DE112006003439T5 - A loaded NMOS transistor with group III-N source / drain regions - Google Patents
A loaded NMOS transistor with group III-N source / drain regions Download PDFInfo
- Publication number
- DE112006003439T5 DE112006003439T5 DE112006003439T DE112006003439T DE112006003439T5 DE 112006003439 T5 DE112006003439 T5 DE 112006003439T5 DE 112006003439 T DE112006003439 T DE 112006003439T DE 112006003439 T DE112006003439 T DE 112006003439T DE 112006003439 T5 DE112006003439 T5 DE 112006003439T5
- Authority
- DE
- Germany
- Prior art keywords
- inn
- channel
- regions
- group iii
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000002019 doping agent Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 5
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- -1 GaN Chemical class 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66636—Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66628—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7848—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/933—Germanium or silicon or Ge-Si on III-V
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/938—Lattice strain control or utilization
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Ein
Verfahren zur Herstellung eines n-Kanal-Transistors, aufweisend:
Bilden
von Gruppe-III-N-Gebieten neben einem Kanalgebiet; und
Dotieren
der Gruppe-III-N-Gebiete mit einem n-Typ-Dotierstoff.A method of fabricating an n-channel transistor, comprising:
Forming group III-N regions adjacent to a channel region; and
Doping the group III-N regions with an n-type dopant.
Description
Bereich der ErfindungField of the invention
Die Erfindung bezieht sich auf das Gebiet von Transistoren mit Zug- und Druckbelastung auf den Kanalgebieten.The The invention relates to the field of transistors with tensile and pressure load on the channel areas.
Stand der TechnikState of the art
Es
wird anerkannt, dass eine verbesserte Leistungsfähigkeit von PMOS-Transistoren
erreicht wird, wenn eine einachsige Druckbelastung direkt auf den
Kanal des Transistors von z. B. eingebetteten Silizium-Germanium(SiGe)-Source-/Drain-Gebieten vermittelt
wird. Gleichermaßen
ist ebenfalls bekannt, dass eine erhöhte Leistungsfähigkeit
eines NMOS-Transistors
erreicht wird, wenn eine einachsige Zugbelastung auf seinen Kanal
vermittelt wird. In einigen Fällen
wird diese Zugbelastung durch eine Siliziumnitrid-Deckschicht erreicht,
wie in Verbindung mit
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Detaillierte BeschreibungDetailed description
Ein n-Kanal-Transistor und ein Verfahren zur Herstellung des Transistors werden beschrieben, wobei eine Zugbelastung auf den Siliziumkanal vermittelt wird. In der folgenden Beschreibung werden für ein gründliches Verständnis der vorliegenden Erfindung zahlreiche spezifische Details dargelegt. Dem Durchschnittsfachmann wird klar, dass die vorliegende Erfindung auch ohne diese spezifischen Details praktiziert werden kann. In anderen Beispielen werden wohlbekannte Strukturen und Herstellungsprozesse nicht detailliert beschrieben, um die vorliegende Erfindung nicht unnötigerweise zu verschleiern.One n-channel transistor and a method of manufacturing the transistor are described, with a tensile load on the silicon channel is taught. In the following description will be for a thorough understanding Numerous specific details are set forth in the present invention. It will be apparent to one of ordinary skill in the art that the present invention even without these specific details can be practiced. In other examples become well-known structures and manufacturing processes not described in detail, not to the present invention unnecessarily to disguise.
Zunächst wird
auf den Stand der Technik aus
Wie
früher
angemerkt, ist bekannt, dass das unter Druck Setzen des Kanals
Um
die Zugbelastung im n-Kanal-Transistor
Während die Transistordichten weiter zunehmen und der Abstand der Gates weiterhin abnimmt, findet natürlich eine Verringerung der Kontaktfläche statt. Diese resultiert in einer relativ starken Zunahme des parasitären Reihenwiderstands der Transistoren, insbesondere der n-Kanal-Transistoren. Die p-Kanal-Transistoren leiden nicht so sehr unter dieser Skalierung, da die eingelassenen SiGe-Source-/Drain-Gebiete und die niedrigere, dem auf diesen Gebieten gebildeten Silizid zugehörige Barrierenhöhe für einen niedrigeren Reihenwiderstand sorgt.As the transistor densities continue to increase and the gap between the gates continues to decrease, of course, there is a reduction in the contact area. This results in a relatively strong increase the parasitic series resistance of the transistors, in particular the n-channel transistors. The p-channel transistors do not suffer as much from this scaling as the embedded SiGe source / drain regions and the lower barrier height associated with the silicide formed in these regions provides lower series resistance.
Wie
unten beschrieben, wird eine Verbindung, die ein Gruppe-III-Element
und ein Nitrid, wie z. B. Galliumnitrid (GaN) und Indiumnitrid (InN)
umfasst, in den Source- und Drain-Gebieten verwendet, um eine Zugbelastung
auf den Kanal für
die n-Kanal-Transistoren bereitzustellen. Die Gruppe-III-N-Gebiete
können,
wie in
Ein Vorteil der Nutzung der Gruppe-III-N-Verbindung sind die hohe Elektronenbeweglichkeit und die hohe Trägerkonzentration, die sich aus der polarisationsinduzierten Dotierung ergeben. So wurde z. B. bei InN-Filmschichten mit μ > 3000 cm2V–1s–1 ein Rsheet = 27 ohm/sq experimentell gezeigt. Ohmsche Kontakte mit einem niedrigen Widerstand wurden ebenfalls aufgrund der sehr hohen Oberflächenelektronenakkumulation gezeigt, die aus dem Fermi-Niveau-Pinning resultiert. Dies ist insbesondere für die Länge und den Abstand der Gates im Hinblick auf die Zunahme der Transistordichte vorteilhaft.An advantage of using the group III-N compound is the high electron mobility and the high carrier concentration resulting from the polarization-induced doping. So z. For example, for InN film layers with μ> 3000 cm 2 V -1 s -1, an R sheet = 27 ohms / sq was shown experimentally. Low resistance ohmic contacts have also been demonstrated due to the very high surface electron accumulation that results from Fermi level pinning. This is particularly advantageous for the length and spacing of the gates in view of the increase in transistor density.
In den unten beschriebenen Ausführungsformen wird InN als die Gruppe-III-N-Verbindung beschrieben. Wie erwähnt, können andere Verbindungen, wie GaN, verwendet werden. Darüber hinaus kann das InN auf einer schrittweise abgestuften Pufferschicht eines auf Si epitaktisch aufgewachsenen InGaN oder GaN epitaktisch aufgewachsen werden.In the embodiments described below InN is considered the group III-N compound described. As mentioned, can other compounds, such as GaN, are used. In addition, can the InN on a graded buffer layer of a Si epitaxially grown InGaN or GaN grown epitaxially become.
Aufgrund
des Gitterversatzes zwischen dem Silizium und dem InN stehen in
beiden
Es ist verständlich, dass in allen Figuren bei einem Ersatz-Gate-Prozess eine andere Dummy-Gate-Elektrode und ein anderer Isolator als ein High-k-Isolator vorhanden sein können, wenn die Source-/Drain-Gebiete aufgewachsen werden. Das Dummy-Gate wird nach dem Wachsen der Source-/Drain-Gebiete mit einem Metall-Gate in diesem Prozess ersetzt.It is understandable, that in all figures in a replacement gate process another Dummy gate electrode and insulator other than a high-k insulator can be present when the source / drain regions are grown. The dummy gate after the growth of the source / drain regions with a metal gate replaced in this process.
In
So
werden z. B. unter Verweis auf
Es
sei angemerkt, dass in
Zuerst
können
die Gebiete für
die n-Kanal-Transistoren abgedeckt werden, nachdem die Gates (oder
Dummy-Gate-Elektroden) gebildet wurden. Danach wird das Substrat
Nachfolgend
wird InN selektiv auf allen Source- und Drain-Gebieten aufgewachsen.
D. h., dass es auf beiden, dem SiGe und dem Si, neben den Gates
der n-Kanal-Transistoren aufgewachsen wird, wie für die Transistoren
Andere Kombinationen von vertieften und erhöhten Source- und Drain-Gebieten sind möglich. So können z. B. die InN-Gebiete zurückgesetzt sein, während die SiGe-Gebiete nicht zurückgesetzt sind. In einer anderen Ausführungsform können die InN-Gebiete zurückgesetzt sein und die SiGe für erhöhte Source- und Drain-Gebiete für die p-Kanal-Transistoren aufgewachsen und gleichzeitig auf den eingelassenen InN-Source- und Drain-Gebieten der n-Kanal-Transistoren aufgewachsen werden.Other Combinations of recessed and elevated source and drain regions are possible. So can z. For example, the InN areas are reset be while the SiGe areas are not reset are. In another embodiment can reset the InN areas be and the SiGe for increased Source and drain areas for the p-channel transistors grew up and at the same time on the recessed InN source and drain regions of the n-channel transistors are grown.
Somit wurden n-Kanal-Transistoren beschrieben, wobei zugbelastete Kanäle unter Verwendung einer Gruppe-III-N-Verbindung gebildet wurden. Die resultierenden Source- und Drain-Gebiete können erhöht oder vertieft sein und in Verbindung mit druckbelasteten Source- und Drain-Gebieten für p-Kanal-Transistoren gebildet werden.Consequently n-channel transistors have been described, with zugbelastete channels under Use of a group III-N compound were formed. The resulting Source and drain areas can be increased or be deepened and in conjunction with pressure-loaded source and Drain regions for p-channel transistors be formed.
ZusammenfassungSummary
Enhancement-Mode-Transistoren werden beschrieben, wobei eine Gruppe-III-N-Verbindung in den Source- und Drain-Gebieten verwendet wird, um eine Zugbelastung auf den Kanal zu vermitteln. Die Source- und Drain-Gebiete können erhöht oder eingelassen und in Verbindung mit vertieften oder erhöhten Druckgebieten für p-Kanal-Transistoren hergestellt werden.Enhancement mode transistors are described, with a group III-N compound in the source and drain areas is used to apply a tensile load to the Channel to convey. The source and drain regions can be increased or embedded and in conjunction with recessed or elevated pressure areas for p-channel transistors getting produced.
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/323,688 | 2005-12-29 | ||
US11/323,688 US7592213B2 (en) | 2005-12-29 | 2005-12-29 | Tensile strained NMOS transistor using group III-N source/drain regions |
PCT/US2006/048078 WO2007078892A2 (en) | 2005-12-29 | 2006-12-15 | A tensile strained nmos transistor using group iii-n source/drain regions |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112006003439T5 true DE112006003439T5 (en) | 2008-10-09 |
DE112006003439B4 DE112006003439B4 (en) | 2009-09-10 |
Family
ID=38110467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112006003439T Expired - Fee Related DE112006003439B4 (en) | 2005-12-29 | 2006-12-15 | Method for producing an n-channel transistor and n-channel transistor |
Country Status (6)
Country | Link |
---|---|
US (2) | US7592213B2 (en) |
CN (1) | CN101317252A (en) |
DE (1) | DE112006003439B4 (en) |
GB (1) | GB2445125B (en) |
TW (1) | TWI333243B (en) |
WO (1) | WO2007078892A2 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6949482B2 (en) * | 2003-12-08 | 2005-09-27 | Intel Corporation | Method for improving transistor performance through reducing the salicide interface resistance |
US7566605B2 (en) * | 2006-03-31 | 2009-07-28 | Intel Corporation | Epitaxial silicon germanium for reduced contact resistance in field-effect transistors |
US7767560B2 (en) * | 2007-09-29 | 2010-08-03 | Intel Corporation | Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method |
US20090127541A1 (en) * | 2007-11-19 | 2009-05-21 | Intel Corporation | Reducing defects in semiconductor quantum well heterostructures |
US20100078728A1 (en) * | 2008-08-28 | 2010-04-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Raise s/d for gate-last ild0 gap filling |
US20100148153A1 (en) * | 2008-12-16 | 2010-06-17 | Hudait Mantu K | Group III-V devices with delta-doped layer under channel region |
US7892902B1 (en) | 2009-12-22 | 2011-02-22 | Intel Corporation | Group III-V devices with multiple spacer layers |
US8936976B2 (en) * | 2009-12-23 | 2015-01-20 | Intel Corporation | Conductivity improvements for III-V semiconductor devices |
US8546228B2 (en) | 2010-06-16 | 2013-10-01 | International Business Machines Corporation | Strained thin body CMOS device having vertically raised source/drain stressors with single spacer |
DE102010038737B4 (en) | 2010-07-30 | 2017-05-11 | Globalfoundries Dresden Module One Llc & Co. Kg | A method of fabricating transistors having metal gate electrode structures and embedded strain-inducing semiconductor alloys |
US8957462B2 (en) * | 2010-12-09 | 2015-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising an N-type transistor with an N-type semiconductor containing nitrogen as a gate |
DE102011004322B4 (en) * | 2011-02-17 | 2012-12-06 | Globalfoundries Dresden Module One Llc & Co. Kg | A method of manufacturing a semiconductor device having self-aligned contact elements and an exchange gate electrode structure |
KR20130008281A (en) * | 2011-07-12 | 2013-01-22 | 삼성전자주식회사 | Methods for manufacturing power devices |
US9246004B2 (en) | 2011-11-15 | 2016-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained structures of semiconductor devices |
DE112011105926T5 (en) | 2011-12-09 | 2014-09-18 | Intel Corporation | Load compensation in transistors |
WO2013095376A1 (en) | 2011-12-20 | 2013-06-27 | Intel Corporation | Strained channel region transistors employing source and drain stressors and systems including the same |
KR101790153B1 (en) * | 2011-12-27 | 2017-10-26 | 인텔 코포레이션 | Methods to enhance doping concentration in near-surface layers of semiconductors and methods of making same |
CN102723342B (en) * | 2012-07-16 | 2015-05-20 | 西安电子科技大学 | Bi CMOS (Complementary Metal-Oxide-Semiconductor) integrated device with mixed crystal plane and vertical channel strain and preparation method thereof |
CN102723341B (en) * | 2012-07-16 | 2015-09-16 | 西安电子科技大学 | A kind of mixing crystal face strain Si vertical-channel BiCMOS integrated device and preparation method |
CN102810568B (en) * | 2012-07-16 | 2014-12-31 | 西安电子科技大学 | Stress silicon (Si) vertical-channel P-channel metal-oxide semiconductor (PMOS) device and preparation method |
US8896101B2 (en) * | 2012-12-21 | 2014-11-25 | Intel Corporation | Nonplanar III-N transistors with compositionally graded semiconductor channels |
US9425312B2 (en) * | 2014-06-23 | 2016-08-23 | International Business Machines Corporation | Silicon-containing, tunneling field-effect transistor including III-N source |
KR102243492B1 (en) * | 2014-07-21 | 2021-04-23 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
EP3032579A1 (en) * | 2014-12-09 | 2016-06-15 | IMEC vzw | An integrated circuit comprising group iii-n transistors monolithically integrated on a silicon substrate and a method for manufacturing thereof |
WO2017111871A1 (en) * | 2015-12-24 | 2017-06-29 | Intel Corporation | Transistors with heteroepitaxial iii-n source/drain |
US10665688B2 (en) * | 2015-12-24 | 2020-05-26 | Intel Corporation | Low Schottky barrier contact structure for Ge NMOS |
WO2017213651A1 (en) * | 2016-06-09 | 2017-12-14 | Intel Corporation | Quantum dot devices with top gates |
WO2018004607A1 (en) * | 2016-06-30 | 2018-01-04 | Intel Corporation | Co-integration of gan and self-aligned thin body group iv transistors |
US9911656B1 (en) | 2016-08-19 | 2018-03-06 | International Business Machines Corporation | Wimpy device by selective laser annealing |
CN111081764A (en) * | 2019-12-30 | 2020-04-28 | 深圳第三代半导体研究院 | Transistor with embedded source and drain and preparation method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3372470B2 (en) | 1998-01-20 | 2003-02-04 | シャープ株式会社 | Nitride III-V compound semiconductor device |
JP3679720B2 (en) * | 2001-02-27 | 2005-08-03 | 三洋電機株式会社 | Nitride semiconductor device and method for forming nitride semiconductor |
WO2003015174A2 (en) * | 2001-08-07 | 2003-02-20 | Jan Kuzmik | High electron mobility devices |
US6621131B2 (en) * | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
US6914273B2 (en) * | 2002-08-26 | 2005-07-05 | University Of Florida Research Foundation, Inc. | GaN-type enhancement MOSFET using hetero structure |
US6909145B2 (en) | 2002-09-23 | 2005-06-21 | International Business Machines Corporation | Metal spacer gate for CMOS FET |
US8097924B2 (en) * | 2003-10-31 | 2012-01-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ultra-shallow junction MOSFET having a high-k gate dielectric and in-situ doped selective epitaxy source/drain extensions and a method of making same |
US7545001B2 (en) | 2003-11-25 | 2009-06-09 | Taiwan Semiconductor Manufacturing Company | Semiconductor device having high drive current and method of manufacture therefor |
US7279697B2 (en) * | 2003-12-05 | 2007-10-09 | International Rectifier Corporation | Field effect transistor with enhanced insulator structure |
US7407837B2 (en) * | 2004-01-27 | 2008-08-05 | Fuji Electric Holdings Co., Ltd. | Method of manufacturing silicon carbide semiconductor device |
US6881635B1 (en) * | 2004-03-23 | 2005-04-19 | International Business Machines Corporation | Strained silicon NMOS devices with embedded source/drain |
US20050214998A1 (en) | 2004-03-26 | 2005-09-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Local stress control for CMOS performance enhancement |
US7429775B1 (en) * | 2005-03-31 | 2008-09-30 | Xilinx, Inc. | Method of fabricating strain-silicon CMOS |
US7355254B2 (en) * | 2006-06-30 | 2008-04-08 | Intel Corporation | Pinning layer for low resistivity N-type source drain ohmic contacts |
-
2005
- 2005-12-29 US US11/323,688 patent/US7592213B2/en not_active Expired - Fee Related
-
2006
- 2006-12-15 WO PCT/US2006/048078 patent/WO2007078892A2/en active Application Filing
- 2006-12-15 CN CNA2006800435971A patent/CN101317252A/en active Pending
- 2006-12-15 DE DE112006003439T patent/DE112006003439B4/en not_active Expired - Fee Related
- 2006-12-15 TW TW095147204A patent/TWI333243B/en not_active IP Right Cessation
- 2006-12-15 GB GB0806338A patent/GB2445125B/en not_active Expired - Fee Related
-
2009
- 2009-08-14 US US12/541,763 patent/US8120065B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2007078892A3 (en) | 2007-08-30 |
GB2445125A (en) | 2008-06-25 |
WO2007078892A2 (en) | 2007-07-12 |
US7592213B2 (en) | 2009-09-22 |
TW200746313A (en) | 2007-12-16 |
US8120065B2 (en) | 2012-02-21 |
CN101317252A (en) | 2008-12-03 |
TWI333243B (en) | 2010-11-11 |
US20070155063A1 (en) | 2007-07-05 |
GB2445125B (en) | 2011-04-13 |
GB0806338D0 (en) | 2008-05-14 |
DE112006003439B4 (en) | 2009-09-10 |
US20090302350A1 (en) | 2009-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112006003439B4 (en) | Method for producing an n-channel transistor and n-channel transistor | |
DE112007000662B4 (en) | Method for producing transistors with epitaxial silicon germanium for reduced contact resistance in field-effect transistors | |
DE112007002306B4 (en) | Strained field effect transistor and method for its production | |
DE102008064959B3 (en) | SEMICONDUCTOR DEVICES | |
DE112008000094B4 (en) | CMOS device with dual epi-channels and self-aligned contacts and manufacturing processes | |
DE102006051492B4 (en) | Semiconductor device with NMOS and PMOS transistors with embedded Si / Ge material for generating a tensile deformation and a compression deformation and a method for producing such a semiconductor device | |
DE102006019835B4 (en) | Transistor having a channel with tensile strain oriented along a crystallographic orientation with increased charge carrier mobility | |
DE112004002373B4 (en) | A method of fabricating a CMOS device and a CMOS device with strained transistor integration for CMOS | |
DE102015120488B4 (en) | Process for producing tension-stressed silicon fins and compression-stressed silicon-germanium fins for CMOS FinFET components | |
DE112006001893B4 (en) | Normally shut down Group III nitride semiconductor device and method of making the same | |
DE102007011247B4 (en) | Semiconductor device, method of manufacturing the same, and method of manufacturing a transistor | |
DE112010002895B4 (en) | Method and structure for forming high performance FETs with embedded stressors | |
DE102005052054B4 (en) | Semiconductor device with shaped channel region transistors and method of making the same | |
DE69524276T2 (en) | Resurf-lateral DMOS devices with extended drain | |
DE112009000651B4 (en) | Semiconductor unit and method of forming a semiconductor unit | |
DE102010016000B4 (en) | Semiconductor devices and methods for manufacturing a semiconductor device | |
DE112011101433B4 (en) | Embedded dopant monolayer stressor for advanced CMOS semiconductors | |
DE112006001979T5 (en) | Method of making a deformed MOS device | |
DE112007000760B4 (en) | A method of fabricating a selectively deposited capping layer on an epitaxially grown source drain and transistor | |
DE112010000721T5 (en) | Method of making MOS devices with epitaxially grown stress-inducing source and drain regions | |
DE102006030264B4 (en) | A method of fabricating transistors having a biaxially-deformed channel caused by silicon germanium in the gate electrode | |
DE102007052053A1 (en) | A tensile strain source using silicon / germanium material in globally deformed silicon | |
DE102011088714B4 (en) | Method for producing a semiconductor component and semiconductor component | |
DE102006040762A1 (en) | N-channel field effect transistor with a contact etch stop layer in conjunction with an interlayer dielectric sublayer with the same type of internal stress | |
DE102006059427B4 (en) | A method of forming a compressed channel layer of a PMOS device using a gate spacer and a PMOS device fabricated thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |