-
HINTERGRUND DER ERFINDUNG
-
Gebiet der Erfindung
-
Die vorliegende Erfindung betrifft eine Einkristall-Ziehvorrichtung zum Herstellen eines Einkristalls aus einem Halbleiter, wie Silicium (Si) oder Galliumarsenid (GaAs), unter Anwendung eines Czochralski(CZ)-Verfahrens mit kontinuierlicher Beschickung und Anlegen eines Magnetfelds (nachfolgend als CMCZ-Verfahren abgekürzt), und sie betrifft insbesondere eine Einkristall-Ziehvorrichtung, bei welcher der durch die Zufuhr von zusätzlichem Ausgangsmaterial ausgeübte Einfluss verringert worden ist.
-
Beschreibung des Standes der Technik
-
Einkristall-Ziehvorrichtungen, welche das Czochralski(CZ)-Verfahren benutzen, umfassen eine gasdichte Kammer, einen innerhalb der Kammer angeordneten Schmelztiegel zur Aufnahme einer Halbleiterschmelze, eine Heizvorrichtung zum Erhitzen der Halbleiterschmelze und einen Ziehmechanismus zum Ziehen eines Einkristalls aus dem Halbleiter. Bei dieser Art Vorrichtung wird ein Impfkristall aus einem Einkristall des Halbleiters in die Halbleiterschmelze innerhalb des Schmelztiegels getaucht, und der Impfkristall wird dann allmählich nach oben gezogen, wobei ein Einkristall des Halbleiters mit großem Durchmesser gezüchtet wird, der dieselbe Ausrichtung wie der Impfkristall aufweist.
-
In den vergangenen Jahren gab es eine erhebliche Entwicklung des CMCZ-Verfahrens, das eine Abart des Czochralski-Verfahrens ist, wo der Ziehvorgang während einer kontinuierlichen Zufuhr des Ausgangsmaterials zum Schmelztiegel durchgeführt wird. Beim CMCZ-Verfahren wird ein Doppelschmelztiegel verwendet, der einen inneren Schmelztiegel und einen äußeren Schmelztiegel umfasst, welche am unteren Rand miteinander verbunden sind, und ein Einkristall des Halbleiters wird aus dem inneren Schmelztiegel gezogen, während Ausgangsmaterial durch ein aus Quarz hergestelltes Ausgangsmaterialzufuhrrohr in den Bereich der Halbleiterschmelze zwischen dem äußeren und dem inneren Schmelztiegel zugegeben wird. Das Ausgangsmaterialzufuhrrohr hängt aus dem oberen Teil der Kammer herab, und das untere Ende des Rohrs befindet sich in der Nähe der Oberfläche der Halbleiterschmelze im äußeren Schmelztiegel. Beim CMCZ-Verfahren schmilzt das durch das Ausgangsmaterialzufuhrrohr zugegebene Ausgangsmaterial nach und nach in der Halbleiterschmelze und tritt schließlich durch einen Verbindungsabschnitt hindurch, welcher den äußeren und den inneren Schmelztiegel am unteren Rand des inneren Schmelztiegels verbindet, und fließt in den inneren Schmelztiegel, wo es dann als ein Einkristall aus dem Halbleiter nach oben gezogen wird.
-
Untersuchungen über die Ursache des Auftretens von Fehlstellen in Halbleitereinkristallen offenbarten, dass eine extensive Diffusion von Fehlstellen erzeugendem Material (nachfolgend als Fehlstellenerzeugungsquelle bezeichnet) in die Halbleiterschmelze im Bereich der Ausgangsmaterialzugabestelle ein Faktor ist, der das gesunde Wachstum von Einkristallen aus einem Halbleiter behindert. Insbesondere dann, wenn die Abwärtskraft des zugegebenen Ausgangsmaterials groß ist, oder wenn das Ausgangsmaterial in Stücken nach unten fällt, nimmt die Tiefe zu, bis zu der das Ausgangsmaterial in die Halbleiterschmelze eindringt, und so sind die Auswirkungen einer Diffusion von Fehlstellenerzeugungsquellen besonders ausgeprägt.
-
Die vorliegende Erfindung berücksichtigt die oben geschilderte Situation mit dem Ziel einer Bereitstellung einer Einkristall-Ziehvorrichtung, die eine möglichst große Verringerung der Auswirkungen ermöglicht, welche durch Diffusion von Fehlstellenerzeugungsquellen aufgrund einer Zugabe von Ausgangsmaterial verursacht werden, was als einer der hauptsächlichen Faktoren betrachtet werden kann, die das gesunde Wachstum von Halbleitereinkristallen behindern.
-
Ferner offenbart die
JP 03-199192 A vertikal nebeneinander angeordnete Umlenk- bzw. Leitplatten, die damit vertikal zur Oberfläche der Halbleiterschmelze angeordnet sind. Eine ähnliche Offenbarung findet sich in der
JP 06-135791 A . Darüber hinaus wird in der
JP 02-180791 A ein Zylinder durch die von der durch die Rotation eines Eingriffsteils und einer Schmelztiegelachse erzeugte Strömung gedreht und dadurch die Schmelze gerührt. Die
JP 02-243587 A offenbart Vorsprünge auf dem Zylindermantel einer zylinderförmigen Trennwand. Die Vorsprünge dienen dazu, das Ausgangsmaterial zeitweise im Bereich der Zugabe zu halten, um das Ausgangsmaterial in dieser Position durch eine Wärmequelle, die sich von der Wärmequelle zum Erwärmen der gesamten Schmelze unterscheidet, vorzuheizen. Schließlich ist aus der
JP 02-055287 A eine Einkristall-Ziehvorrichtung bekannt, bei der mehrere Platten im Inneren des inneren Schmelztiegels übereinander angeordnet sind. Diese Platten sind jeweils ringförmig mit einer Öffnung in der Mitte gestaltet, wobei die Mittelachsen der Öffnungen der einzelnen Platten fluchten.
JP 59-057985 A offenbart lediglich eine einzige Leitplatte und betrifft keinen Doppelschmelztiegel mit einem inneren und einem äußeren Schmelztiegel.
-
ZUSAMMENFASSUNG DER ERFINDUNG
-
Die Erfindung erreicht dieses Ziel durch eine Einkristall-Ziehvorrichtung mit den Merkmalen gemäß Patentanspruch 1 oder 2.
-
KURZE BESCHREIBUNG DER ZEICHNUNGEN
-
1 ist ein Querschnitt der wesentlichen Elemente eines ersten Beispiels einer Einkristall-Ziehvorrichtung, das nicht Teil der Erfindung ist;
-
2 ist ein Querschnitt der wesentlichen Elemente einer Ausführungsform der vorliegenden Erfindung;
-
3 ist ein Querschnitts-Schaubild der wesentlichen Elemente eines anderen Beispiels einer Einkristall-Ziehvorrichtung, das nicht Teil der Erfindung ist; und
-
4 ist ein Schaubild, welches die allgemeine Ausbildung einer Einkristall-Ziehvorrichtung zeigt, die sämtlichen Ausführungsformen der vorliegenden Erfindung gemein ist.
-
BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
-
Nachfolgend findet sich unter Bezugnahme auf die Figuren eine Beschreibung von jeder der Ausführungsformen der vorliegenden Erfindung. Vor der Beschreibung von jeder der Ausführungsformen wird zuerst unter Bezugnahme auf 4 eine Erläuterung der allgemeinen Ausbildung gegeben, die sämtlichen Ausführungsformen gemein ist.
-
Wie in 4 dargestellt, sind ein Doppelschmelztiegel 3, eine Heizvorrichtung 4 und ein Ausgangsmaterialzufuhrrohr (Ausgangsmaterialzufuhrvorrichtung) 5 im Inneren einer Kammer 2 einer Einkristall-Ziehvorrichtung 1 angebracht. Der Doppelschmelztiegel 3 umfasst einen aus Quarz hergestellten ungefähr halbkugelförmigen äußeren Schmelztiegel 11 und einen aus Quarz hergestellten inneren Schmelztiegel 12, der ein im äußeren Schmelztiegel 11 angebrachter zylindrischer Trennkörper ist. Verbindungsabschnitte 12a zum Verbinden des inneren Schmelztiegels 12 und des äußeren Schmelztiegels 11 sind im unteren Teil der Wand des inneren Schmelztiegels 12 ausgebildet.
-
Der Doppelschmelztiegel 3 ist auf einer Aufnahme 15 angebracht, die auf einer mittig im unteren Teil der Kammer 2 angeordneten vertikalen Welle 14 sitzt, und kann in einer horizontalen Ebene mit einer vorgeschriebenen Geschwindigkeit um die Achse der Welle 14 gedreht werden. Außerdem ist eine Halbleiterschmelze (das durch Erhitzen geschmolzene Ausgangsmaterial für die Herstellung von Einkristallen eines Halbleiters) 21 innerhalb des Doppelschmelztiegels 3 untergebracht. Die Heizvorrichtung 4 erhitzt und schmilzt das Halbleiterausgangsmaterial im äußeren Schmelztiegel 11 und sorgt auch für die Aufrechterhaltung der Temperatur der derart erzeugten Halbleiterschmelze 21. Die Heizvorrichtung 4 ist so angeordnet, dass sie die Aufnahme 15 und den Doppelschmelztiegel 3 umgibt, und die Außenseite der Heizvorrichtung 4 ist zum Zweck der Wärmehaltung von einer Wärmeabschirmung (in der Figur nicht dargestellt) umgeben.
-
Das Ausgangsmaterialzufuhrrohr 5 wird verwendet, um das granulierte Ausgangsmaterial der Halbleiterschmelze 21 kontinuierlich auf die Oberfläche der Halbleiterschmelze 21a zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 zuzuführen. Beispiele der Ausgangsmaterialien, die durch das Ausgangsmaterialzufuhrrohr 5 zugeführt werden können, umfassen Polysilicium, das durch Zerkleinerung in einem Brecher in Schuppenform umgewandelt worden ist, oder Polysiliciumkörner, die unter Wärmezersetzung aus gasförmigem Ausgangsmaterial abgeschieden worden sind, nach Bedarf unter weiterer Beimischung von als Dotierungsmittel bekannten elementaren Additiven, wie Bor (B) (im Fall einer Herstellung von Siliciumeinkristallen vom p-Typ) und Phosphor (P) (im Fall einer Herstellung von Siliciumeinkristallen vom n-Typ). Im Fall von Galliumarsenid ist der Vorgang derselbe wie der oben umrissene, jedoch ist in diesem Fall das verwendete elementare Additiv entweder Zink (Zn) oder Silicium (Si).
-
Ein Ziehmechanismus und eine Einlassöffnung (beide in der Figur weggelassen) zum Zuführen eines Inertgases, wie Argon (Ar), in die Kammer 2 sind im oberen Teil der Kammer 2 angeordnet. Ein Zugdraht 24, der einen Teil des Ziehmechanismus bildet, ist so ausgebildet, dass er unter kontinuierlicher Drehung oberhalb des Doppelschmelztiegels 3 auf und ab beweglich ist. Ein Impfkristall aus einem Einkristall des Halbleiters wird über eine Einspannvorrichtung an der Spitze des Zugdrahts 24 befestigt. Der Impfkristall wird in die Halbleiterschmelze 21 im inneren Schmelztiegel 12 getaucht und dann nach oben bewegt, und mit dem Impfkristall als Ausgangspunkt wird ein nach und nach gewachsener Einkristall des Halbleiters in einer Atmosphäre des Inertgases, wie Argon (Ar), nach oben gezogen.
-
Im Hinblick auf das Ausgangsmaterialzufuhrrohr 5 wird diesem das Ausgangsmaterial am oberen Ende zugeführt und tritt aus einer Öffnung 5a am unteren Ende aus. Das Ausgangsmaterialzufuhrrohr 5 wird am oberen Ende gehalten und ist so aufgehängt, dass die Öffnung 5a am unteren Ende in der Nähe der Außenwand des äußeren Schmelztiegels 11 angeordnet ist. Zur Verhinderung einer Kontamination sowie aus Verarbeitungsgründen besteht das Ausgangsmaterialzufuhrrohr 5 aus einem Quarzrohr mit einem rechteckigen Querschnitt. Um sicherzustellen, dass das granulierte hochqualitative Halbleiterausgangsmaterial mit einer geeigneten Fallgeschwindigkeit in die Halbleiterschmelze 21a zugeführt wird, ist das Innere des Ausgangsmaterialzufuhrrohrs außerdem mit abwechselnden leiterartigen schrägen Platten versehen, die in der Figur nicht dargestellt sind.
-
Darüber hinaus sind im Bereich der Halbleiterschmelze 21a zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 Strömungsbegrenzungselemente angebracht (in 4 weggelassen), um die Strömung der Halbleiterschmelze 21a in diesem Bereich zu begrenzen oder einzuschränken. Die Strömungsbegrenzungselemente unterdrücken die Diffusion der vorgenannten Fehlstellenerzeugungsquellen über einen weiteren Bereich, hauptsächlich indem sie Konvektionsströme innerhalb der Halbleiterschmelze 21a begrenzen (und somit die Funktion von Konvektionsstrombegrenzungselementen erfüllen), und sie gewährleisten folglich einen stabilen Konzentrationsgradienten im Bereich zwischen der Stelle der Ausgangsmaterialzugabe und den Verbindungsabschnitten 12a am unteren Rand, welche den äußeren Schmelztiegel 11 und den inneren Schmelztiegel 12 miteinander verbinden.
-
Als nächstes folgt eine Erläuterung eines ersten Beispiels einer solchen Einkristall-Ziehvorrichtung. Eine erste Ausführungsform ist in 1 dargestellt. In diesem Beispiel ist im Bereich der Halbleiterschmelze 21a zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 in einer geeigneten Tiefe unter der Oberfläche der Schmelze eine horizontale Leit- oder Umlenkplatte 31 angeordnet, die als Strömungsbegrenzungselement und als Konvektionsstrombegrenzungselement wirkt. In dem in 1 dargestellten Beispiel ist die Leit- oder Umlenkplatte 31 ringförmig und zum äußeren Schmelztiegel 11 und zum inneren Schmelztiegel 12 konzentrisch, und zwischen dem inneren Rand der Leit- oder Umlenkplatte 31 und dem inneren Schmelztiegel 12 sowie zwischen dem äußeren Rand der Leit- oder Umlenkplatte 31 und dem äußeren Schmelztiegel 11 wird ein Verbindungsspalt 31a aufrechterhalten, um den Bereich oberhalb der Leit- oder Umlenkplatte 31 mit dem Bereich unterhalb derselben zu verbinden. Die Leit- oder Umlenkplatte 31 kann entweder vom inneren Schmelztiegel 12 oder vom Ausgangsmaterialzufuhrrohr 5 gehalten werden. Außerdem braucht die Leit- oder Umlenkplatte 31 nicht um den gesamten Umfang herum durchgehend sein, solange die Platte einen vorbestimmten Bereich unter dem Ausgangsmaterialzufuhrrohr 5 überdeckt, und in diesem Fall wird die Platte 31 bevorzugt vom Ausgangsmaterialzufuhrrohr 5 gehalten.
-
Wegen des Vorhandenseins der Leit- oder Umlenkplatte 31 sind bei dieser Konstruktion die Auswirkungen des Aufpralls des Ausgangsmaterials auf die Halbleiterschmelze 21a während einer Zugabe des Ausgangsmaterials geringer. Durch die Zugabe des Ausgangsmaterials zugeführte Fehlstellenerzeugungsquellen diffundieren nach und nach um den inneren und äußeren Rand der Leit- oder Umlenkplatte 31 herum in die Halbleiterschmelze 21a. An dieser Stelle wird der Einfluss von Konvektionsströmen in der Halbleiterschmelze 21a, welche durch den Pfeil (1) in 1 dargestellt sind, durch die Leit- oder Umlenkplatte 31 unterbrochen und reicht nicht bis in den Abschnitt über der Leit- oder Umlenkplatte 31, und so wird zusätzlich zu der Wirkung einer Aufschlagmilderung während einer Zugabe des Ausgangsmaterials die Diffusion von Fehlstellenerzeugungsquellen auf ein Minimum unterdrückt, und im Bereich von der Oberfläche der Halbleiterschmelze 21a bis zu den Verbindungsabschnitten 12a am unteren Rand, welche den äußeren Schmelztiegel 11 und den inneren Schmelztiegel 12 miteinander verbinden, wird ein stabiler Konzentrationsgradient aufrechterhalten.
-
Eine Ausführungsform der vorliegenden Erfindung ist in 2 dargestellt. In diesem Beispiel ist eine Mehrzahl von Leit- oder Umlenkplatten 32 untereinander angeordnet (in dem dargestellten Beispiel sind drei Plattenebenen vorhanden). Durch Versetzen der Platten in benachbarten Plattenebenen in Richtung der Außen- bzw. Innenseite des Schmelztiegels sind außerdem die Verbindungsspalte 32a, welche den Bereich oberhalb jeder Leit- oder Umlenkplatte 32 mit dem Bereich darunter verbinden, abwechselnd auf der Außenseite und dann auf der Innenseite von aufeinanderfolgenden Leit- oder Umlenkplatten 32 angeordnet. Folglich ist die Länge des Pfades von der Stelle der Zugabe von Ausgangsmaterial in die Halbleiterschmelze 21a bis zu den Verbindungsabschnitten 12a am unteren Rand zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 größer.
-
Wegen des Vorhandenseins der Mehrzahl von Leit- oder Umlenkplatten 32 werden bei dieser Konstruktion Konvektionsströme in der Halbleiterschmelze 21a weiter unterdrückt, und die Diffusion von Fehlstellenerzeugungsquellen wird weiter eingeschränkt. Weil die Länge des Strömungspfades von der Stelle der Zugabe von Ausgangsmaterial in die Halbleiterschmelze 21a bis zu den Verbindungsabschnitten 12a am unteren Rand zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 groß ist, ist die Wahrscheinlichkeit geringer, dass sich irgendein Einfluss an der Stelle der Ausgangsmaterialzugabe bis in den inneren Schmelztiegel 12 auswirkt, was einen noch stabileren Konzentrationsgradienten gewährleistet.
-
Außerdem kann an Stelle einer Verwendung einer Mehrzahl von unabhängig untereinander angeordneten Leit- oder Umlenkplatten auch eine durchgehende schrauben- oder wendelförmige Platte verwendet werden.
-
Ein letztes Beispiel einer Einkristall-Ziehkraftvorrichtung ist in 3 dargestellt. In diesem Beispiel sind zwei vertikale zylindrische Trennwände 34 auf einem inneren und einem äußeren Kreisumfang zwischen dem inneren Schmelztiegel 12 und dem äußeren Schmelztiegel 11 angeordnet und sind abwechselnd nach oben bzw. nach unten gegeneinander versetzt, so dass am unteren Rand einer äußeren Umfangstrennwand 34b und am oberen Rand einer inneren Umfangstrennwand 34c ein Verbindungsbereich 34a aufrechterhalten wird, womit die Verbindung zwischen dem Bereich außerhalb jeder Wand 34 mit dem Bereich innerhalb derselben aufrechterhalten wird. Folglich ermöglicht diese Ausbildung eine Verlängerung des Pfades von der Stelle der Zugabe von Ausgangsmaterial in die Halbleiterschmelze 21a (der Stelle auf der Oberfläche der Schmelze unmittelbar unter der Öffnung 5a am unteren Ende des Ausgangsmaterialzufuhrrohrs 5) bis zu den Verbindungsabschnitten 12a am unteren Rand zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12.
-
Aufgrund des Vorhandenseins der beiden vertikalen Trennwände 34b, 34c werden große Konvektionsströme innerhalb der Halbleiterschmelze 21a unterdrückt, und die Diffusion von Fehlstellenerzeugungsquellen über einen weiten Bereich aufgrund der Einwirkung von Konvektionsströmen wird unterdrückt. Außerdem wird ein stabiler Konzentrationsgradient sichergestellt, weil die Länge des Pfades von der Stelle der Zugabe von Ausgangsmaterial bis zu den am unteren Rand des inneren Schmelztiegels 12 angeordneten Verbindungsabschnitten 12a zwischen dem äußeren Schmelztiegel 11 und dem inneren Schmelztiegel 12 groß ist.
-
Außerdem ist die Art und Weise, in welcher die Strömungsbegrenzungselemente angebracht sind, nicht auf die bei den oben beschriebenen Ausführungsformen verwendeten Techniken begrenzt, und es ist jegliche Anbringung möglich, welche eine Ausführungsform erzeugt, die innerhalb der Halbleiterschmelze 21a eine Konvektionsstromunterdrückungswirkung zeigt und die Gesamtströmung einschränkt oder begrenzt.
-
Wie oben erläutert, sind bei der erfindungsgemäßen Vorrichtung Strömungsbegrenzungselemente im Bereich der Halbleiterschmelze zwischen dem äußeren Schmelztiegel und dem inneren Schmelztiegel vorgesehen, welches der Bereich ist, wo das zugegebene Ausgangsmaterial aufgeschmolzen wird, und so kann die Gesamtströmung innerhalb dieses Bereichs begrenzt oder eingeschränkt werden, und die Diffusion von durch Zugabe des Ausgangsmaterials eingebrachten Fehlstellenerzeugungsquellen kann unterdrückt werden. Folglich kann ein hauptsächlicher Faktor, welcher das gesunde Wachstum von Einkristallen des Halbleiters behindert, auf ein Minimum verringert werden.
-
Weiter werden mit der erfindungsgemäßen Vorrichtung Konvektionsströme in der Halbleiterschmelze, hauptsächlich im Bereich zwischen dem äußeren Schmelztiegel und dem inneren Schmelztiegel durch Strömungsbegrenzungselemente unterdrückt, und so kann die Beschleunigungswirkung, welche Konvektionsströme auf die Diffusion von Fehlstellenerzeugungsquellen ausüben, unterdrückt werden, wodurch das gesunde Wachstum der Einkristalle des Halbleiters sichergestellt wird.
-
Außerdem kann in dem Fall, wo wie bei der erfindungsgemäßen Vorrichtung der Pfad von der Stelle der Ausgangsmaterialzugabe bis zu dem Abschnitt, wo die Halbleiterschmelze ins Innere des inneren Schmelztiegels einströmt, verlängert wird, entlang des Pfades eine stabile Konzentrationsverteilung erzeugt werden, was eine weitere Verhinderung des Auftretens von Fehlstellen in Einkristallen des Halbleiters ermöglicht.