DE19929542B4 - Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant - Google Patents
Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant Download PDFInfo
- Publication number
- DE19929542B4 DE19929542B4 DE19929542A DE19929542A DE19929542B4 DE 19929542 B4 DE19929542 B4 DE 19929542B4 DE 19929542 A DE19929542 A DE 19929542A DE 19929542 A DE19929542 A DE 19929542A DE 19929542 B4 DE19929542 B4 DE 19929542B4
- Authority
- DE
- Germany
- Prior art keywords
- chip
- microelectrodes
- substrate
- stimulation electrodes
- flat arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 230000000638 stimulation Effects 0.000 title claims description 23
- 239000007943 implant Substances 0.000 title claims description 12
- 210000001525 retina Anatomy 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 230000012010 growth Effects 0.000 claims abstract description 17
- 238000002161 passivation Methods 0.000 claims abstract description 8
- 238000000407 epitaxy Methods 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 238000002513 implantation Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001459 lithography Methods 0.000 claims description 4
- 239000000560 biocompatible material Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 201000007737 Retinal degeneration Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001741 metal-organic molecular beam epitaxy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000004258 retinal degeneration Effects 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910001258 titanium gold Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28525—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01032—Germanium [Ge]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01052—Tellurium [Te]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01061—Promethium [Pm]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01068—Erbium [Er]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Es wird ein Verfahren zur Erzeugung von Mikroelektroden (22) auf einem Chip (10) angegeben, bei dem zunächst auf der Oberfläche (12) eines Substrates (10) eine Passivierungsschicht (16) aufgebracht wird, wobei ausgewählte Bereiche (18) ausgespart werden. Anschließend erfolgt ein selektives epitaktisches Kristallwachstum über den ausgewählten Bereichen (18) des Chips (10), um räumlich hervorstehende Mikroelektroden (22) zu erzeugen, die zwecks einer ausreichenden Leitfähigkeit dotiert werden. Das erfindungsgemäße Verfahren kann in einem CMOS-Prozeß integriert werden, um eine große Anzahl von mikroskopisch kleinen, räumlich von der Oberfläche eines Chips hervorstehenden Mikroelektroden zu erzeugen, die unmittelbar mit Steuerschaltungen kombiniert werden können, die auf dem Chip im Rahmen des CMOS-Prozesses erzeugt werden (Fig. 1).The invention relates to a method for producing microelectrodes (22) on a chip (10), in which a passivation layer (16) is first applied to the surface (12) of a substrate (10), whereby selected areas (18) are left out. A selective epitaxial crystal growth then takes place over the selected areas (18) of the chip (10) in order to produce spatially protruding microelectrodes (22) which are doped for the purpose of sufficient conductivity. The method according to the invention can be integrated in a CMOS process in order to generate a large number of microscopic microelectrodes which spatially protrude from the surface of a chip and which can be directly combined with control circuits which are produced on the chip as part of the CMOS process be (Fig. 1).
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung von Stimulationselektroden in Form von Mikroelektroden auf einem Chip mit einem halbleitenden Substrat, bei dem die Mikroelektroden auf einer Oberfläche des Substrates an ausgewählten Bereichen als räumlich hervorstehende Elemente erzeugt werden.The invention relates to a method for generating stimulation electrodes in the form of microelectrodes on a chip with a semiconducting substrate where the microelectrodes on one surface of the substrate at selected Areas as spatial protruding elements are generated.
Die Erfindung betrifft ferner eine flächige Anordnung von Stimulationselektroden auf einem Chip mit einem Substrat, bei der die Stimulationselektroden als Mikroelektroden von einer Oberfläche des Chips räumlich hervorstehen.The invention further relates to a area Arrangement of stimulation electrodes on a chip with a substrate, in which the stimulation electrodes as microelectrodes of one surface of the chip spatially protrude.
Ein derartiges Verfahren und eine
derartige flächige
Anordnung sind aus der
Ein Verfahren zur Erzeugung von Mikroelektroden auf einem Chip, bei dem die Mikroelektroden auf einer Oberfläche des desselben an ausgewählten Bereichen als räumlich vorstehende Elemente erzeugt werden und ein derartiger Chip sind bekannt aus Buser, R.A., Brugger, J., Linder, C., Rooij, N.F. de „Micromachined silicon cantilevers and tips for bidirectional force microscopy", Dig. Techn. Papers 1991, Int. Conf. Solid State Sens. Act., San Francisco, S. 249–252 (1991), sowie aus Dizon. R., Han, H., Reed, M., „Single-Mask processing of micromechanical piercing structures using ion milling", Proc. Microelectro-mechanical Systems (MEMS), Fort Lauterdale, S. 48–52 (1993). A method of producing microelectrodes on a chip with the microelectrodes on a surface of the the same in selected areas as spatial protruding elements are generated and are such a chip known from Buser, R.A., Brugger, J., Linder, C., Rooij, N.F. de "Micromachined silicon cantilevers and tips for bidirectional force microscopy ", Dig. Techn. Papers 1991, Int. Conf. Solid State Sens. Act., San Francisco, pp. 249-252 (1991), as well as from Dizon. R., Han, H., Reed, M., "Single-Mask processing of micromechanical piercing structures using ion milling ", Proc. Microelectro-mechanical Systems (MEMS), Fort Lauterdale, pp. 48-52 (1993).
Gemäß der beiden im letzten Absatz Dokumente werden dabei von einem Chip räumlich hervorstehende Mikrokontakte durch aufwendige Trocken- und Nassätzprozesse hergestellt.According to the two in the last paragraph Documents are micro-contacts protruding spatially from a chip manufactured by complex dry and wet etching processes.
Die dazu verwendeten Materialien sind in der Regel die Standardmetalle der Halbleiterfertigung, also Aluminium, Nickel, Kupfer und Gold.The materials used for this are usually the standard metals in semiconductor manufacturing, so Aluminum, nickel, copper and gold.
Es handelt sich dabei um sehr aufwendige und komplizierte Herstellungsverfahren; auch ist es nicht möglich, die Herstellung solcher Mikroelektroden oder Mikroelektrodenarrays in einen CMOS-Prozess zu integrieren.It is very complex and complicated manufacturing processes; nor is it possible to Manufacture of such microelectrodes or microelectrode arrays in to integrate a CMOS process.
An sich ist es aus Kapolnek, D. et al.: "Selective area epitaxy of GAN for electron field emmision devices", In: I. of Crystal Grocoth, 170 (1997) 340–343, bekannt Elektroden für Feldemissionsgeräte durch selektive Epitaxie herzustellen.As such, it is from Kapolnek, D. et al .: "Selective area epitaxy of GAN for electron field emission devices ", In: I. of Crystal Grocoth, 170 (1997) 340-343, known electrodes for Field emission devices by selective epitaxy.
Im Rahmen der Entwicklung von subretinalen
Netzhautimplantaten ist aus der
Die elektrische Stimulation bestimmter Zellen oder Zellgruppen hängt sehr stark von den lokalen Gegebenheiten am Ort der Stimulation ab. So hat der Abstand zwischen der Stimulationselektrode und der zu stimulierenden Zelle erheblichen Einfluss auf die Reizschwelle, oberhalb derer eine erfolgreiche Stimulation stattfindet. Da aus versorgungstechnischen und zellverträglichen Gründen die Energie so gering wie möglich sein muss, sollte der Abstand zwischen der Stimulationselektrode und der Zelle so klein wie möglich sein.The electrical stimulation of certain Cells or groups of cells hangs very much from the local conditions at the site of the stimulation from. So the distance between the stimulation electrode and the cell to be stimulated has a significant influence on the stimulus threshold, above which successful stimulation takes place. From there supply-related and cell-compatible reasons the energy so low as possible should be the distance between the stimulation electrode and the cell as small as possible his.
Die unabhängige Beschaltung einer großen Anzahl von Stimulationselektroden ist nur mit Hilfe eines mikroelektronischen Chips möglich.The independent wiring of a large number of stimulation electrodes is only possible with the help of a microelectronic Chips possible.
Die vorstehend genannten Verfahren, die Herstellung von räumlich von einer Chipoberfläche hervorstehenden Mikroelektroden ermöglichen, lassen sich jedoch nicht alle in einen CMOS-Prozess integrieren.The above procedures, the manufacture of spatially protruding from a chip surface Microelectrodes enable however, not all of them can be integrated into a CMOS process.
Da es jedoch geplant ist, die Steuerschaltung im Rahmen eines CMOS-Prozesses herzustellen, führt dies zu einer weiteren Komplikation im Herstellungsverfahren, zu vergrößerten Abmessungen und damit zu späteren Problemen bei der Implantation.However, since it is planned to use the control circuit in the Establishing a CMOS process leads to another Complication in the manufacturing process, too large dimensions and thus to later Implantation problems.
Die Aufgabe der Erfindung besteht somit darin, ein Verfahren zur Erzeugung von Mikroelektroden auf einem Chip anzugeben, mit dem die Mikroelektroden auf möglichst einfache und gut zu kontrollierende Weise als räumlich von der Chipoberfläche hervorstehende Elemente erzeugt werden können. Dabei soll es möglich sein, das Herstellungsverfahren in einen. CMOS-Prozess zu integrieren.The object of the invention is thus in a method for producing microelectrodes specify a chip with which the microelectrodes on as possible simple and easy to control manner as protruding spatially from the chip surface Elements can be created. there should it be possible be the manufacturing process into one. Integrate CMOS process.
Ferner soll eine verbesserte flächige Anordnung von Stimulationselektroden auf einem Chip angegeben werden, von dessen Oberfläche die Stimulationselektroden in Form von Mikroelektroden räumlich hervorstehen, die als Retinol-Implantat verwendet werden können.Furthermore, an improved planar arrangement should be of stimulation electrodes on a chip are indicated by its surface the stimulation electrodes protrude spatially in the form of microelectrodes, that can be used as a retinol implant.
Gelöst wird diese Aufgabe durch das Verfahren des Anspruchs 1, durch die flächige Anordnung des Anspruchs 10 und die Verwendung dieser flächigen Anordnung gemäß Anspruch 13.This task is solved by the method of claim 1, by the flat arrangement of the claim 10 and the use of this flat Arrangement according to claim 13th
Hinsichtlich des Verfahrens wird diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass die Stimulationselektroden durch Erzeugen von selelektivem epitaktischem Kristallwachstum mit einer CMOS-Steuerschaltung im gleichen Substrat erzeugt werden.With regard to the method, this object is achieved in a method of the type mentioned at the outset in that the stimulation electrodes are produced by generating a selective epitaxial crisis tall grow with a CMOS control circuit are generated in the same substrate.
Hinsichtlich der flächigen Anordnung von Stimulationselektroden auf einem Chip gemäß der eingangs genannten Art wird diese Aufgabe ferner dadurch gelöst, daß die Mikroelektroden aus dem Material des Substrates bestehen und dieselbe Kristallstruktur wie das Substrat aufweisen und an eine CMOS-Steuerschaltung im gleichen Substrat gekoppelt sind.With regard to the flat arrangement of stimulation electrodes on a chip according to the type mentioned this object is further achieved in that the microelectrodes from the Material of the substrate exist and the same crystal structure as have the substrate and to a CMOS control circuit in the same Substrate are coupled.
Ein Verfahren gemäß dem Oberbegriff des Anspruchs
1 und des Anspruchs 10 ist aus der
Gemäß dem erfindungsgemäßen Verfahren können räumlich vorstehende Mikroelektroden innerhalb eines CMOS-Prozesses herge stellt werden. Dadurch können die Mikroelektroden auf einem mikroelektronischen Steuerchip mit einer an die Mikroelektroden gekoppelten Steuerschaltung angeordnet sein, ohne dass aufwendige Kabel zur Signalübertragung verwendet werden müssen. Auf diese Weise können Mikroelektrodenarrays mit mehreren hundert oder tausend Mikroelektroden beschaltet werden, wobei Probleme der notwendigen Verbindungs- und Operationstechnik bei der Verwendung als Retina-Implantate entfallen. Die Form und Größe der Mikroelektroden lässt sich sehr exakt durch die Prozessparameter definieren, ohne dass dazu zusätzliche Lithographieebenen im Rahmen eines CMOS-Prozesses notwendig sind.According to the method according to the invention, spatially protruding Microelectrodes can be manufactured within a CMOS process. This allows the microelectrodes on a microelectronic control chip a control circuit coupled to the microelectrodes be without using complex cables for signal transmission have to. In this way, microelectrode arrays with several hundred or a thousand microelectrodes, taking problems of the necessary connection and surgical technique omitted when used as retina implants. The shape and Microelectrode size let yourself Define very precisely through the process parameters without this additional Lithography levels are necessary as part of a CMOS process.
Auf diese Weise ergibt sich der erhebliche Vorteil, dass die Mikroelektroden im Rahmen des CMOS-Prozesses unmittelbar mit der Steuerschaltung verbunden werden können, um so für ein Retina-Implantat ein hochauflösendes Sensor Array unmittelbar mit einer Steuerschaltung zu kombinieren, die mit einer der Pixelzahl entsprechenden Anzahl von Mikroelektroden auf der Oberfläche des Chips unmittelbar kombiniert ist.In this way there is the considerable advantage that the microelectrodes are immediately involved in the CMOS process can be connected to the control circuit, so as for a retina implant a high resolution Sensor array can be combined directly with a control circuit that with a number of microelectrodes corresponding to the number of pixels on the surface of the chip is immediately combined.
Auf diese Weise entsteht ein leicht zu handhabendes und gut implantierbarues Retina-Implantat.In this way an easy arises easy-to-use and easily implantable retina implant.
Die Höhe der Elektroden kann an die gewünschten Verhältnisse angepasst werden und im Rahmen von 0 bis 50 Mikrometern gesteuert werden.The height of the electrodes can be compared to the desired conditions can be adjusted and controlled within the range of 0 to 50 micrometers become.
In bevorzugter Weiterbildung des erfindungsgemäßen Verfahrens wird das selektive Kristallwachstum gestoppt, bevor der Kri stall seine ideale Raumstruktur erreicht hat, um abgeflachte Mikroelektroden zu erzeugen.In a preferred further training of inventive method selective crystal growth is stopped before the crystal its ideal spatial structure has reached to flattened microelectrodes to create.
Besteht das Substrat des Chips beispielsweise aus Silizium, so weisen die Mikroelektroden normalerweise die ideale Kristallstruktur auf, sind also pyramidenförmig ausgebildet. Stoppt man jedoch den Epitaxie-Prozess, bevor die <111>-Ebenen aufgefüllt sind, so wachsen die Spitzen der Mikroelektroden nicht vollständig aus. Auf diese Weise wird bei einer Verwendung als Retina-Implantat das Risiko, dass bei Operationen das Gewebe über dem Chip geschädigt wird, vermindert.For example, the substrate of the chip made of silicon, so the microelectrodes usually have the ideal one Crystal structure, so they are pyramid-shaped. If you stop however the epitaxy process before the <111> planes are populated, the tips of the microelectrodes do not grow out completely. In this way, when used as a retinal implant Risk that the tissue above the chip is damaged during surgery, reduced.
Die zur Erzielung einer ausreichenden Leitfähigkeit der Mikroelektroden notwendige Dotierung wird gemäß einer ersten Ausführung der Erfindung in-situ während des epitaktischen Kristallwachstums erzeugt.To achieve sufficient conductivity the necessary doping of the microelectrodes is according to a first execution the invention in situ during of epitaxial crystal growth.
Gemäß einer alternativen Ausführung der Erfindung wird die Dotierung durch Implantation nach der selektiven Epitaxie erreicht.According to an alternative embodiment of the invention is the doping by implantation after the selective epitaxy reached.
Beide Möglichkeiten können in vorteilhafter Weise verwendet werden.Both options can be in be used advantageously.
Da mit einer Implantation allerdings nur Tiefen bis zu etwa einem Mikrometer erreicht werden können, wäre bei größeren Schichtdicken die Dotierung einer tieferen Schicht nicht mehr möglich.Since with an implantation, however only depths of up to about one micrometer could be achieved with larger layer thicknesses doping of a deeper layer is no longer possible.
Aus diesem Grunde werden die Schritte der selektiven Epitaxie und der Implantation gemäß einer weiteren Ausführung der Erfindung sukzessive wiederholt.This is why the steps selective epitaxy and implantation according to another embodiment of the Invention repeated successively.
Auf diese Weise lassen sich gezielt dotierte Mikroelektroden, bei der die Dotierung nach dem selektiven Epitaxiewachstum erfolgt, herstellen, die eine Höhe von mehr als einem Mikrometer aufweisen.This way you can target doped microelectrodes, in which the doping after the selective Epitaxial growth occurs, producing a height of more than one micron exhibit.
Die Passivierung der Oberfläche unter Aussparung der ausgewählten Bereiche, an denen das spätere epitaktische Wachstum erfolgt, erfolgt in zweckmäßiger Ausführung der Erfindung unter Verwendung eines Lithographieverfahrens.Passivation of the surface below Recess the selected one Areas where the later epitaxial growth takes place in an expedient embodiment of the invention using a lithography process.
Als Substrat zur Herstellung des Chips kann gemäß einer weiteren Ausführung der Erfindung Silizium oder ein anderer Halbleiter, etwa ein III-V-, II-VI- oder ein IV-IV-Halbleiter verwendet werden.As a substrate for the production of the Chips can according to one further execution silicon or another semiconductor, such as a III-V, II-VI or an IV-IV semiconductor can be used.
Gemäß einer weiteren Ausführung der Erfindung wird die Passivierungsschicht aus Siliziumoxid hergestellt.According to a further embodiment of the Invention, the passivation layer is made of silicon oxide.
Dies ist ein gängiges Verfahren bei der Verwendung von Silizium als Substrat, jedoch kann die Passivierungsschicht auch aus anderen Materialien hergestellt werden.This is a common method of use of silicon as a substrate, however, the passivation layer can also be made from other materials.
Gemäß einer weiteren Ausführung der Erfindung werden die Mikroelektroden an ihrer Oberfläche mit einer Beschichtung aus einem biokompatiblen Werkstoff versehen.According to a further embodiment of the Invention are the microelectrodes on their surface provided with a coating made of a biocompatible material.
Auf diese Weise wird bei der Verwendung als Retina-Implantat die notwendige Biokompatibilität auf jeden Fall sichergestellt.This way when in use as a retina implant, the necessary biocompatibility for everyone Case ensured.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the above mentioned and the features of the invention to be explained below not only in the specified combination, but also in other combinations or alone can be used without to leave the scope of the present invention.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:Other features and advantages of Invention result from the following description more preferred embodiments with reference to the drawing. Show it:
Anhand von
In
Damit das räumlich hervorstehende Element
In
In
In
Hierbei weist die Mikroelektrode
Eine solche Form kann erzeugt werden, indem der Epitaxie-Prozeß abgebrochen wird, bevor die <111>-Ebenen des Kristalls vollständig aufgefüllt sind.Such a shape can be created by canceling the epitaxy process will before the <111> planes of the crystal Completely are filled.
Je nach Größe der ausgesparten Bereiche
Die Mikroelektroden
In
Bei der Epitaxie handelt es sich bekanntlich um eine Art der Abscheidung eines Materials aus der Gasphase. Das besondere an diesem Verfahren ist die Fortsetzung des Kristallgitters des Substrates in der abgeschiedenen Schicht, wodurch das Substrat und die neue Schicht einen größeren Einkristall bilden.The epitaxy is as is known, it is a way of separating a material from the gas phase. The special thing about this process is the continuation of the crystal lattice of the substrate in the deposited layer, whereby the substrate and the new layer has a larger single crystal form.
Epitaxie ist eine allgemeine Bezeichnung, unter
der im Laufe der Zeit verschiedene Variationen des Grundprinzips
zusammengefaßt
wurden. Solche Verfahren sind z.B. die Molekularstrahlepitaxie (MBE),
die metallorganische Gasphasenepitaxie (MOCVD) oder die metallorganische
Molekularstrahlenepitaxie (MOMBE). All diese Varianten sind im Prinzip
für das
erfindungsgemäße Verfahren
verwendbar, jedoch soll an dieser Stelle nur die allgemeine Gasphasenepitaxie
anhand von
Wird anstelle eines ganzflächigen Substrates eine Siliziumprobe verwendet, deren Oberfläche teilweise z.B. mit Siliziumdioxid bedeckt ist, so erfolgt das einkristalline Wachstum nur in den Bereichen, in denen die Siliziumoberfläche frei liegt. Auf den anderen Gebieten erfolgt entweder ein Wachsen von polykristallinem Silizium oder es erfolgt gar kein Wachstum. Im letzteren Fall wird von selektiver Epitaxie gesprochen. Der erste Fall kann dann eintreten, wenn die Wachstumsrate zu hoch gewählt wurde. Durch Variation der Prozeßtemperatur, der Dotier stoffmenge und der Gasflüsse kann die selektive Epitaxie jedoch in sehr kontrollierbaren Bahnen gesteuert werden.Instead of a full-surface substrate uses a silicon sample, the surface of which e.g. with silicon dioxide is covered, the single-crystalline growth occurs only in the areas in which the silicon surface is free. The other areas either grow of polycrystalline silicon or there is no growth at all. In the latter case, one speaks of selective epitaxy. The first Fall can occur if the growth rate is chosen too high. By varying the process temperature, The amount of dopant and the gas flows can cause selective epitaxy however, be controlled in very controllable trajectories.
Der Reaktor
Innerhalb des Reaktors
Auf dem Substrat
Der Druck innerhalb des Reaktors
Vor der Wachstumsphase kann das Substrat (der
Wafer) zurückgeätzt werden,
um die Oberfläche
Besteht das Substrat
Soll bei der selektiven Epitaxie
in-situ die Dotierung durchgeführt
werden, so werden dem Prozeßgas
Zusätze
in Form von Phosphin oder Diboran beigemischt, wie in
Das epitaktische Wachstum kann vorzeitig beendet
werden, bevor die <111>-Ebenen vollständig aufgefüllt sind,
um abgeflachte Mikroelektroden
In alternativer Weise kann die Dotierung auch nach der selektiven Epitaxie durchgeführt werden.Alternatively, the doping can also after the selective epitaxy.
Da mit der Dotierung durch Implantation nur Tiefen bis zu etwa einem Mikrometer erreicht werden können, wird bei Mikroelektroden, die eine größere Höhe aufweisen, die Dotierung sukzessive durchgeführt, indem abwechselnd zunächst epitaktisches Wachstum durchgeführt wird, dann ein Implantationsschritt erfolgt und anschließend ein weiterer Epitaxieschritt durchgeführt wird, an den sich wiederum eine Implantation anschließt. Auf diese Weise können große Höhen erzeugt werden, sofern der Prozeß entsprechend oft widerholt wird.As with the doping by implantation only depths down to about one micron can be achieved for microelectrodes that have a greater height, the doping is carried out successively by alternating first epitaxial growth carried out an implantation step is carried out and then a another epitaxy step is carried out, which in turn is a Implantation. That way you can size Heights created provided the process is appropriate is often repeated.
Die verschiedenen Phasen eine solchen sukzessiven
Verfahrens sind anhand von
Gemäß
In einem nachfolgenden Schritt erfolgt
gemäß
Im nachfolgenden Ausheilschritt gemäß
In einem anschließenden Epitaxie-Schritt gemäß
Diese Folge von Schritten wird sukzessive wiederholt, bis die betreffenden Mikroelemente ihre gewünschte räumliche Ausdehnung erreicht haben.This sequence of steps is repeated successively, until the micro-elements in question reach their desired spatial extent to have.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19929542A DE19929542B4 (en) | 1999-06-28 | 1999-06-28 | Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant |
PCT/EP2000/004905 WO2001001455A2 (en) | 1999-06-28 | 2000-05-30 | Chip with protruding microelectrodes and method for the production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19929542A DE19929542B4 (en) | 1999-06-28 | 1999-06-28 | Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant |
Publications (2)
Publication Number | Publication Date |
---|---|
DE19929542A1 DE19929542A1 (en) | 2001-01-11 |
DE19929542B4 true DE19929542B4 (en) | 2004-09-23 |
Family
ID=7912800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19929542A Expired - Fee Related DE19929542B4 (en) | 1999-06-28 | 1999-06-28 | Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19929542B4 (en) |
WO (1) | WO2001001455A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4053546A1 (en) | 2007-12-06 | 2022-09-07 | Genalyte, Inc. | Device and method for performing label-free monitoring of processes. |
US9846126B2 (en) | 2008-10-27 | 2017-12-19 | Genalyte, Inc. | Biosensors based on optical probing and sensing |
CA2816995C (en) | 2010-11-05 | 2019-12-31 | THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, a body corporate and politic | Optical analyte detection systems and methods of use |
WO2014143637A1 (en) | 2013-03-15 | 2014-09-18 | The Board Of Trustees Of The University Of Illinois | Methods and compositions for enhancing immunoassays |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19529371A1 (en) * | 1995-08-10 | 1997-02-13 | Nmi Univ Tuebingen | Microelectrode arrangement |
US5865839A (en) * | 1996-12-30 | 1999-02-02 | Doorish; John F. | Artificial retina |
DE19705987C2 (en) * | 1996-10-23 | 1999-09-09 | Univ Eberhard Karls | Optically controllable microelectrode arrangement for stimulating cells, in particular a retina implant |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134454A (en) * | 1990-09-26 | 1992-07-28 | Purdue Research Foundation | Self-aligned integrated circuit bipolar transistor having monocrystalline contacts |
JP2744350B2 (en) * | 1990-11-22 | 1998-04-28 | キヤノン株式会社 | Semiconductor substrate and method of manufacturing the same |
JP3149030B2 (en) * | 1991-06-13 | 2001-03-26 | 富士通株式会社 | Semiconductor quantum box device and method of manufacturing the same |
JPH0521467A (en) * | 1991-07-09 | 1993-01-29 | Hitachi Ltd | Manufacture of field-effect transistor |
JPH07183486A (en) * | 1993-12-24 | 1995-07-21 | Toshiba Corp | Semiconductor device and its manufacture |
US5753555A (en) * | 1995-11-22 | 1998-05-19 | Nec Corporation | Method for forming semiconductor device |
-
1999
- 1999-06-28 DE DE19929542A patent/DE19929542B4/en not_active Expired - Fee Related
-
2000
- 2000-05-30 WO PCT/EP2000/004905 patent/WO2001001455A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19529371A1 (en) * | 1995-08-10 | 1997-02-13 | Nmi Univ Tuebingen | Microelectrode arrangement |
DE19705987C2 (en) * | 1996-10-23 | 1999-09-09 | Univ Eberhard Karls | Optically controllable microelectrode arrangement for stimulating cells, in particular a retina implant |
US5865839A (en) * | 1996-12-30 | 1999-02-02 | Doorish; John F. | Artificial retina |
Non-Patent Citations (11)
Title |
---|
BRUGGER, J. * |
BUSER, R.A. * |
BUSER, R.A.; BRUGGER, J.; LINDER, C.; ROOIJ, N.F.: "Micromachined Silicon cantilevers and tips for Bidirectional Force Microscopy",Dig.Techn. Papers 1991, Int.Conf. Solid-State Sens.Act., San Fran- cisco, S. 249-252 (1991) |
DIZON, R., HAN, H., REED, L.M.: Single-Mask Processing of Micromechanical Piercing Structures Using Ion Milling. Proc. Microelectromechanical Systems (MEMS), Fort Lauderdale, S. 48-52 (1993) * |
KAPOLNEK, D., et al.: "Selective area epitaxy of GaN for electron field emission devices", In: Journal of Crystal Growth 170 (1997) 340-343 * |
KASU, M., et al.: "Nanometer-scale selective area GaAs growth on nitrogen-passivated surfaces using STM and MOMBE" In: Journal of Crystal Growth 173 (1997) 589-591 * |
LINDER, C. * |
ROOIJ, N.F.:"Micromachined Silicon cantilevers and tips for Bidirectional Force Microscopy",Dig.Techn. Papers 1991, Int.Conf. Solid-State Sens.Act., San Fran- cisco, S. 249-252 (1991) * |
SEIFERT, W., et al.: "In situ growth of nano- structures by metal-organic vapour phase epitaxy", In: Journal of Crystal Growth 170 (1997) 39-46 |
SEIFERT, W., et al.: "In situ growth of nano- structures by metal-organic vapour phase epitaxy",In: Journal of Crystal Growth 170 (1997) 39-46 * |
SHIBATA, H., et al.: In: IEDM 1987, S. 590-593 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001001455A2 (en) | 2001-01-04 |
WO2001001455A3 (en) | 2002-10-10 |
DE19929542A1 (en) | 2001-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69738218T2 (en) | CVD APPLICATION OF FRUORCARBON POLYMER THIN FILMS | |
DE69216710T2 (en) | Diamond-coated field emission electron source and manufacturing method therefor | |
DE102011053018B4 (en) | Electrode for medical applications, system with such an electrode and method for producing such an electrode | |
DE69204940T2 (en) | Diamond-coated, cast field emission electron emitter and method of manufacturing the same. | |
DE69333600T2 (en) | Apparatus for producing thin layers, for filling fine-pored substrates | |
DE102008015333B4 (en) | Nanowire structural element, process for its production, microreactor system and catalyst system | |
EP1448264B1 (en) | Retina implant comprising an electrode arrangement for electrically stimulating biological material | |
DE19820223C1 (en) | Variable doping epitaxial layer manufacturing method | |
DE19803490A1 (en) | Electrodeposition unit for semiconductor wafer coating | |
DE2313219B2 (en) | Process for the production of a semiconductor arrangement with a metallization lying on several levels | |
EP0951312A1 (en) | Optically controllable microelectrode arrangement for stimulating cells, in particular a retina implant | |
DE102006007293A1 (en) | Method for manufacturing quasi-substrate wafer, which is used in manufacturing semiconductor body, involves connecting epitaxial growth substrate wafer with auxiliary support wafer | |
DE102006007431A1 (en) | Sample carrier formed by semiconductor silicon processing technology | |
WO2008131714A2 (en) | Method and arrangement for electrically contacting an object surrounded by a membrane, using an electrode | |
DE19929542B4 (en) | Flat arrangement of stimulation electrodes on a chip and manufacturing process therefor and use as a retina implant | |
DE2231891A1 (en) | METHOD FOR MANUFACTURING AMORPHERIC SEMICONDUCTOR FILMS | |
DE10142637A1 (en) | Implant with a surface structure | |
DE102020118446A1 (en) | fastener | |
DE102004058412A1 (en) | Multiple mask and method for producing differently doped regions | |
DE102012108473B4 (en) | Method for producing a semiconductor device | |
DE102017121684A1 (en) | Method for creating a structured surface | |
DE10241066A1 (en) | Semiconductor device and method | |
EP1180795B1 (en) | Method for making a first electrode and a second electrode, electronic component and electronic memory element | |
DE19538019B4 (en) | A method of forming a metal wiring of a semiconductor device | |
DE102010053782B4 (en) | Segmented nanowires with polycrystalline structure and process for their preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |