[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE1558460B1 - Process for the production of microdispersions in titanium or titanium alloys - Google Patents

Process for the production of microdispersions in titanium or titanium alloys

Info

Publication number
DE1558460B1
DE1558460B1 DE19671558460 DE1558460A DE1558460B1 DE 1558460 B1 DE1558460 B1 DE 1558460B1 DE 19671558460 DE19671558460 DE 19671558460 DE 1558460 A DE1558460 A DE 1558460A DE 1558460 B1 DE1558460 B1 DE 1558460B1
Authority
DE
Germany
Prior art keywords
titanium
dispersions
microdispersions
alloys
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19671558460
Other languages
German (de)
Inventor
Vordahl Milton Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONTIMET GmbH
Original Assignee
CONTIMET GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONTIMET GmbH filed Critical CONTIMET GmbH
Publication of DE1558460B1 publication Critical patent/DE1558460B1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/956Producing particles containing a dispersed phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Mikrodispersionen in Titan oder Titanlegierungen. Bei den Dispersionen handelt es sich um die Elemente Bor, Cer, Schwefel und Thorium, deren Verbindungen untereinander oder mit anderen Elementen.The invention relates to a method for producing microdispersions in titanium or titanium alloys. The dispersions are the elements Boron, cerium, sulfur and thorium, their compounds with one another or with others Elements.

Gemäß der Erfindung soll die aus Titan oder einer Titanlegierung bestehende Matrix zusammen mit den in feinverteilter Form in ihr enthaltenen Dispersionen homogen geschmolzen und dann in Kokillen gegossen werden. Die Schmelze wird durch Spritzen an eine kalte Kokillenwand granuliert. Die Teilchen sollen vorzugsweise mit einer Größe von 50 bis zu einigen hundert #tm gegossen werden. Das Granulat kann durch Warmpressen verdichtet und gegebenenfalls unter Druck im warmen Zustand plastisch zu einem Gegenstand mit hoher Dichte verformt werden.According to the invention, it should be made of titanium or a titanium alloy The matrix is homogeneous together with the dispersions it contains in finely divided form melted and then poured into permanent molds. The melt is made by spraying granulated on a cold mold wall. The particles should preferably have a Size from 50 to a few hundred #tm can be poured. The granules can go through Hot pressing compacted and, if necessary, plastic under pressure in the warm state deformed into a high density object.

Bei dem beschriebenen Gießvorgang werden die dispergierten Einlagerungen in der Matrix in extrem großer Feinheit eingelagert, obwohl sie im festen Zustand in ihr unlöslich sind, weil ihnen durch das schnelle Abgießen keine Zeit zum Wachsen gegeben wird. So stellen sich die Einschlüsse als mikrofeine Dispersionen in den Granulatkörnern dar, die, obwohl selbst sehr fein, im Verhältnis zu den in ihnen dispergierten Teilchen sehr grob sind. So mögen die Granulatkörner eine Teilchengröße von 50 bis zu einigen hundert V.m besitzen, während die darin dispergierten Teilchen eine Größe von weniger als 1 #zm haben.In the casting process described, the dispersed inclusions stored in the matrix in extremely great fineness, although they are in the solid state are insoluble in it because they do not have time to grow due to the rapid pouring off is given. The inclusions appear as microfine dispersions in the Granules represent grains which, although very fine in themselves, in proportion to those in them dispersed particles are very coarse. So the granules like a particle size from 50 to several hundred V.m, while the particles dispersed therein be less than 1 #zm in size.

Die Vorteile von Einschlüssen in feinverteilter Form in Legierungen für Hochtemperaturzwecke sind bekannt und ebenfalls verschiedene Verfahren zu ihrer Herstellung. Ublicherweise werden Dispersionen in einer Matrix durch Ausscheidung während einer geeigneten Wärmebehandlung erzeugt. Die Legierungen enthalten dabei Komponenten, welche im festen Zustand der Legierung in ihr löslich sind, und zwar bei höheren Temperaturen mehr und bei niedrigen Temperaturen weniger. Da die meisten dieser durch Ausscheidung erzeugten Komponenten bei höheren Temperaturen in der Grundlegierung löslich sind, sind sie in diesem Temperaturbereich nur von geringem Nutzen. Bei höheren Temperaturen sind daher Dispersionen erwünscht, welche im festen und flüssigen Zustand in der Matrix nicht löslich sind.The advantages of inclusions in finely divided form in alloys for high temperature purposes are known and also various methods for their Manufacturing. Usually, dispersions in a matrix are formed by precipitation generated during a suitable heat treatment. The alloys contain Components that are soluble in the alloy in the solid state, namely at higher temperatures more and at lower temperatures less. As most these precipitated components at higher temperatures in the Base alloy are soluble, they are only slightly in this temperature range To use. At higher temperatures, therefore, dispersions are desired which are in the solid and liquid state are not soluble in the matrix.

Legierungen, welche unlösliche, stabile und inerte Dispersionen enthalten, und Verfahren zu ihrer Herstellung sind ebenfalls bekannt. Das meist angewandte übliche Verfahren besteht darin, das zu außerordentlich feinem Pulver gemahlene Matrixmetall mit den in ebenfalls pulverförmigem Zustand vorliegenden Dispersionen innig zu mischen, zu pressen und zu sintern. Im Falle von Titan ist diese Verfahrensweise aber wegen der hohen Reaktionsfähigkeit von feinem Titanpulver und der großen Löslichkeit von Verunreinigungen, z. B. von Sauerstoff, nicht geeignet. Granulatkörner, wie sie gemäß der Erfindung hergestellt werden, haben dagegen eine einige hundertmal kleinere Oberfläche in bezug auf ihre Masse als gewöhnliche Pulver; ihre Handhabung ist daher nicht schwierig.Alloys containing insoluble, stable and inert dispersions, and methods of making them are also known. The most widely used The usual method is to grind the powder to an extremely fine powder Matrix metal with the dispersions, which are also in powder form to mix intimately, to press and to sinter. In the case of titanium, this is the procedure but because of the high reactivity of fine titanium powder and high solubility of impurities, e.g. B. of oxygen, not suitable. Granules, such as they are made according to the invention, however, have a few hundred times smaller surface area for mass than ordinary powders; their handling is therefore not difficult.

Eine andere bekannte Verfahrensweise zur Erzeugung stabiler Dispersionen besteht in der inneren Oxydation von festen Lösungen reaktionsfreudiger Metalle in einem weniger reaktionsfähigen Matrixmetall, z. B. Titan in fester Lösung mit bestimmten Seltenen f Erdmetallen, die an Ort und Stelle zu stabilen Oxydpartikeln oxydiert werden können. Die miteinander gekoppelten Forderungen nach Löslichkeit mit der metallischen Komponente im festen Zustand und größerer Reaktionsfähigkeit als Titan begrenzen die Möglichkeiten für eine Verwendung der Seltenen Erden als Dispersionsstoffe. Darüber hinaus sind die Oxyde der Seltenen Erden nur in Titan stabil, das selbst einen Sauerstoffgehalt enthält, der gewöhnlich unerwünscht ist.Another known technique for producing stable dispersions consists in the internal oxidation of solid solutions of reactive metals in a less reactive matrix metal, e.g. B. titanium in solid solution with certain rare f earth metals, which in place form stable oxide particles can be oxidized. The coupled requirements for solubility with the metallic component in the solid state and greater reactivity as titanium limit the possibilities for a use of the rare earths as Dispersants. In addition, the rare earth oxides are only in titanium stable, which itself contains an oxygen content which is usually undesirable.

Erfindungsgemäß hergestellte Mikrodispersionen ergeben im daraus gefertigten Werkstück bessere Kriecheigenschaften - bei erhöhten Temperaturen als sie bei Titan und Titanlegierungen mit eingelagerten Stoffen in feinverteilter Form bisher festgestellt werden konnten.Microdispersions produced according to the invention result in the microdispersions produced therefrom Workpiece has better creep properties - at higher temperatures than titanium and titanium alloys with embedded substances in finely divided form have so far been found could become.

An Hand des nachfolgenden Beispiels soll das erfindungsgemäße Verfahren näher erläutert werden. Beispiel Es werden flüssige Titanlegierungen mit bis 2% Bor, bis 6% Thorium, bis 3% Cer, 1% Schwefel, einzeln oder gemeinsam, in einer solchen Menge, daß ein Maximum von etwa 5 Volumprozent Teilchen gebildet wird, wie oben beschrieben granuliert. Das Granulat wird dann durch bekannte Verfahren, z. B. Heißpressen, verdichtet. Aus den warmgepreßten Knüppeln werden durch gebräuchliche Mittel Walzerzeugnisse hergestellt.The method according to the invention is intended to be based on the following example are explained in more detail. Example Liquid titanium alloys with up to 2% Boron, up to 6% thorium, up to 3% cerium, 1% sulfur, individually or together, in one Amount that a maximum of about 5 volume percent particles is formed, as above described granulated. The granules are then processed by known methods, e.g. B. hot pressing, condensed. The hot-pressed billets are turned into rolled products by common means manufactured.

Die beste Brauchbarkeit von nach dem erfindungsgemäßen Verfahren hergestellten, inerte Dispersionen enthaltenden'Legierungen tritt unter La ngzeit- und/ oder Hochtemperaturbedingungen auf.The best usefulness of produced by the method according to the invention, Alloys containing inert dispersions occur under long-term and / or high-temperature conditions on.

Die folgende Tabelle I zeigt die Kriechfestigkeit einer Titanlegierung nach Langzeitalterung ohne und mit inerten mikrofeinen Dispersionen gemäß der Erfindung: Tabelle I Kriechverformung gealtert während 200 Stunden bei 600'C Legierung und belastet mit 21 kg/mm2 bei 550°C für eine Dauer von 150 Stunden Ti-6A1-2 Sn-4 Zr-2 Mo . . . . . . . . . . 0,421 Ti-6A1-2 Sn-4 Zr-2 Mo-1,7 Ce-0,5 S 0,167 Durch die erfindungsgemäß hergestellten Dispersionen konnte demnach die Kriechverformung um annähernd 60% gegenüber einer Legierung ohne dieselben verringert werden.The following table I shows the creep strength of a titanium alloy after long-term aging with and without inert microfine dispersions according to the invention: Table I. Creep deformation aged during 200 hours at 600'C Alloy and loaded with 21 kg / mm2 at 550 ° C for a duration of 150 hours Ti-6A1-2 Sn-4 Zr-2 Mo. . . . . . . . . . 0.421 Ti-6A1-2 Sn-4 Zr-2 Mo-1.7 Ce-0.5 S 0.167 As a result of the dispersions produced according to the invention, it was accordingly possible to reduce the creep deformation by approximately 60% compared to an alloy without the same.

Der Einfluß der Teilchengröße von feinverteilten Einschlüssen in Titan und Titanlegierungen wird durch den nachfolgenden Vergleich erläutert. Es wurde ein Dispersionsstoff in einer sehr groben Körnung hergestellt und die Kriechverformung an zwei Titanlegierungen mit und ohne -Dispersionen gemäß Tabelle II bestimmt: Tabelle II Kriechverformung Legierung 550°C - 21 kg/mm=- 150 Stunden Ti-8A1 . . . . . . . . . . . . . . . . . . . . . . . 0,06% Ti-8A1 und dispergierte Ein- schlösse 0 ...... ............. 0,20% Fortsetzung Kriechverformung Legierung 550 (- --- 21 I kg mm= 150 Stunden Ti-8A1-1 Mo-IV . . . . . . . . . . . . . . . 0,26% Ti-8A1-1 Mo-1V und dispergierte Einschlüsse . . . . . . . . . . . . . . . . . 0,50% Aus der Tabelle II ist ersichtlich, daß grobe Dispersionen das Kriechverhalten schädlich beeinflussen. Im Gegensatz dazu ist aus der nachfolgenden Tabelle III der günstige Einfluß feiner Dispersionen mit einer Teilchengröße von etwa 1 j.m erkennbar: Tabelle III Kriechverformung Legierung 550° C - 21 kg/mm= - 150 Stunden Ti-Al ........................ 0,06% T1-Al und dispergierte Ein- schlüsse . . . . . . . . . . . . . . . . . . . . 0,005% The influence of the particle size of finely divided inclusions in titanium and titanium alloys is illustrated by the following comparison. A dispersion material with a very coarse grain size was produced and the creep deformation was determined on two titanium alloys with and without dispersions according to Table II: Table II Creep deformation Alloy 550 ° C - 21 kg / mm = - 150 hours Ti-8A1. . . . . . . . . . . . . . . . . . . . . . . 0.06% Ti-8A1 and dispersed locks 0 ...... ............. 0.20% continuation Creep deformation Alloy 550 (- --- 21 I kg mm = 150 hours Ti-8A1-1 Mo-IV. . . . . . . . . . . . . . . 0.26% Ti-8A1-1 Mo-1V and dispersed Inclusions. . . . . . . . . . . . . . . . . 0.50% From Table II it can be seen that coarse dispersions have a detrimental effect on the creep behavior. In contrast, the favorable influence of fine dispersions with a particle size of about 1 μm can be seen in Table III below: Table III Creep deformation Alloy 550 ° C - 21 kg / mm = - 150 hours Ti-Al ........................ 0.06% T1-Al and dispersed conclusions. . . . . . . . . . . . . . . . . . . . 0.005%

Claims (2)

Patentansprüche: 1. Verfahren zur Herstellung von Mikrodispersionen der Elemente Bor, Cer, Schwefel und Thorium, deren Verbindungen untereinander oder mit anderen Elementen in Titan oder Titanlegierungen, wobei das Titan oder die Titanlegierung zusammen mit den Dispersionen homogen geschmolzen wird, dadurch gekennzeichnet, daß die Schmelze zur Bildung feinverteilter Mikrodispersionen in dem erstarrten Titan oder der Titanlegierung durch Spritzen an eine kalte Kokillenwand zu kleinen Teilchen granuliert wird. Claims: 1. Process for the production of microdispersions of the elements boron, cerium, sulfur and thorium, their compounds with one another or with other elements in titanium or titanium alloys, the titanium or the titanium alloy is melted homogeneously together with the dispersions, characterized in that that the melt solidified to form finely divided microdispersions in the Titanium or the titanium alloy too small by spraying onto a cold mold wall Particle is granulated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schmelze in Teilchen einer Größe von 50 bis einigen hundert #tm gegossen wird und die darin eingelagerten Dispersionen eine Teilchengröße von weniger als 1 #tm aufweisen.2. The method according to claim 1, characterized in that that the melt poured into particles with a size of 50 to a few hundred #tm and the dispersions incorporated therein have a particle size of less than 1 #tm.
DE19671558460 1966-06-20 1967-04-08 Process for the production of microdispersions in titanium or titanium alloys Pending DE1558460B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US558589A US3379522A (en) 1966-06-20 1966-06-20 Dispersoid titanium and titaniumbase alloys

Publications (1)

Publication Number Publication Date
DE1558460B1 true DE1558460B1 (en) 1971-12-02

Family

ID=24230140

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19671558460 Pending DE1558460B1 (en) 1966-06-20 1967-04-08 Process for the production of microdispersions in titanium or titanium alloys

Country Status (4)

Country Link
US (1) US3379522A (en)
BE (1) BE699665A (en)
DE (1) DE1558460B1 (en)
GB (1) GB1124435A (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622406A (en) * 1968-03-05 1971-11-23 Titanium Metals Corp Dispersoid titanium and titanium-base alloys
US3807995A (en) * 1971-09-07 1974-04-30 C Dohogne Metal composite
US3963525A (en) * 1974-10-02 1976-06-15 Rmi Company Method of producing a hot-worked titanium product
US4129438A (en) * 1976-03-23 1978-12-12 Rmi Company Method of adding trace elements to base metals
FR2464112A1 (en) * 1979-08-27 1981-03-06 Commissariat Energie Atomique PROCESS FOR PRODUCING TITANIUM ALLOY PARTS BY METALLURGY OF POWDERS
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
EP0192953A1 (en) * 1985-02-15 1986-09-03 General Electric Company Oxysulfide dispersion strengthened titanium alloys
EP0199198A1 (en) * 1985-04-12 1986-10-29 Daido Tokushuko Kabushiki Kaisha Free-cutting ti alloy
US4906430A (en) * 1988-07-29 1990-03-06 Dynamet Technology Inc. Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding
JP3306822B2 (en) * 1997-09-16 2002-07-24 株式会社豊田中央研究所 Sintered Ti alloy material and method for producing the same
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) * 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
CN101277775A (en) 2005-10-06 2008-10-01 国际钛金属粉末公司 Titanium boride
US7879286B2 (en) * 2006-06-07 2011-02-01 Miracle Daniel B Method of producing high strength, high stiffness and high ductility titanium alloys
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN116136006A (en) * 2021-11-17 2023-05-19 中国石油天然气股份有限公司 Titanium alloy, titanium alloy drill pipe and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1031528B (en) * 1952-10-09 1958-06-04 Deutsche Edelstahlwerke Ag Process for the production of metal or metal alloy powders
DE1194152B (en) * 1964-03-06 1965-06-03 Bundesrep Deutschland Process for dispersing insoluble substances in molten metal, in particular for producing dispersion-hardened cast alloys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304130A (en) * 1937-12-01 1942-12-08 Chemical Marketing Company Inc Process for the conversion of metals into finely divided form
US2967351A (en) * 1956-12-14 1961-01-10 Kaiser Aluminium Chem Corp Method of making an aluminum base alloy article
US2897539A (en) * 1957-03-25 1959-08-04 Titanium Metals Corp Disintegrating refractory metals
US3246982A (en) * 1962-08-16 1966-04-19 Reynolds Metals Co Method of making a solid length of aluminous metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1031528B (en) * 1952-10-09 1958-06-04 Deutsche Edelstahlwerke Ag Process for the production of metal or metal alloy powders
DE1194152B (en) * 1964-03-06 1965-06-03 Bundesrep Deutschland Process for dispersing insoluble substances in molten metal, in particular for producing dispersion-hardened cast alloys

Also Published As

Publication number Publication date
GB1124435A (en) 1968-08-21
BE699665A (en) 1967-11-16
US3379522A (en) 1968-04-23

Similar Documents

Publication Publication Date Title
DE1558460B1 (en) Process for the production of microdispersions in titanium or titanium alloys
DE69223194T2 (en) Process for the production of composite alloy powder with aluminum matrix
DE3881011T2 (en) STARTING MATERIAL FOR THE SLICK ENERGY METHOD FOR METAL POWDER AND METHOD FOR THE PRODUCTION OF SINTERED MOLDED BODIES.
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
DE2505934B2 (en) Process for the production of an amalgamable alloy powder and use of the same for the production of dental amalgam
DE1283547B (en) Process for increasing the tensile strength, yield strength and creep rupture strength and for stabilizing the grain orientation of dispersion-hardened alloys
DE1125459B (en) Process for producing alloyed iron-based powder for powder metallurgical purposes
DE3138669A1 (en) METHOD FOR PRODUCING MOLDED OBJECTS
DE2200670B2 (en)
DE2631906A1 (en) METAL POWDER MIXTURE FOR THE MANUFACTURE OF DENTAL AMALGAMS USED IN DENTISTRY BY MIXING WITH MERCURY
DE1533320C3 (en) Process for the powder metallurgical production of porous metal bodies
DE2549298C2 (en) Process for the production of a sintered silver-cadmium oxide alloy
DE3308889A1 (en) METHOD FOR PRODUCING NUCLEAR FUEL PELLETS
DE3313736A1 (en) HIGH-STRENGTH MOLDED BODY FROM A MECHANICALLY MACHINABLE POWDER METAL ALLOY ON IRON-BASED, AND METHOD FOR THE PRODUCTION THEREOF
EP0108197A2 (en) Process for preparing silver-tin alloys for dental amalgams
DE1558460C (en) Process for the production of micro dispersions in titanium or titanium alloys
DE2039972C3 (en) Process for producing a finely divided magnetic powder from an intermetallic compound with a rare earth metal
DE69218109T2 (en) Compacted and solidified active ingredients made of aluminum alloy
DE3204794C2 (en)
DE1291127B (en) Process for the powder metallurgical production of high temperature resistant Mo or W alloys
DE2013038A1 (en) Process for the production of copper or silver containing tungsten and / or molybdenum powder compositions
DE3442594A1 (en) POWDER METALLURGICAL PROCESSING FOR ALLOY POWDER
DE758112C (en) Process for the production of permanent magnets by sintering
DE2917882C2 (en) Process for producing a copper-containing iron powder
DE2063388C3 (en) Powder mixture for the production of oxidation-resistant sintered bodies as well as oxidation-resistant sintered bodies consisting of such powder mixtures