rahmen der vorlie
genden Erfindung bevorzugte Preßagglomerationsvorgänge Extrusions-, Walzenkompaktierungs- oder
Pelletierungsvorgänge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und
die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander
haften. Bei allen Verfahren lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder
zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden.
Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen
Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Aus
führungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130°C,
vorzugsweise bis maximal 100°C und insbesondere bis 90°C bereits vollständig als Schmelze vor
liegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden
oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein be
stimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die
zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht so
gar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Aus
führungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw.
oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber be
vorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20°C über der Schmelz
temperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch
durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine
Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von
20°C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vor
teile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt,
zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze
des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den wei
teren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perbo
rat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste ver
arbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere
im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des
Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperatu
rempfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vor
gemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerati
onsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders,
die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von
maximal 150°C, vorzugsweise maximal 100°C und insbesondere maximal 75°C auf und die Verfah
renstemperatur liegt bei 30°C und insbesondere maximal 20°C oberhalb der Schmelztemperatur bzw.
der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer
der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und
liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden kön
nen, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Poly
propylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder
die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwi
schen 600 und 12 000 und insbesondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus
Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwi
schen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Be
schreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Pa
tentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen
solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und
Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate
wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole kön
nen eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole
bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen
Molekülmassen zwischen 2000 und 12 000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit
relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Poly
ethylenglykolen mit einer relativen Molekülmasse um 4000 eingesetzt werden können und derartige
Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polye
thylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3500 und 5000 aufwei
sen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei
Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly
ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese
an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel
eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen
muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45°C aufweisen
muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von die
sen mit relativen Molekülmassen bis maximal 30.000. Bevorzugt sind hierbei relative Mo
lekülmassenbereiche zwischen 3.000 und 30.000, beispielsweise um 10.000. Polyvinylpyrrolidone wer
den vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in
Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Tempe
raturen nicht oberhalb von 90°C auf, wobei Temperaturen zwischen 35 und 85°C besonders bevor
zugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren -
von 40 bis 80°C, beispielsweise bis 70°C, besonders vorteilhaft sind.
In einer weiteren Ausführungsform werden die Tensidgranulate mittels einer Extrusion hergestellt, wie
sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den internationalen Patentanmel
dungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben werden. Dabei wird ein fe
stes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Lochform mit
tels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zugeschnitten. Das homo
gene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vor
gemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudier
bar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Polymere. Zur Erläuterung
des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die obengenannten Patente und
Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise einem Pla
netwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder
gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf
die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruder
schnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem
hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann,
verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und
schließlich das Extrudat mittels eines rotierenden Abschlagmessers vorzugsweise zu etwa kugelförmi
gen bis zylindrischen Granulatkörnern verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die
Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. So gelingt die Her
stellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei
im einzelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können.
Im allgemeinen werden Teilchendurchmesser bis höchstens 0,8 cm bevorzugt. Wichtige Ausführungs
formen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im
Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durch
messer-Verhältnis der abgeschlagenen primären Granulate liegt dabei vorzugsweise im Bereich von
etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren
formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten
abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden
können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise
Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen
Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Fein
kornanteil entstehen. Eine Trocknung, welche in den obengenannten Dokumenten des Standes der
Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwin
gend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung
mehr durchzuführen. Alternativ können Extrusionen/Verpressungen auch in Niedrigdruckextrudern, in
der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt
ist die Temperaturführung im Übergangsbereich der Schnecke, des Vorverteilers und der Düsenplatte
derart gestaltet, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbe
reichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer
der Temperatureinwirkung im Kompressionsbereich der Extrusion vorzugsweise unterhalb von 2 Minu
ten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Die Tensidgranulate können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird
das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene
Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmigen Kompaktat,
der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck
aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von
Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung struktu
rierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise
bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden können. Das Schülpenband
wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleinere Stücke gebrochen und
kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch weitere an sich bekannte
Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugelförmige Gestalt gebracht
werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressenden Werkzeuge,
also der Walzen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere
bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktie
rung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztempe
ratur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen. Hierbei ist es
weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressionsbereich der glatten oder
mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Minuten beträgt und insbesonde
re in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Das Tensidgranulate können auch mittels Pelletierung hergestellt werden. Hierbei wird das Vorge
misch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers unter Plastifi
zierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vor
gemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge
durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Granulatkör
nern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter
Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave
oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurch
gepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den ringförmi
gen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen.
Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deutschen Offenle
gungsschrift DE 38 16 842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizenpresse besteht
aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren In
nenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material
durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsin
nig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturerhöhung des
Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder
kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen.
Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder
Preßrollen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei
maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung
mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur
bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Außer den genannten Inhaltsstoffen können die Waschmitteltabletten weitere bekannte Zusatzstoffe,
vor allem Builder, ferner aber auch optische Aufheller, Enzyme, Enzymstabilisatoren, Entschäumer, Co-
Sprengmittel, geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe und dergleichen ent
halten.
Als Builder können beispielsweise Zeolithe eingesetzt werden. Der als Waschmittelbuilder häufig ein
gesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise
Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP® (Handelsprodukt der Firma Cros
field) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder
P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat
aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta
S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als unge
trocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den
Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen
Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxy
lierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylen
oxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße
von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vor
zugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige
Natriumsilicate ("Schichtsilicate") der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder
Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte
für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen
Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen
Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind
sowohl β- als auch α-Natriumdisilicate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilicat bei
spielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung
WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Pa
tentanmeldungen DE 23 34 899 A1, EP 0026529 A1 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit
ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier je
doch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser
quellfähigen Smectite zählen, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal ciumionen und stark färbenden Eisenionen sind.
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul
Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis
1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung ge
genüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispiels
weise durch Oberflächenbehandlung, Compoundierung, KompaktierungNerdichtung oder durch Über
trocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph"
auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten
keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls
ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinhei
ten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder
eigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder
sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline
Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesonde
re bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls
eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei
se in der deutschen Patentanmeldung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind ver
dichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgena
morphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen
möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Ge
eignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere
der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht
mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß
insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das
fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung
des Sekundärwaschvermögens führen.
Die Builder sind in den Waschmitteltabletten vorzugsweise in Mengen von 10 bis 60, insbesondere 20
bis 40 Gew.-% - bezogen auf die Mittel - enthalten.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze ein
setzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein
säure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus
ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind
die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein
säure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden.
Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungs
komponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von
Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure,
Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Po
lymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die
Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt
werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von
400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5
bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende
Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar
sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE
zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im
Bereich von 2000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung
GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren
Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion
des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren
ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1,
EP 0427349 A1, EP 0412042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen
WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und
WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa
tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders
vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugs
weise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce
rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patent
schriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der
japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in
zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw.
deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4
Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 be
schrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder
der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000
(auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Poly
carboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder
Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit
Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten.
Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200 000, vor
zugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Po
lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige
Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare
Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbe
sondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Mono
mereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acrylsäu
re und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2
als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320
A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl
säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte
Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu
nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit
Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, bei
spielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden
können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde
hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu
re erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die öl- und Fett-Auswaschbarkeit
aus Textilien positiv beeinflussen. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen bei
spielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit
einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis
15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der
Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Deriva
ten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder
anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen
sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate,
Carbonate, amorphe Silikate, normale Wassergläser, welche keine herausragenden Buildereigen
schaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder
amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis
1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den endzube
reitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%.
Der Gehalt der Mittel an Natriumsilikat (ohne besondere Buildereigenschaften) beträgt im allgemeinen
bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natrium
perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare
Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie
H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure,
Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vor
zugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Per
boratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per
oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder ge
gebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die
O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl
gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen
diamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin
(DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere
N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyl
oxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid,
acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-
dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 A1 und DE 196 16 767 A1
bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäi
schen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zucker
derivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaa
cetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N
acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldun
gen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498
bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 A1 bekannten hydrophil sub
stituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internatio
nalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt einge
setzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 A1 bekannten Kombinationen kon
ventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen
Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis
8 Gew.%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionel
len Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften
EP 0 446 982 B1 und EP 0 453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Über
gangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren
enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die
aus der deutschen Patentanmeldung DE 195 29 905 A1 bekannten Mangan-, Eisen-, Kobalt-, Rutheni
um- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 A1
bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 A1 bekann
ten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen
Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-,
Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen
Patentanmeldung DE 196 20 411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe,
die in der deutschen Patentanmeldung DE 44 16 438 A1 beschriebenen Mangan-, Kupfer- und Kobalt-
Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt-
Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe,
die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kup
fer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen
Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490
A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und
Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung
DE 196 13 103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende
Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder
Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von
0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils
bezogen auf gesamtes Mittel, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Estera
sen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glyko
sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der
Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und
Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling
und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche
bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders
gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis,
Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise wer
den Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen wer
den, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Pro
tease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase
und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipoly
tisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase,
insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch
wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme
sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als ge
eignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pul
lulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen
und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt.
Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterschei
den, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie
gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzym
granulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enrymstabilisa
toren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich
ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vor
zugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen
auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbin
dungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen
der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte
suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind was
serlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze poly
merer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stär
ke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke.
Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiter
hin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwen
den, z. B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt
werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl
cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarb
oxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1
bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkali
metallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-
amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho
lino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-
Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylsty
ryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfo
styryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten
Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel au
ßer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vor
zugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%,
vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff
ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Als schmutzabweisende Polymere ("soll repellants") kommen solche Stoffe in Frage, die vorzugsweise
Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis
Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann.
Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von
750 bis 5000, d. h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15
bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa
5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen.
Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylen
glycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiter
hin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Mole
kulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des
Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die
Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als "wachsartig" werden sol
che Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25°C (Raumtem
peratur), vorzugsweise über 50°C und insbesondere über 70°C aufweisen. Die wachsartigen Ent
schäumersubstanzen sind in Wasser praktisch nicht löslich, d. h. bei 20°C weisen sie in 100 g Wasser
eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik bekannten
wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind bei
spielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoho
len sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen
Zweck bekannten Silikonverbindungen eingesetzt werden.
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen
Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch
Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen
Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Ab
kühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig
flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25°C, erfindungsgemäß nicht
brauchbar. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraf
finwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit
einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstar
rungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungs
punkt von 35°C bis 40°C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im
Bereich von 30°C bis 90°C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest er
scheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können.
Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie mög
lich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30°C
einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40°C einen
Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von
5 Gew.-% bis 15 Gew.-%, bei 60°C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere
von 40 Gew.-% bis 55 Gew.-%, bei 80°C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei
90°C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-%
des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch
unter 85°C, insbesondere bei 75°C bis 82°C. Bei den Paraffinwachsen kann es sich um Petrolatum,
mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22,
vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeig
nete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie
sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhält
lich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethy
lendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevor
zugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind
Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische
sowie die entsprechenden Derivate des Hexamethylendiamins.
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlen
stoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystea
rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäure
esters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwas
serstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol,
12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalko
hol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von
Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure,
Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester
mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerin
monostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolau
rat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkyl
sorbitanmono- und -diester. Brauchbare Giycerinester sind die Mono-, Di- oder Triester von Glycerin
und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat,
Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele
hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich
aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Carnauba
wachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier
Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen,
ist.
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stea
rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus
natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich
sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen.
Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der be
schriebenen Fettsäuren.
Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asym
metrisch oder aber symmetrisch aufgebaut sein, d. h. zwei gleiche oder verschiedene Alkylketten, vor
zugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i-
octylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über
25°C, insbesondere über 40°C aufweisen.
Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden
der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man bei
spielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300°C unter
Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen
Offenlegungsschrift DE 25 53 900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Ma
gnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure,
Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure hergestellt
werden.
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch ba
sisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere
erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Kataly
satoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven
Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbin
dungen herzustellen. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevor
zugt, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen.
Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen
Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der ande
ren wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise
über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse
können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen
und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trä
germaterialien sind Alkalicarbonate, Alumosilikate, wasserlösliche Schichtsilikate, Alkalisilikate, Alkali
sulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilikaten handelt es sich vor
zugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die
Verwendung derartiger Silikate resultiert in besonders guten Korneigenschaften, insbesondere hoher
Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial
bezeichneten Alumosilikaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX.
Zu den als wasserlöslichen Schichtsilikaten bezeichneten Verbindungen gehören beispielsweise amor
phes oder kristallines Wasserglas. Weiterhin können Silikate Verwendung finden, welche unter der
Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum
Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly-
(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind
insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und
sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxy
propylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carb
oxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose übli
cherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit
und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukose
einheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtioni
schen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50.
Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als
native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, bei
spielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und
damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten
Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alka
lisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilikate, Alkalisilikate, Polycarboxylate, Cel
luloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkali
carbonaten, insbesondere Natriumcarbonat, Alkalisilikaten, insbesondere Natriumsilikat, Alkalisulfaten,
insbesondere Natriumsulfat und Zeolithen.
Geeignete Silikone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die
wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielswei
se in der europäischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind
Polydiorganosiloxane, die aus dem Stand der Technik bekannt sind. Es können aber auch über Siloxan
vernetzte Verbindungen eingesetzt werden, wie sie dem Fachmann unter der Bezeichnung Silikonhar
ze bekannt sind. In der Regel enthalten die Polydiorganosiloxane feinteilige Kieselsäure, die auch sila
niert sein kann. Insbesondere geeignet sind kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise
haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25°C im Bereich von 5000 mPas
bis 30 000 mPas, insbesondere von 15 000 bis 25 000 mPas. Die Silikone sind vorzugsweise auf Trä
germaterialien aufgebracht. Geeignete Trägermaterialien sind bereits im Zusammenhang mit den Par
affinen beschrieben worden. Die Trägermaterialien sind in der Regel in Mengen von 40 bis 90 Gew.-%,
vorzugsweise in Mengen von 45 bis 75 Gew.-% - bezogen auf Entschäumer - enthalten.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Pro
dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet wer
den. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-
Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat,
Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa
licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka
nale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitro
nellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylke
ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi
neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevor
zugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine anspre
chende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten,
wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder
Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl,
Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl
sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Die Duftstoffe können direkt in
die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe
auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wäsche verstärken und durch eine
langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien
haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich
noch mit weiteren Hilfsstoffen beschichtet werden können.
Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel
enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbeson
dere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Die Herstellung der Waschmitteltabletten unter Einsatz der neuen Tensidgranulate und weiterer Hilfs-
und Zusatzstoffe, wie z. B. Builder kann in an sich bekannter Weise, beispielsweise durch Tablettierung
erfolgen. Die erhaltenen Tabletten können entweder direkt als Waschmittel eingesetzt oder zuvor nach
üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen
zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln,
wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt
jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 195 24 287 A1 und
DE 195 47 457 A1 dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten
Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als
Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als
Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration.
Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen
Patentanmeldungen DE 195 24 287 A1 und DE 195 47 457 A1 verwiesen. In der bevorzugten Ausfüh
rungsform der Erfindung liegen die festen Waschmittel als Tabletten vor, wobei diese insbesondere aus
lager- und transporttechnischen Gründen vorzugsweise abgerundete Ecken und Kanten aufweisen. Die
Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtenta
bletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können,
sind vor allem bevorzugt. Blauweiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei be
sonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten.
100 g Cellulose (Technocel® 150) wurden mit 200 g Proteinfettsäurekondensat
(Lamepon® SCE-B, 95 Gew.-%ig, Pulver, Cognis Deutschland GmbH/DE) vermischt und über einen
Zahnradwalzenstuhl kompaktiert. Anschließend wurde eine Siebfraktion zwischen 1,2 und 1,6 mm ent
nommen.
1000 g Cellulose (Technocel® 150) wurden mit 300 g Proteinfettsäurekondensat
(Lamepon® SCE-B), 200 g Kokosalkyloligoglucosid (Glucopon® 600 CSUP, 50 Gew.-%ige wäßrige
Paste, Cognis Deutschland GmbH/DE) und 150 g eines Polyethylenglycolwachses mit einem durch
schnittlichen Molekulargewicht von 4000 in einem Mischer gemischt und der Wassergehalt durch
Trocknung bis auf 12 Gew.-% reduziert. Anschließend erfolgte die Extrusion bei 45°C durch eine
Siebplatte (Durchmesser der Bohrungen: 2 mm). Das Rohprodukt wurde zerkleinert und eine Siebfrak
tion zwischen 1,2 und 1,6 mm entnommen.
100 g Cellulose (Technocel® 150) wurden mit 100 g Proteinfettsäurekondensat
(Lamepon® SCE-B) und 20 g Kokosalkylsulfat-Natriumsalz (Sulfopon® 1218 G, Restwassergehalt 5
Gew.-%, Cognis Deutschland GmbH/DE)) vermischt und über einen Zahnradwalzenstuhl kompaktiert.
Anschließend wurde eine Siebfraktion zwischen 1,2 und 1,6 mm entnommen.
Tensidgranulat bestehend aus 50 Gew.-% Proteinfettsäurekondensat (Lame
pon® SCE-B), 5 Gew.-% Kokosalkylsulfat-Natriumsalz, 5 Gew.-% Soda, 10 Gew.-% Natriumsilicat und
30 Gew.-% Natriumsulfat; Siebfraktion zwischen 1,2 und 1,6 mm.
Tensidgranulat bestehend aus 95 Gew.-% Proteinfettsäurekondensat (La
mepon® SCE-B), Siebfraktion zwischen 1,2 und 1,6 mm.
Die erfindungsgemäßen Tensidgranulate H1, H2 und H3 sowie
der beiden Vergleichsmuster wurden in Waschmittelrezepturen eingesetzt. Die Zubereitungen wurden
zu Tabletten (Gewicht 40 g, konstante Bruchhärte) verpreßt, luftdicht verpackt und anschließend für 2
Wochen bei 40°C gelagert. Die Zusammensetzung der Waschmitteltabletten ist Tabelle 1 zu entneh
men. Die Rezepturen 1, 2 und 3 sind erfindungsgemäß, die Rezepturen V1 und V2 dienen zum Ver
gleich. Zur Beurteilung des Auflöseverhaltens wurden die Tabletten auf ein Drahtgestell gelegt, welches
in Wasser (0°d, 25°C) stand. Die Tabletten waren dabei vollständig von Wasser umgeben. Gemessen
wurde die Zerfallszeit vom Eintauchen bis zur vollständigen Auflösung. Die Zerfallszeiten sind ebenfalls
aus Tabelle 1 zu entnehmen.
Claims (10)
1. Waschmitteltabletten, dadurch gekennzeichnet, daß sie Tensidgranulate enthalten, die man
durch Granulation und Kompaktierung von oberflächenaktiven Proteinen und/oder Proteinderiva
ten in Gegenwart von Sprengmitteln enthält.
2. Waschmitteltabletten nach Anspruch 1, dadurch gekennzeichnet, daß sie Granulate enthalten,
die als Proteinkomponente Proteinhydrolysate und/oder Proteinfettsäurekondensate aufweisen.
3. Waschmitteltabletten nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie
Granulate enthalten, deren Sprengmittelkomponente ausgewählt ist aus der Gruppe, die gebildet
wird von Polysacchariden, Polyacrylaten, Polyvinylpyrrolidon, Polyurethanen, Polyethylenglycolen,
Kollidon, Alginsäuren, Alginaten und Schichtsilicaten.
4. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
daß sie Granulate enthalten, welche die Proteine bzw. Proteinderivate und die Sprengmittel im
Gewichtsverhältnis 1 : 10 bis 10 : 1 aufweisen.
5. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
daß sie die Tensidgranulate in Mengen von 1 bis 50 Gew.-% - bezogen auf die Waschmittel - ent
halten.
6. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
daß sie Tensidgranulate enthalten, welche vor, während oder nach der Granulierung kompaktiert
worden sind.
7. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
daß sie Tensidgranulate enthalten, welche eine Korngröße im Bereich von 0,01 bis 6 mm aufwei
sen.
8. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
daß sie Tensidgranulate enthalten, bei denen der Anteil, welcher nicht im Bereich von 0,1 bis
5 mm liegt, weniger als 25 Gew.-% ausmacht.
9. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
daß sie weiterhin Builder enthalten.
10. Waschmitteltabletten nach Anspruch 9, dadurch gekennzeichnet, daß sie die Builder in Mengen
von 10 bis 60 Gew.-% enthalten.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19956802A DE19956802A1 (de) | 1999-11-25 | 1999-11-25 | Waschmitteltabletten |
PCT/EP2000/011340 WO2001038476A1 (de) | 1999-11-25 | 2000-11-16 | Waschmitteltabletten |
DE2000508268 DE50008268D1 (de) | 1999-11-25 | 2000-11-16 | Waschmitteltabletten |
EP00987256A EP1235897B1 (de) | 1999-11-25 | 2000-11-16 | Waschmitteltabletten |
ES00987256T ES2231298T3 (es) | 1999-11-25 | 2000-11-16 | Pastillas de detergente. |
US10/130,841 US6977239B1 (en) | 1999-11-25 | 2000-11-16 | Detergent tablets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19956802A DE19956802A1 (de) | 1999-11-25 | 1999-11-25 | Waschmitteltabletten |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19956802A1 true DE19956802A1 (de) | 2001-06-13 |
Family
ID=7930328
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19956802A Ceased DE19956802A1 (de) | 1999-11-25 | 1999-11-25 | Waschmitteltabletten |
DE2000508268 Expired - Lifetime DE50008268D1 (de) | 1999-11-25 | 2000-11-16 | Waschmitteltabletten |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2000508268 Expired - Lifetime DE50008268D1 (de) | 1999-11-25 | 2000-11-16 | Waschmitteltabletten |
Country Status (5)
Country | Link |
---|---|
US (1) | US6977239B1 (de) |
EP (1) | EP1235897B1 (de) |
DE (2) | DE19956802A1 (de) |
ES (1) | ES2231298T3 (de) |
WO (1) | WO2001038476A1 (de) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1844917A2 (de) | 2006-03-24 | 2007-10-17 | Entex Rust & Mitschke GmbH | Verfahren zur Verarbeitung von zu entgasenden Produkten |
EP1939087A1 (de) | 2006-12-28 | 2008-07-02 | Eurocopter | Verbesserung an den Rotoren von Drehflügelflugzeugen, die mit Drehschwingungsdämpfern zwischen den Flügelblättern ausgestattet sind |
DE102007059299A1 (de) | 2007-05-16 | 2008-11-20 | Entex Rust & Mitschke Gmbh | Vorrichtung zur Verarbeitung von zu entgasenden Produkten |
DE102011112080A1 (de) | 2011-09-03 | 2013-03-07 | Entex Rust & Mitschke Gmbh | Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt |
DE102013000708A1 (de) | 2012-10-11 | 2014-04-17 | Entex Rust & Mitschke Gmbh | Verfahren zur Extrusion von Kunststoffen, die zum Kleben neigen |
DE102011112081A1 (de) | 2011-05-11 | 2015-08-20 | Entex Rust & Mitschke Gmbh | Verfahren zur Verarbeitung von Elasten |
DE102015001167A1 (de) | 2015-02-02 | 2016-08-04 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen |
WO2017001048A1 (de) | 2015-07-02 | 2017-01-05 | Entex Rust & Mitschke Gmbh | Verfahren zur verarbeitung von produkten im extruder |
DE102016002143A1 (de) | 2016-02-25 | 2017-08-31 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
DE102017001093A1 (de) | 2016-04-07 | 2017-10-26 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall |
WO2018188716A1 (de) | 2017-03-05 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen |
DE102017003681A1 (de) | 2017-04-17 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Kühlen beim Extrudieren von Schmelze |
DE102017005999A1 (de) | 2017-05-28 | 2018-11-29 | Entex Rust & Mitschke Gmbh | Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren |
DE102017005998A1 (de) | 2017-06-23 | 2018-12-27 | Entex Rust & Mitschke Gmbh | Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder |
DE102017006638A1 (de) | 2017-07-13 | 2019-01-17 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
DE102018001412A1 (de) | 2017-12-11 | 2019-06-13 | Entex Rust & Mitschke Gmbh | Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen |
WO2019166125A1 (de) | 2018-02-28 | 2019-09-06 | Entex Rust & Mitschke Gmbh | Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder |
DE102020007239A1 (de) | 2020-04-07 | 2021-10-07 | E N T E X Rust & Mitschke GmbH | Kühlen beim Extrudieren von Schmelzen |
EP3892441A1 (de) | 2020-04-07 | 2021-10-13 | Entex Rust & Mitschke GmbH | Nachrüstung für eine extruderanlage |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1848734A2 (de) * | 2005-02-07 | 2007-10-31 | Basf Aktiengesellschaft | Verfahren zum beschichten von oberflächen mit hydrophobinen |
WO2006082251A2 (de) * | 2005-02-07 | 2006-08-10 | Basf Aktiengesellschaft | Neue hydrophobinfusionsproteine, deren herstellung und verwendung |
CA2602158A1 (en) * | 2005-03-30 | 2006-10-05 | Basf Aktiengesellschaft | Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone and ceramics |
US20090305930A1 (en) * | 2005-03-30 | 2009-12-10 | Basf Aktiengesellschaft | Use of hydrophobin for hard surface soil-repellent treatment |
EP1866150B1 (de) | 2005-03-31 | 2016-10-19 | Basf Se | Metallische substrate mit polypeptiden als haftvermittler |
EP1868700A2 (de) | 2005-04-01 | 2007-12-26 | Basf Aktiengesellschaft | Verwendung von hydrophobin als phasen-stabilisator |
DE502006005460D1 (de) | 2005-04-01 | 2010-01-07 | Basf Se | Bohrspülung enthaltend hydrophobin |
DE102005027039A1 (de) * | 2005-06-10 | 2006-12-21 | Basf Ag | Hydrophobin als Beschichtungsmittel für expandierbare oder expandierte, thermoplastische Polymerpartikel |
DE102005027139A1 (de) * | 2005-06-10 | 2006-12-28 | Basf Ag | Neue Cystein-verarmte Hydrophobinfusionsproteine, deren Herstellung und Verwendung |
DE102005029704A1 (de) * | 2005-06-24 | 2007-01-11 | Basf Ag | Verwendung von Hydrophobin-Polypeptiden sowie Konjugaten aus Hydrophobin-Polypeptiden mit Wirk-oder Effektstoffen und ihre Herstellung sowie deren Einsatz in der Kosmetik |
AU2006274836B2 (en) * | 2005-08-01 | 2012-02-09 | Basf Aktiengesellschaft | Use of surface-active non-enzymatic proteins for washing textiles |
DE102005048720A1 (de) | 2005-10-12 | 2007-04-19 | Basf Ag | Verwendung von Proteinen als Antischaum-Komponente in Kraftstoffen |
ES2374320T3 (es) * | 2006-08-15 | 2012-02-15 | Basf Se | Procedimiento para la producción de preparaciones de hidrofobina secas de flujo libre. |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118332A (en) * | 1965-10-22 | 1978-10-03 | Colgate-Palmolive Company | Synergistic antibacterial composition containing mixtures of certain halogenated diphenyl ethers and trichlorocarbanilides |
DE2263939C2 (de) | 1972-07-03 | 1983-01-13 | Henkel KGaA, 4000 Düsseldorf | Zur Verwendung in perhydrathaltigen Textilwaschmitteln geeignete Bleichaktivator-Tablette |
ZA734721B (en) | 1972-07-14 | 1974-03-27 | Procter & Gamble | Detergent compositions |
GB1455873A (en) | 1973-08-24 | 1976-11-17 | Procter & Gamble | Textile-softening detergent compositions |
DE2553900A1 (de) | 1975-12-01 | 1977-06-08 | Konrad Ruckstuhl | Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen |
DE2832288C2 (de) | 1978-07-22 | 1986-05-22 | Henkel KGaA, 4000 Düsseldorf | Reinigungsmittel zum Reinigen von Nahrungs- und Futtermitteln in Tablettenform |
EP0026529B2 (de) | 1979-09-29 | 1992-08-19 | THE PROCTER & GAMBLE COMPANY | Reinigungsmittelzusammensetzungen |
EP0028432B1 (de) | 1979-11-03 | 1984-01-18 | THE PROCTER & GAMBLE COMPANY | Granulare Waschmittelzusammensetzungen |
US4432888A (en) * | 1981-09-30 | 1984-02-21 | Seton Company | Surface active agents based on polypeptides |
CA1238917A (en) | 1984-01-31 | 1988-07-05 | Vivian B. Valenty | Detergent builder |
US4524009A (en) | 1984-01-31 | 1985-06-18 | A. E. Staley Manufacturing Company | Detergent builder |
DE3413571A1 (de) | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung |
US4639325A (en) | 1984-10-24 | 1987-01-27 | A. E. Staley Manufacturing Company | Detergent builder |
DE3526405A1 (de) | 1985-07-24 | 1987-02-05 | Henkel Kgaa | Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln |
FR2597473B1 (fr) | 1986-01-30 | 1988-08-12 | Roquette Freres | Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus. |
GB8629837D0 (en) | 1986-12-13 | 1987-01-21 | Interox Chemicals Ltd | Bleach activation |
DE3706036A1 (de) | 1987-02-25 | 1988-09-08 | Basf Ag | Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale |
DE3723826A1 (de) | 1987-07-18 | 1989-01-26 | Henkel Kgaa | Verfahren zur herstellung von alkylglykosiden |
DE3732947A1 (de) | 1987-09-30 | 1989-04-13 | Henkel Kgaa | Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel |
DE3816842A1 (de) | 1988-05-18 | 1989-11-23 | Schlueter Gmbh U Co Kg H | Ringmatrizenpresse |
US5576425A (en) | 1988-10-05 | 1996-11-19 | Henkel Kommanditgesellschaft Auf Aktien | Process for the direct production of alkyl glycosides |
DE3833780A1 (de) | 1988-10-05 | 1990-04-12 | Henkel Kgaa | Verfahren zur direkten herstellung von alkylglykosiden |
GB8908416D0 (en) | 1989-04-13 | 1989-06-01 | Unilever Plc | Bleach activation |
US5318733A (en) | 1989-08-09 | 1994-06-07 | Henkel Kommanditgesellschaft Auf Aktien | Production of compacted granules for detergents |
EP0427349B1 (de) | 1989-11-10 | 1995-07-12 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Verfahren zur Herstellung von Polydicarboxysacchariden |
YU221490A (sh) | 1989-12-02 | 1993-10-20 | Henkel Kg. | Postupak za hidrotermalnu izradu kristalnog natrijum disilikata |
GB9003741D0 (en) | 1990-02-19 | 1990-04-18 | Unilever Plc | Bleach activation |
US5041232A (en) | 1990-03-16 | 1991-08-20 | Lever Brothers Company, Division Of Conopco, Inc. | Sulfonimines as bleach catalysts |
US5047163A (en) | 1990-03-16 | 1991-09-10 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with sulfonimines |
DE69125310T2 (de) | 1990-05-21 | 1997-07-03 | Unilever Nv | Bleichmittelaktivierung |
IT1249883B (it) | 1990-08-13 | 1995-03-30 | Ferruzzi Ricerca & Tec | Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti |
GB9101606D0 (en) | 1991-01-24 | 1991-03-06 | Dow Corning Sa | Detergent foam control agents |
IT1245063B (it) | 1991-04-12 | 1994-09-13 | Ferruzzi Ricerca & Tec | Procedimento per l'ossidazione di carboidrati |
DE4124701A1 (de) | 1991-07-25 | 1993-01-28 | Henkel Kgaa | Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit |
DE69126778T2 (de) | 1991-07-31 | 1998-01-02 | Ausimont Spa | Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes |
DE4134914A1 (de) | 1991-10-23 | 1993-04-29 | Henkel Kgaa | Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen |
ATE166362T1 (de) | 1991-11-14 | 1998-06-15 | Procter & Gamble | C6/c2-c3 oxidierte stärke als waschmittelbestandteil |
US5194416A (en) | 1991-11-26 | 1993-03-16 | Lever Brothers Company, Division Of Conopco, Inc. | Manganese catalyst for activating hydrogen peroxide bleaching |
EP0544490A1 (de) | 1991-11-26 | 1993-06-02 | Unilever Plc | Bleich- und Reinigungsmittelzusammensetzungen |
CA2085642A1 (en) | 1991-12-20 | 1993-06-21 | Ronald Hage | Bleach activation |
GB9127060D0 (en) | 1991-12-20 | 1992-02-19 | Unilever Plc | Bleach activation |
DE4221381C1 (de) | 1992-07-02 | 1994-02-10 | Stockhausen Chem Fab Gmbh | Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE4203923A1 (de) | 1992-02-11 | 1993-08-12 | Henkel Kgaa | Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis |
JPH05339896A (ja) | 1992-06-03 | 1993-12-21 | Arakawa Chem Ind Co Ltd | 紙用サイズ剤および紙サイジング方法 |
DE4235646A1 (de) | 1992-10-22 | 1994-04-28 | Henkel Kgaa | Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate |
DE4300772C2 (de) | 1993-01-14 | 1997-03-27 | Stockhausen Chem Fab Gmbh | Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE4303320C2 (de) | 1993-02-05 | 1995-12-21 | Degussa | Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür |
WO1994027970A1 (en) | 1993-05-20 | 1994-12-08 | The Procter & Gamble Company | Bleaching compounds comprising substituted benzoyl caprolactam bleach activators |
AU6833394A (en) | 1993-05-20 | 1994-12-20 | Procter & Gamble Company, The | Bleaching compounds comprising n-acyl caprolactam for use in hand-wash or other low-water cleaning systems |
DE4317519A1 (de) | 1993-05-26 | 1994-12-01 | Henkel Kgaa | Herstellung von Polycarboxylaten auf Polysaccharid-Basis |
DE4400024A1 (de) | 1994-01-03 | 1995-07-06 | Henkel Kgaa | Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet |
DE4402851A1 (de) | 1994-01-31 | 1995-08-03 | Henkel Kgaa | Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis |
DE4416438A1 (de) | 1994-05-10 | 1995-11-16 | Basf Ag | Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren |
DE4417734A1 (de) | 1994-05-20 | 1995-11-23 | Degussa | Polycarboxylate |
DE69533149T2 (de) | 1994-07-21 | 2005-08-25 | Ciba Specialty Chemicals Holding Inc. | Bleichmittelzusammensetzung für Gewebe |
GB9419091D0 (en) | 1994-09-22 | 1994-11-09 | Cerestar Holding Bv | Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process |
DE4443177A1 (de) | 1994-12-05 | 1996-06-13 | Henkel Kgaa | Aktivatormischungen für anorganische Perverbindungen |
DE19502167C2 (de) | 1995-01-25 | 1997-02-06 | Henkel Kgaa | Verfahren zur Herstellung von Reisproteinhydrolysaten |
DE19502168C1 (de) | 1995-01-25 | 1996-06-27 | Henkel Kgaa | Verfahren zur Herstellung von Weizenproteinhydrolysaten |
DE19547457A1 (de) | 1995-12-19 | 1997-06-26 | Henkel Kgaa | Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte |
DE19524287A1 (de) | 1995-07-06 | 1997-01-09 | Henkel Kgaa | Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte |
DE19529905A1 (de) | 1995-08-15 | 1997-02-20 | Henkel Kgaa | Aktivatorkomplexe für Persauerstoffverbindungen |
DE19536082A1 (de) | 1995-09-28 | 1997-04-03 | Henkel Kgaa | Aktivatorkomplexe für Persauerstoffverbindungen |
DE19600018A1 (de) | 1996-01-03 | 1997-07-10 | Henkel Kgaa | Waschmittel mit bestimmten oxidierten Oligosacchariden |
DE19605688A1 (de) | 1996-02-16 | 1997-08-21 | Henkel Kgaa | Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen |
DE19613103A1 (de) | 1996-04-01 | 1997-10-02 | Henkel Kgaa | Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen |
DE19620411A1 (de) | 1996-04-01 | 1997-10-02 | Henkel Kgaa | Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen |
DK173111B1 (da) * | 1996-04-03 | 2000-01-31 | Cleantabs As | Tøjvasketabletter |
DE19616693A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616767A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616770A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616769A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19620267A1 (de) | 1996-05-20 | 1997-11-27 | Henkel Kgaa | Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen |
DE19701896A1 (de) * | 1997-01-21 | 1998-07-23 | Clariant Gmbh | Granulares sekundäres Alkansulfonat |
DE19709991C2 (de) | 1997-03-11 | 1999-12-23 | Rettenmaier & Soehne Gmbh & Co | Waschmittelpreßling und Verfahren zu seiner Herstellung |
DE19710254A1 (de) | 1997-03-13 | 1998-09-17 | Henkel Kgaa | Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt |
DE29724283U1 (de) | 1997-06-03 | 2000-10-05 | Henkel KGaA, 40589 Düsseldorf | Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper |
DE19801085A1 (de) | 1998-01-14 | 1999-07-15 | Henkel Kgaa | Homogene Tensidgranulate für die Herstellung von stückigen Wasch- und Reinigungsmitteln |
WO2000040686A1 (en) * | 1999-01-07 | 2000-07-13 | The Procter & Gamble Company | Detergent compositions having a protein |
DE19918188A1 (de) * | 1999-04-22 | 2000-10-26 | Cognis Deutschland Gmbh | Reinigungsmittel für harte Oberflächen |
-
1999
- 1999-11-25 DE DE19956802A patent/DE19956802A1/de not_active Ceased
-
2000
- 2000-11-16 US US10/130,841 patent/US6977239B1/en not_active Expired - Fee Related
- 2000-11-16 ES ES00987256T patent/ES2231298T3/es not_active Expired - Lifetime
- 2000-11-16 WO PCT/EP2000/011340 patent/WO2001038476A1/de active IP Right Grant
- 2000-11-16 EP EP00987256A patent/EP1235897B1/de not_active Expired - Lifetime
- 2000-11-16 DE DE2000508268 patent/DE50008268D1/de not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1844917A2 (de) | 2006-03-24 | 2007-10-17 | Entex Rust & Mitschke GmbH | Verfahren zur Verarbeitung von zu entgasenden Produkten |
EP1939087A1 (de) | 2006-12-28 | 2008-07-02 | Eurocopter | Verbesserung an den Rotoren von Drehflügelflugzeugen, die mit Drehschwingungsdämpfern zwischen den Flügelblättern ausgestattet sind |
DE102007059299A1 (de) | 2007-05-16 | 2008-11-20 | Entex Rust & Mitschke Gmbh | Vorrichtung zur Verarbeitung von zu entgasenden Produkten |
EP1997608A2 (de) | 2007-05-16 | 2008-12-03 | Entex Rust & Mitschke GmbH | Verfahren zur Verarbeitung von zu entgasenden Produkten |
EP2289687A1 (de) | 2007-05-16 | 2011-03-02 | Entex Rust & Mitschke GmbH | Verfahren zur Verarbeitung von zu entgasenden Produkten |
DE102011112081A1 (de) | 2011-05-11 | 2015-08-20 | Entex Rust & Mitschke Gmbh | Verfahren zur Verarbeitung von Elasten |
DE102011112080A1 (de) | 2011-09-03 | 2013-03-07 | Entex Rust & Mitschke Gmbh | Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt |
DE102013000708A1 (de) | 2012-10-11 | 2014-04-17 | Entex Rust & Mitschke Gmbh | Verfahren zur Extrusion von Kunststoffen, die zum Kleben neigen |
WO2014056553A1 (de) | 2012-10-11 | 2014-04-17 | Entex Gmbh Rust & Mitschke Gmbh | Extruder zur verarbeitung von kunststoffen, die zum kleben neigen |
US10112320B2 (en) | 2012-10-11 | 2018-10-30 | Entex Rust & Mitschke Gmbh | Process for the extrusion of plastics tending to adherence |
DE102015001167A1 (de) | 2015-02-02 | 2016-08-04 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen |
WO2017001048A1 (de) | 2015-07-02 | 2017-01-05 | Entex Rust & Mitschke Gmbh | Verfahren zur verarbeitung von produkten im extruder |
DE102015008406A1 (de) | 2015-07-02 | 2017-04-13 | Entex Rust & Mitschke Gmbh | Verfahren zur Bearbeitung von Produkten im Extruder |
US10589452B2 (en) | 2015-07-02 | 2020-03-17 | Entex Rust & Mitschke Gmbh | Method for processing products in an extruder |
DE102016002143A1 (de) | 2016-02-25 | 2017-08-31 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
DE102017001093A1 (de) | 2016-04-07 | 2017-10-26 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall |
WO2018188716A1 (de) | 2017-03-05 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen |
US11613060B2 (en) | 2017-03-05 | 2023-03-28 | Entex Rust & Mitschke Gmbh | Planetary roller extruder with a degassing section |
US11446617B2 (en) | 2017-04-17 | 2022-09-20 | Entex Rust & Mitschke Gmbh | Extruder with planetary roller section for cooling melts |
WO2018192677A1 (de) | 2017-04-17 | 2018-10-25 | Entex Rust & Mitschke Gmbh | Kühlen beim extrudieren von schmelzen |
DE102017003681A1 (de) | 2017-04-17 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Kühlen beim Extrudieren von Schmelze |
DE102017005999A1 (de) | 2017-05-28 | 2018-11-29 | Entex Rust & Mitschke Gmbh | Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren |
DE102017005998A1 (de) | 2017-06-23 | 2018-12-27 | Entex Rust & Mitschke Gmbh | Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder |
DE102017006638A1 (de) | 2017-07-13 | 2019-01-17 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
WO2019011461A1 (de) | 2017-07-13 | 2019-01-17 | Entex Rust & Mitschke Gmbh | Füllteilmodul in planetwalzenextruderbauweise |
US11485298B2 (en) | 2017-07-13 | 2022-11-01 | Entex Rust & Mitschke Gmbh | Feeder module in planetary roller extruder design |
DE102018001412A1 (de) | 2017-12-11 | 2019-06-13 | Entex Rust & Mitschke Gmbh | Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen |
WO2019166125A1 (de) | 2018-02-28 | 2019-09-06 | Entex Rust & Mitschke Gmbh | Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder |
EP3892441A1 (de) | 2020-04-07 | 2021-10-13 | Entex Rust & Mitschke GmbH | Nachrüstung für eine extruderanlage |
DE102020007239A1 (de) | 2020-04-07 | 2021-10-07 | E N T E X Rust & Mitschke GmbH | Kühlen beim Extrudieren von Schmelzen |
Also Published As
Publication number | Publication date |
---|---|
DE50008268D1 (de) | 2004-11-18 |
US6977239B1 (en) | 2005-12-20 |
ES2231298T3 (es) | 2005-05-16 |
EP1235897A1 (de) | 2002-09-04 |
EP1235897B1 (de) | 2004-10-13 |
WO2001038476A1 (de) | 2001-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1235897B1 (de) | Waschmitteltabletten | |
EP1240290B1 (de) | Tensidgranulate mit verbesserter auflösegeschwindigkeit | |
EP1232242B1 (de) | Tensidgranulate mit verbesserter auflösegeschwindigkeit | |
DE19962883A1 (de) | Waschmitteltabletten | |
DE19958398A1 (de) | Verwendung von Partialgyceridpolyglycolethern | |
EP1188817A2 (de) | Waschmittel | |
DE19953793A1 (de) | Tensidgranulate mit verbesserter Auflösegeschwindigkeit | |
EP1191094A2 (de) | Waschmittel | |
EP1081219B1 (de) | Detergentien in fester Form | |
DE19942539A1 (de) | Waschmittel | |
DE19953792A1 (de) | Waschmitteltabletten | |
DE19939806A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE19928923A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE19939804A1 (de) | Schaumkontrollierte feste Waschmittel | |
EP1090979A1 (de) | Entschäumergranulate | |
DE10002009A1 (de) | Tensidgranulate | |
DE19939805A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE10162645A1 (de) | Tensidgranulate mit verbesserter Auflösegeschwindigkeit durch Zusatz von modifizierten Polyacrylsäure-Salzen | |
DE19928922A1 (de) | Schaumkontrollierte feste Waschmittel | |
EP1090978A1 (de) | Feste Wasch-, Spül- und Reinigungsmittel enthaltend Entschäumergranulate | |
DE19942538A1 (de) | Waschmittel | |
WO2001000761A1 (de) | Schaumkontrollierte feste waschmittel | |
DE19953026A1 (de) | Sprengmittelgranulate | |
DE19948670A1 (de) | Waschmittel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8125 | Change of the main classification |
Ipc: C11D 17/00 |
|
8127 | New person/name/address of the applicant |
Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR |
|
8131 | Rejection |