[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE19840352A1 - Under-pressure wind power plant - Google Patents

Under-pressure wind power plant

Info

Publication number
DE19840352A1
DE19840352A1 DE19840352A DE19840352A DE19840352A1 DE 19840352 A1 DE19840352 A1 DE 19840352A1 DE 19840352 A DE19840352 A DE 19840352A DE 19840352 A DE19840352 A DE 19840352A DE 19840352 A1 DE19840352 A1 DE 19840352A1
Authority
DE
Germany
Prior art keywords
wind
turbine
under
generator
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19840352A
Other languages
German (de)
Inventor
Wolfgang Ipach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19840352A priority Critical patent/DE19840352A1/en
Publication of DE19840352A1 publication Critical patent/DE19840352A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Wind Motors (AREA)

Abstract

An under-pressure wind power plant has a correspondingly shaped head part turning in the wind direction automatically by wind force without mechanical influences and generating an under-pressure in the part facing away from the wind. A turbine is mounted in the tower part with the narrowest diameter and it is set into motion by the air draught generated by the under-pressure, by wind or warm air current. This turbine is connected by a shaft to a two-part generator in the machine room. The generator is divided into two sections. The smaller and less power-capable part runs in light winds and the larger and more power-capable part is automatically coupled with strong winds.

Description

Bekannt sind Windkrafttürme mit quer zur Windrichtung angeordneten Propeller-(Rotor-)antrieben.Wind power towers with transverse to the wind direction are known arranged propeller (rotor) drives.

Wesentliche Nachteile dieser Konstruktionen:
The main disadvantages of these designs:

  • 1. Rotore haben eine schwerfällige Anlaufphase um so mehr, je größer der Durchmesser.1. Rotors have a slow start-up phase the larger the diameter, the more.
  • 2. Windtürme sind einem erheblichen Winddruck aus­ gesetzt, der enorm hohe Biegemomente erzeugt die durch die Turmkonstruktion aufgenommen werden müssen; je höher der Turm und je größer der Durch­ messer der Rotore, desto aufwendiger die Turmkon­ struktion.2. Wind towers are subject to significant wind pressure set, which generates the extremely high bending moments be taken up by the tower construction have to; the higher the tower and the larger the through knife the rotor, the more complex the tower cone structure.
  • 3. Da die Leistung einer solchen Windkraftanlage von der Turmhöhe und dem Rotordurchmesser abhängt, werden schnell Grenzen erreicht, wo überdimensio­ nale Mastkonstruktionen erforderlich werden, um die Winddrücke aufzunehmen.3. Since the performance of such a wind turbine from depends on the tower height and the rotor diameter, limits are quickly reached where overdimensioned nale mast structures are required to to record the wind pressures.

Insbesondere bei Einsatz im Meer oder in Meeresnä­ he muß gelegentlich mit Wind in Orkanstärke gerech­ net werden, so daß bei Einhaltung von Sicherheitszu­ schlägen eine wirtschaftlich sinnvolle Relation von Kosten/Leistung nicht mehr gegeben ist.Especially when used in the sea or near the sea he must occasionally be fair to the wind in hurricane strength be net, so that if security is adhered to suggest an economically sensible relation cost / performance is no longer given.

  • 4. Infolge der Anlauf- und Bewegungsträgheit der Rotor-Versionen - insbesondere bei zunehmendem Durchmes­ ser - sind Schwachwinde kaum in Energie umsetzbar.4. As a result of the inertia of the start and movement Rotor versions - especially with increasing diameters weak winds can hardly be converted into energy.

Insbesondere ist eine Ausnutzung rein thermischer Aufwinde nicht möglich.In particular, utilization is purely thermal Updrafts not possible.

Die Erfindung trägt diesen Nachteilen Rechnung.The invention takes these disadvantages into account.

Die hier vorgestellte Unterdruck-Windkraftanlage sieht eine optimale Ausnutzung sowohl von Stark- Schwach- und thermischen Aufwinden durch Sog vor. The vacuum wind turbine presented here sees optimal use of both strong, weak and thermal winds caused by suction.  

Durch weitgehende Verwendung von Leichtbauteilen - z. B. dem aus dem Flugzeugbau bekannten Karbon-Fiber - entste­ hen auch in großen Bauhöhen die geringstmöglichen Seiten­ drücke, so daß sich der konstruktive Aufwand des Turmes in Grenzen hält.Through extensive use of lightweight components - e.g. B. the carbon fiber known from aircraft construction the smallest possible sides, even in large construction heights press so that the design effort of the tower keeps within limits.

Durch die Formgebung des Kopfteils (1) der Anlage ent­ steht hinter der Öffnung in abgewandter Windrichtung ein Sog, der um so größer wird, je stärker der Wind.The shape of the head part ( 1 ) of the system ent creates a suction behind the opening in the opposite wind direction, which increases the stronger the wind.

Bei dieser Konstruktion entsteht Sogwirkung nicht nur durch Wind, sondern auch durch Temperaturunterschiede zwischen unten und oben; diese treten insbesondere in den heißen Regionen dieser Erde auf; da sich der Unter­ druckturm infolge der Leichtkonstruktion in große Höhen bauen läßt, sind die auftretenden thermischen Unterschie­ de groß genug, um eine ausreichende Sogwirkung zum Betrieb der Turbine zu liefern.This construction not only creates suction by wind, but also by temperature differences between below and above; these occur in particular the hot regions of the world; since the sub pressure tower due to the lightweight construction to great heights lets build, are the occurring thermal differences de large enough to provide sufficient suction to operate to deliver the turbine.

Meist tritt dazu noch eine Windbewegung in größeren Höhen, wodurch die Turbinenleistung weiter verstärkt wird.Usually there is a wind movement at higher altitudes, which further enhances turbine performance.

Durch die Öffnungen im Unterteil des Turmes (5) wird Luft in Richtung des Unterdruck-Kopfteils angesaugt; in der Verjüngung des Turmquerschnitts, wo die maximale Luft­ beschleunigung auftritt, befindet sich eine Turbine (3) die durch den Luftstrom in Drehung versetzt wird.Air is drawn in through the openings in the lower part of the tower ( 5 ) in the direction of the negative pressure head part; In the taper of the tower cross-section, where the maximum air acceleration occurs, there is a turbine ( 3 ) which is rotated by the air flow.

Die Formgebung und Anordnung der Turbinen-Lamellen (Fig. 2+3) so, daß einerseits eine maximale Ausnützung der Luft­ strömung gewährleistet ist, andererseits ein Luftstau nicht entstehen kann.The shape and arrangement of the turbine fins ( Fig. 2 + 3) so that on the one hand maximum utilization of the air flow is guaranteed, on the other hand, an air build-up cannot occur.

Die Turbine ist durch eine Antriebswelle (7) mit dem sich im Unterteil befindlichen zweiteiligen Leistungsgenerator (6) verbunden.The turbine is connected by a drive shaft ( 7 ) to the two-part power generator ( 6 ) located in the lower part.

Der Generator besteht aus zwei Teilen: Teil I spricht be­ reits bei Leichtwind an; bei höherer Drehzahl wird auto­ matisch Teil II zugekoppelt, so daß der Generator dann zur vollen Leistungsentfaltung kommt.The generator consists of two parts: Part I speaks riding in light wind; at higher speeds, auto matically part II coupled so that the generator then to full power delivery comes.

Sowohl das in Windrichtung drehbare Kopfteil mit der Unterdrucköffnung als auch die Turbine sowie die Ver­ mit schräg nach unten gerichteten Blenden versehen, die das Eindringen von Schnee oder Regen bei starkem Wind ver­ hindern, gleichwohl ausreichend Lufteintritt gewähren. Both the head part that can be turned in the wind direction with the Vacuum opening as well as the turbine and the Ver  with diagonally downward facing panels that the penetration of snow or rain in strong wind prevent, nevertheless allow sufficient air entry.  

BezugszeichenlisteReference list Unterdruck-Windkraft-Turmanlage in Windrichtung drehbares UnterdruckteilVacuum wind power tower system vacuum part rotatable in the wind direction

11

Unterdruckteil
Vacuum part

22nd

Rollengelagerter Drehkranz
Roller bearing slewing ring

HauptturmMain tower

33rd

Turbine
turbine

44th

Turbinenlagerungen
Turbine bearings

55

Windeintrittsöffnungen mit Blenden
Wind vents with shutters

66

Maschinen-und Betriebsräume mit 2-teiligem Leicht (I)-/Starkwind (II)-Genertor
Machine and operating rooms with 2-part light (I) / strong wind (II) generator gate

77

Antriebswelle.
Drive shaft.

Fundamentfoundation

Fig.Fig.

1 Unterdruckteil, Ansicht von Rückseite
1 vacuum part, rear view

Fig.Fig.

2 Turbinenlamelle
2 turbine blades

Fig.Fig.

3 Turbine, Ansicht von oben.3 turbine, top view.

Claims (7)

1. Unterdruck-Windkraftanlage dadurch gekennzeichnet, daß ein entsprechend geformtes, sich durch Windkraft automatisch - ohne mechanische Einflüs­ se - in Windrichtung drehendes Kopfteil im windab­ gewandten Teil einen Unterdruck erzeugt.1. Vacuum wind turbine characterized in that a correspondingly shaped, by wind power automatically - without mechanical influences se - rotating head part in the windward part generates a negative pressure. 2. Daß im Turmteil mit dem engsten Durchmesser eine Turbine montiert ist, die durch den durch den Unterdruck - durch Wind oder Thermik - er­ zeugten Luftzug in Drehung versetzt wird.2. That in the tower part with the narrowest diameter a turbine is mounted through which by the negative pressure - through wind or thermals - he generated draft is rotated. 3. Daß diese Turbine durch eine Welle mit einem zweiteiligen Generator im Maschinenraum verbun­ den ist.3. That this turbine through a shaft with a two-part generator in the engine room that is. 4. Daß der Generator in zwei Sektionen unterteilt ist, wobei der kleinere und weniger leistungsfä­ hige Teil I bei Leichtwind anläuft, der größere und leistungsfähigere Teil II bei Starkwind auto­ matisch zu voller Leistung zugekoppelt wird.4. That the generator is divided into two sections is, the smaller and less powerful Part I starts in light winds, the larger one and more powerful part II in strong wind auto is matically coupled to full power. 5. Daß die Lufteinlässe im Unterteil des Turmes mit Blenden versehen sind, die zwar ungehinderte Luft­ zufuhr ermöglichen, jedoch das Eindringen von Re­ gen oder Schnee verhindern.5. That the air intakes in the lower part of the tower with Apertures are provided, the unhindered air allow supply, but the penetration of Re or prevent snow. 6. Daß alle nichttragenden Teile aus Leichtbaumaterial sind, vorzugsweise aus Karbon-Fiber Material.6. That all non-load-bearing parts made of lightweight material are, preferably made of carbon fiber material. 7. Daß die Lamellen der Windturbine so geformt sind, daß sie die Luftströmung so aufnehmen, daß eine maximale Umsetzung in Drehung erfolgt, jedoch ohne daß ein unerwünschter Luftstau entsteht.7. That the fins of the wind turbine are shaped that they absorb the air flow so that a maximum conversion into rotation takes place, however without that an undesirable air jam occurs.
DE19840352A 1998-09-04 1998-09-04 Under-pressure wind power plant Withdrawn DE19840352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19840352A DE19840352A1 (en) 1998-09-04 1998-09-04 Under-pressure wind power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19840352A DE19840352A1 (en) 1998-09-04 1998-09-04 Under-pressure wind power plant

Publications (1)

Publication Number Publication Date
DE19840352A1 true DE19840352A1 (en) 1999-11-04

Family

ID=7879804

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19840352A Withdrawn DE19840352A1 (en) 1998-09-04 1998-09-04 Under-pressure wind power plant

Country Status (1)

Country Link
DE (1) DE19840352A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014689A1 (en) 2000-08-16 2002-02-21 Herbert Jenner Wind power station having a chimney effect
DE10217529A1 (en) * 2002-04-19 2003-11-20 Deutsch Zentr Luft & Raumfahrt Whirl wind power generation plant has wineglass shaped sleeve positioned above solar energy absorber surface with turbine stage at its upper end
DE202009008627U1 (en) 2009-06-23 2010-11-04 Korrmann, Volker Tornado power plant
DE102015013073A1 (en) * 2015-10-08 2017-04-13 Rainer Rabe Air pressure opposites wind turbine
DE102022000204A1 (en) 2022-01-20 2023-07-20 Bruno Zay Nature-friendly wind turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014689A1 (en) 2000-08-16 2002-02-21 Herbert Jenner Wind power station having a chimney effect
DE10217529A1 (en) * 2002-04-19 2003-11-20 Deutsch Zentr Luft & Raumfahrt Whirl wind power generation plant has wineglass shaped sleeve positioned above solar energy absorber surface with turbine stage at its upper end
DE10217529B4 (en) * 2002-04-19 2011-06-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Eddy current power plant
DE202009008627U1 (en) 2009-06-23 2010-11-04 Korrmann, Volker Tornado power plant
DE102015013073A1 (en) * 2015-10-08 2017-04-13 Rainer Rabe Air pressure opposites wind turbine
DE102022000204A1 (en) 2022-01-20 2023-07-20 Bruno Zay Nature-friendly wind turbine

Similar Documents

Publication Publication Date Title
EP1859164B1 (en) Method and device for using wind energy
DE60124788T2 (en) WIND TURBINE SYSTEM
DE102010043435A1 (en) Wind turbine
DE102007019513B4 (en) Wind turbine
WO2001057397A1 (en) Wind power facility for roofs for generating energy
EP3099928A1 (en) Vertical axis wind converter
DE112017004377B4 (en) wind turbine plant
DE102012009145A1 (en) Wind turbine with horizontal rotor shaft and with rotatable tower
DE19840352A1 (en) Under-pressure wind power plant
EP1626176A2 (en) Wind turbine comprising a solar converter
DE202016001490U1 (en) Tower construction for a wind turbine
DE102009007812B4 (en) Wind turbine with wind-slip profiling
WO2001061187A1 (en) Wind energy converter
DE2905569A1 (en) Wind driven turbine with prism shaped rotors - has wind deflecting shield which projects rotors moving against windward direction
DE19635379A1 (en) Wind power plant arrangement
DE102005041600B3 (en) Wind-driven power plant has vertical rotor axis carrying cam-shaped rotor within annular chamber defining channel having wind inlet and outlet
DE10118407B4 (en) Floating Wing wind turbine
DE102017110698B4 (en) Wind power plant and method for operating a wind power plant
EP0193624A1 (en) Wind power propulsion
DE102022003706A1 (en) Wind rotor with individual aerodynamic elements, self-propelled flow optimization, variable rotor diameter in modular design
DE102011014009A1 (en) Tower wind-power plant for generating current by kinetic wind energy, has wind adjusting device comprising guiding tube, where tube is brought into rotating movement such that blades in blade component are adjusted automatically at angle
DE102011117446A1 (en) Wind power plant for production of electrical power for building, has shells with rear sides provided with covers after assembly of arms, where arms are laterally guided and secured through streamlined shaped shells without planar bottom
EP4361435A1 (en) Vertical axis wind turbine
DE102010009647B4 (en) Combined power plant
DE102022002822A1 (en) Vertical wind turbine

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8130 Withdrawal