DE10392480T5 - Dielectric films - Google Patents
Dielectric films Download PDFInfo
- Publication number
- DE10392480T5 DE10392480T5 DE10392480T DE10392480T DE10392480T5 DE 10392480 T5 DE10392480 T5 DE 10392480T5 DE 10392480 T DE10392480 T DE 10392480T DE 10392480 T DE10392480 T DE 10392480T DE 10392480 T5 DE10392480 T5 DE 10392480T5
- Authority
- DE
- Germany
- Prior art keywords
- layer
- film
- nitrogen
- dielectric
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 69
- 239000010410 layer Substances 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims description 34
- 230000004888 barrier function Effects 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 238000005755 formation reaction Methods 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- 238000005056 compaction Methods 0.000 claims description 5
- 229910052756 noble gas Inorganic materials 0.000 claims description 5
- 238000009832 plasma treatment Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910008045 Si-Si Inorganic materials 0.000 claims description 4
- 229910006411 Si—Si Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000037361 pathway Effects 0.000 claims 2
- 238000003917 TEM image Methods 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000007906 compression Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 101001094044 Mus musculus Solute carrier family 26 member 6 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000005200 wet scrubbing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
Abstract
Poröser dielektrischer Film mit einer Dielektrizitätskonstanten (k) von weniger als etwa 2,5 und einem Kohlenstoffgehalt von nicht weniger als 10 mit einem Weg oder einer anderen hierin eingeätzten Formation, dadurch gekennzeichnet, dass die exponierte Oberfläche oder Oberflächen des Filmes innerhalb des Weges oder der Formation im wesentlichen nicht porös ist (sind).Porous dielectric Film with a dielectric constant (k) less than about 2.5 and a carbon content of not less than 10 with a path or other formation etched therein, characterized in that the exposed surface or surfaces of the film within the path or formation in essence not porous is (are).
Description
Die vorliegende Erfindung bezieht sich auf poröse dielektrische Filme mit einer Dielektrizitätskonstanten (k) von weniger als etwa 2,5. Über die letzten Jahre lag ein konstanter Antrieb darin, dielektrische Materialien zu erzeugen mit niedrigen Dielektrizitätskonstanten für einen Einsatz insbesondere in Halbleitereinrichtungen, um den stets abnehmenden Dimensionen der Einrichtungsarchitektur Rechnung zu tragen. Man geht gegenwärtig davon aus, dass in dem Bestreben, niedrige k-Werte von weniger als etwa 2,5 für einen praktischen Isolator zu erzielen, unausweichlich ein Ausmaß von Porosität in diesen Materialien vorliegt. Diese Porosität kann zu wesentlichen Problemen für die Indikation führen, insbesondere, wenn Wege oder Zwischenverbindungen gebildet werden durch die dielektrische Schicht, da nach dem Ätzen die Seitenwände der geätzten Formationen zumindest rau und möglicherweise durchlässig sind, wenn Zwischenverbindungen zwischen den Poren grundsätzlich stehen und die Oberfläche überschneiden.The The present invention relates to porous dielectric films a dielectric constant (k) less than about 2.5. about the last few years have been a constant drive in, dielectric To produce materials with low dielectric constants for one Use especially in semiconductor devices to the ever decreasing Dimensions of the furnishing architecture. you is currently going Assume that in an effort to have low k-values of less than about 2.5 for To achieve a practical insulator inevitably a degree of porosity in these Materials is present. This porosity can cause significant problems for the Lead indication especially when paths or interconnections are formed through the dielectric layer, since after etching the sidewalls of the etched Formations at least rough and possibly permeable are when interconnections between the pores are basically and overlap the surface.
In diesen geätzten Gräben und Wegen wird Kupfer deponiert bei typischen gegenwärtigen Architekturen und, da Kupfer leicht diffundiert in dieses dielektrische Material, muss es eingeschlossen werden durch eine Diffusionsbarriere. Ideal würde ein Isolator sein, der Barrierecharakteristika besaß, aber gegenwärtige Lösungen verlassen sich auf getrennt deponierte Schichten.In this etched trenches and ways copper is deposited in typical current architectures and, as copper easily diffuses into this dielectric material, it must be enclosed by a diffusion barrier. ideal would be one Being an isolator that possessed barrier characteristics but left current solutions on separately deposited layers.
Traditionell
wurden diese Barriereschichten deponiert unter Einsatz physikalischer
Dampfdepositionsverfahren, wobei diese Verfahren jedoch nicht eine
ausreichende Konformität
der Barriereabdeckung bereitstellen, so dass chemische Dampfdepositions-(CVD)Verfahren
zum Einsatz kommen, wie z.B. metallorganische CVD, Metallhalid-CVD
und atomare Schicht-CVD. Während
CVD-Verfahren eine nahezu 100%-ige Konformität ergeben, können Vorläufer und
Reaktionsmittel in das poröse
Dielektrikum eindringen. Dieser Effekt ist in
Die EP-A-1 195 801 beschreibt Verfahren, von denen man ausgeht, dass sie die Porosität in den Seitenwänden erhöhen, und schlägt Abdichtungsporen vor, die erzeugt werden von den Seitenwänden durch die Bereitstellung einer Schutz- oder Abdichtungsschicht. Es wird vorgeschlagen, dass eine derartige Abdichtungsschicht ausgebildet werden kann durch ein Plasma mit Sauerstoff und Stickstoff, wobei jedoch keine substanzielle Beschreibung des Verfahrens gegeben wird. Die Hinzufügung von besonderem Material in Wege mit hohem Schlankheitsverhalten ist unerwünscht sowohl, weil dieses das Schlankheitsverhalten eines Weges erhöht als auch den Widerstand von Kupfer in dem Weg erhöhen kann. Es ist nicht klar, ob die abgedichtete Oberfläche die lokalen niedrigen k-Werte beibehält, wie in der Anmeldung vorgeschlagen wird, oder nicht.The EP-A-1 195 801 describes processes which are believed to be she the porosity in the side walls increase, and beats Sealing pores before, which are generated by the side walls through the provision of a protective or sealing layer. It will suggested that such a sealing layer is formed can be through a plasma with oxygen and nitrogen, taking however, no substantive description of the process is given. The addition of special material in high-slimming ways is undesirable both because it enhances the slimming behavior of a path as well can increase the resistance of copper in the way. It is unclear, whether the sealed surface maintains the local low k values as suggested in the application will or not.
Unter einem Aspekt umfasst die vorliegende Erfindung einen porösen dielektrischen Film mit einer Dielektrizitätskonstanten (k) von weniger als etwa 2,5 und einem Kohlenstoffgehalt von nicht weniger als 10%, einschließend einen Weg oder eine andere Formation, die hierin eingeätzt ist, dadurch gekennzeichnet, dass die exponierte Oberfläche oder Oberflächen des Filmes innerhalb des Weges oder der Formation im wesentlichen nicht porös ist.Under In one aspect, the present invention comprises a porous dielectric Film with a dielectric constant (k) less than about 2.5 and a carbon content of not less than 10%, including a path or other formation etched in it, characterized in that the exposed surface or surfaces of the film within the path or formation in essence not porous is.
Es leuchtet ein, dass diese Näherung vollständig im Gegensatz zu der EP-A-1 195 801 steht, wobei die Bearbeitung dieses Elektrikums die lokale Porosität erhöht an der Oberflächenschicht und diese Schwierigkeit nur überwunden werden kann durch die Hinzufügung einer weiteren Abdichtungsschicht.It It is clear that this approximation Completely in contrast to EP-A-1 195 801, wherein the processing This electricity increases the local porosity at the surface layer and only overcome this difficulty can be through the addition a further sealing layer.
Es ist auch herauszustellen, dass die Abdichtung poröser Oberflächen auf der Oberseite und am Boden von Strukturen beträchtlich einfacher ist als das Abdichten von Seitenwänden, die nicht parallel zu dem Fluss der ankommenden Reaktionsmittel liegen.It is also to highlight that the sealing of porous surfaces The top and bottom of structures is considerably simpler than that Sealing sidewalls, which is not parallel to the flow of incoming reactants lie.
Gemäß einer bevorzugten Ausführungsform wird (werden) die Oberfläche (bzw. die Oberflächen) gebildet durch eine Schicht, die kohlenstoffentreichert ist in Bezug auf die Gesamtheit des Filmes. Zusätzlich oder alternativ wird (werden) die exponierte Oberfläche (bzw. Oberflächen) gebildet durch eine Schicht, welche eine größere Dichte besitzt als die Gesamtheit des Materialfilmes. Entsprechend einer besonders bevorzugten Ausführungsform kann (können) die Oberfläche (bzw. Oberflächen) gebildet werden durch eine Schicht, die kohlenstoffentreichert ist in Bezug auf die Gesamtheit des Filmes. Zusätzlich oder alternativ kann (können) die exponierte Oberfläche (bzw. Oberflächen) gebildet werden durch eine Schicht, die im wesentlichen aus Si-Si-Bindungen gebildet wird, und diese Bindungen können ausgebildet werden zwischen dreiwertigen Si-Molekülen. Andere Mechanismen, die gegenwärtig unerklärlich sind, treten an der (den) exponierten Oberfläche (bzw. Oberflächen) auf.According to a preferred embodiment, the surface (s) is formed by a layer which is carbon depleted with respect to the entirety of the film. Additionally or alternatively, the exposed surface (s) is formed by a layer having a greater density than the entirety of the material film. According to a particularly preferred embodiment, the surface (s) may be formed by a layer which is carbon depleted with respect to the entirety of the film. Additionally or alternatively, the exposed surface (s) may be formed by a layer consisting essentially of Si-Si bonds, and these bonds may be formed between trivalent Si molecules. Other mechanisms that are currently inexplicable occur on the exposed surface (s).
In jedem dieser Fälle leuchtet ein, dass die Schicht, welche die exponierte Oberfläche (oder Oberflächen) definiert, gebildet wird durch Modifizieren des geätzten dielektrischen Materials und nicht durch weitere Deposition.In each of these cases that the layer containing the exposed surface (or Surfaces) is formed by modifying the etched dielectric Material and not by further deposition.
Die Gesamtheit des Filmes wird vorzugsweise gebildet aus einem Si-COH-Material.The Entity of the film is preferably formed of a Si-COH material.
Die die Oberflächen bildende Schicht oder Schichten können gebildet sein durch Stickstoff- und/oder Wasserstoff-enthaltende Plasmabehandlung der geätzten Oberfläche oder Oberflächen, die zumindest teilweise koinzident sein können mit einem anderen Verfahren, wie etwa Widerstandstrip.The the surfaces forming layer or layers may be formed by nitrogen and / or hydrogen-containing plasma treatment of the etched surface or Surfaces, which may at least partially coincide with another method, like resistance strip.
Die Erfindung umfasst darüber hinaus eine Barriereschicht, die die exponierte(n) Oberfläche(n) abdeckt, wobei in diesem Fall die Barriereschicht die exponierte(n) Oberfläche (oder Oberflächen) nicht durchdringt. Die Barriereschicht wird vorzugsweise deponiert durch eine chemische Dampfdeposition.The Invention encompasses this a barrier layer covering the exposed surface (s), in which case the barrier layer is the exposed surface (or surface) Surfaces) does not penetrate. The barrier layer is preferably deposited by a chemical vapor deposition.
Unter einem weiteren Aspekt besteht die Erfindung in einem Verfahren zur Bildung einer Zwischenverbindungsschicht in einer Halbleitereinrichtung mit:
- a. Deponieren eines porösen dielektrischen Filmes mit niedrigem k auf einem Substrat;
- b. Deponieren eines Widerstandes;
- c. Schablonieren des Widerstandes, um die Ätzöffnungen zu definieren;
- d. Ätzen von Wegen oder Formationen in der dielektrischen Schicht durch die Öffnungen und
- e. Strippen des Widerstandes, dadurch gekennzeichnet, dass der Widerstand gestrippt wird mit Stickstoff oder einem Edelgas oder einer Kombination hieraus und Wasserstoffplasma oder Stickstoff oder einem Edelgas oder einer Kombination hieraus und Sauerstoffplasma, wobei die exponierten Oberflächen der Wege oder Formationen gleichzeitig dem Plasma ausgesetzt sind unter Bewirkung einer Verdichtung der Oberflächenschichten, die die exponierten Oberflächen definieren.
- a. Depositing a low-k porous dielectric film on a substrate;
- b. Depositing a resistance;
- c. Stenciling the resistor to define the etch holes;
- d. Etching paths or formations in the dielectric layer through the openings and
- e. Stripping the resistor, characterized in that the resistor is stripped with nitrogen or a noble gas or a combination thereof and hydrogen plasma or nitrogen or a noble gas or a combination thereof and oxygen plasma, wherein the exposed surfaces of the paths or formations are simultaneously exposed to the plasma with effect a densification of the surface layers that define the exposed surfaces.
Das Verfahren kann auch die Deposition einer Barriereschicht auf den verdichteten exponierten Oberflächen umfassen. Diese Barriereschicht kann deponiert werden durch chemische Dampfdeposition.The Method can also be the deposition of a barrier layer on the compacted exposed surfaces include. This barrier layer can be deposited by chemical Vapor deposition.
Vorzugsweise dominiert der Stickstoff oder das Edelgas den Wasserstoff oder den Sauerstoff. Somit bevorzugt man das Verhältnis von N2 : H2, das bei etwa 5 : 1 liegt.Preferably, the nitrogen or noble gas dominates the hydrogen or the oxygen. Thus, one prefers the ratio of N 2 : H 2 , which is about 5: 1.
Das Substrat kann einer Hochfrequenzvorspannung ausgesetzt sein während des Strippens des Fotowiderstandes.The Substrate may be subjected to a high frequency bias during the Stripping the photoresistor.
Gemäß alternativen Näherungen kann die Verdichtung stattfinden während des Ätzschrittes und kann erzeugt werden mit Hilfe eines nicht-oxidierenden Plasmaverfahrens, z.B. wenn das Material mit niedrigem k organischer Natur ist.According to alternative approximations For example, the densification may take place during the etching step and may be generated are prepared by a non-oxidizing plasma process, e.g. when the low-k material is organic in nature.
Obwohl die Erfindung weiter oben definiert wurde, ist zu bemerken, dass sie jede erfindungsgemäße Kombination von oben beschriebenen oder in der nachfolgenden Beschreibung dargelegten Merkmalen einschließt.Even though the invention has been defined above, it should be noted that they each combination of the invention described above or set forth in the following description Includes features.
Die Erfindung kann auf unterschiedlichen Wegen zur Ausführung kommen, und eine spezielle Ausführungsform wird nun beschrieben, beispielhaft unter Bezugnahme auf die beigefügten Zeichnungen. Dabei sind:The Invention can be carried out in different ways, and a specific embodiment will now be described by way of example with reference to the accompanying drawings. Here are:
Unter
Bezugnahme auf
Die
dielektrischen Schichten
Die
dielektrischen Schichten
Die
Gräben
MOCVD-Titannitrid TiN (Si) wurde in einem unabhängigen System deponiert unter Einsatz von TDEAT (Tetradiethylaminotitan) und Ammoniakvorläufern zusammen mit Heliumballast. Unmittelbar nach der Deposition wurde der MOCVD-Film Wasserstoffplasma-behandelt und dann in Siliciumwasserstoff getränkt. Es gab keine Thermal- oder Plasmabehandlungen vor der Deposition.MOCVD titanium nitride TiN (Si) was in an independent System deposited using TDEAT (Tetradiethylaminotitan) and ammonia precursors together with helium ballast. Immediately after the deposition was the MOCVD film is hydrogen plasma-treated and then hydrogenated in silicon soaked. There were no thermal or plasma treatments before deposition.
Wie
sich unmittelbar aus
Da der deponierte Film seitlich homogen war, muss die Verdichtung der geätzten Seitenwände stattgefunden haben während der Grabenbildung (Plasmaätzen und/oder anschließendes Widerstandsstrippen). Man glaubt, dass zumindest der Großteil der Verdichtung stattgefunden hat im wesentlichen während des Widerstandsstrippens, da während des Ätzens der Formationen große Mengen an Polymeren anwesend sind an den Seitenwänden (zum Bewirken des anisotropen Ätzens), welches entfernt wird durch das Anschließen des Stripverfahrens.There The deposited film was laterally homogeneous, the compression of the etched side walls have taken place during trenching (plasma etching and / or subsequent Resistance stripping). It is believed that at least the majority of Compaction has taken place essentially during resistance stripping, there while of the etching the formations great Amounts of polymers are present on the sidewalls (to effect the anisotropic etch), which is removed by connecting the stripping process.
Ein
weiterer Nachweis für
die Seitenwandverdichtung ergibt sich aus den
Vergleiche
der Aufzeichnungen unterstützen
die Existenz einer verdichteten Grabenseitenwand. Das Signal, das
in
Es wird dementsprechend geschlossen, dass die Grabenätzung und/oder das Widerstandsstripverfahren die Grabenseitenwände der porösen Niedrig-k-Schicht verdichten, wodurch eine glatte Oberfläche bereitgestellt wird, um eine Penetration der Barriereschichtvorläufer oder -reaktionsmittel zu verhindern. Dieses ermöglicht die Deposition einer kontinuierlichen Barriere, wodurch eine Kupferpenetration verhindert wird. Während die Experimente soweit nur an dem Material des Anmel ders durchgeführt wurden, geht man davon aus, dass sich die gleichen Ergebnisse erhalten lassen würden mit zumindest einigen anderen porösen Dielektrika mit ultraniedrigem k, insbesondere denjenigen der SiCOH-Familie, wobei es sich um hydrierten Kohlenstoff handelt, der Siliciumdioxide enthält, die porös sind. Der Kohlenstoff und der Wasserstoff in einem derartigen Film, typischerweise als C-H3-Gruppen mit C-Si-Bindungen, binden wirkungsvoll große Mengen von Wasserstoff, und dieser Wasserstoff wird als Hauptursache angesehen für den niedrigen k-Wert für die Matrix des Filmes zusammen mit der sich ergebenden Porosität.It is accordingly concluded that the trench etch and / or resistive stripping method compresses the trench sidewalls of the low K porous layer, thereby providing a smooth surface to prevent penetration of the barrier layer precursors or reactants. This allows for the deposition of a continuous barrier, preventing copper penetration. So far, while the experiments have been performed on the applicant's material only, it is believed that the same results could be obtained with at least some other ultra low k porous dielectrics, particularly those of the SiCOH family, which are hydrogenated carbon which contains silicas which are porous. The carbon and hydrogen in such a film, typically as CH 3 groups with C-Si bonds, effectively bind large amounts of hydrogen, and this hydrogen is considered to be the major cause of the low k value for the matrix of the film along with the resulting porosity.
Die genaue Mechanismus für die Verdichtung ist noch nicht bekannt, aber es wird für wahrscheinlich gehalten, dass die Entreicherung von Kohlenstoff aus den verdichteten Schichten die Bildung von Si-Si-Bindungen ermöglicht zwischen dreiwertigen Siliciumatomen.The exact mechanism for the compression is not yet known, but it is considered likely that the depletion of carbon from the compacted layers the formation of Si-Si bonds allows between trivalent ones Silicon atoms.
Das reaktive Ionenätzverfahren des BARC- und porösen SiCOH-Materials mit niedrigem k mit einer Fotowiderstandsmaske auf 200 mm-Scheiben war wie folgt: The reactive ion etching method of the low-k BARC and porous SiCOH material with a photoresistor mask on 200 mm slices was as follows:
Das reaktive Ionenfotowiderstandsstripverfahren an 200 mm-Scheiben, welches in der gleichen Kammer durchgeführt wurde, war wie folgt: The reactive ion photoconductive stripping method on 200 mm slices carried out in the same chamber was as follows:
Das Ätzverfahren wurde ausgeführt mit einer elektrostatischen Scheibenklemmung und Heliumrückseitenunterdrucksetzung, und die Scheibentemperatur ist dementsprechend nahe an der Plattentemperatur. Eine niedrige Temperatur kommt zum Einsatz, um die Widerstandsintegrität aufzuhalten.The etching process it was accomplished with electrostatic disc clamping and helium back pressure pressurization, and the disk temperature is accordingly close to the disk temperature. A low temperature is used to stop the resistance integrity.
Für das Widerstandsstripverfahren wurde die Scheibe entklemmt, um höhere Scheibentemperaturen zu ermöglichen, wodurch der Wirkungsgrad der Rückstandsentfernung verbessert und die Striprate erhöht wurde. Die Spitzenscheibentemperatur wurde als 121°C angezeigt (mit Hilfe von Industriestandardthermoaufklebern) bei 0°C Plattentemperatur und 104°C bei –15°C-Plattentemperatur.For the resistance strip method the disc was disconnected to allow for higher disc temperatures enable, whereby the efficiency of the residue removal improved and the stripping rate was increased. The top sheet temperature was displayed as 121 ° C (using industry standard thermo stickers) at 0 ° C Plate temperature and 104 ° C at -15 ° C plate temperature.
Diese Experimente wurden unter Einsatz von Stickstoff und Wasserstoff durchgeführt, wobei jedoch dann, wenn Stickstoff chemisch nicht aktiv ist bei dem Verdichtungsverfahren, Alternativen eingesetzt werden können, wie etwa Helium, Neon, Argon, Xenon und Krypton oder irgendein anderes geeignetes Sputter-Ätzgas. Alternativ können sie auch der Stickstoff- und/oder Wasserstoffgasmischung beigegeben werden.These Experiments were conducted using nitrogen and hydrogen carried out, however, when nitrogen is not chemically active at the compression process, alternatives can be used, such as such as helium, neon, argon, xenon and krypton or any other suitable sputter etching gas. Alternatively you can they also added to the nitrogen and / or hydrogen gas mixture become.
Eine
weitere Arbeit wurde ausgeführt,
um die Wirksamkeit der Erfindung zu illustrieren. In
Darüber hinaus
zeigt die
Im
Gegensatz ist in den
Die
Die
Die
Die
Die Plasmabehandlungs-/Widerstandsstripverfahren waren wie folgt: The plasma treatment / resistive strip methods were as follows:
Dieses war das beste Stickstoff + Sauerstoff-Verfahren für die Verdichtung und steht im Gegensatz zu dem Abdichtungsverfahren der EP-A-1 195 801.This was the best nitrogen + oxygen method for compaction and is in contrast to the sealing method of EP-A-1 195 Eight hundred and first
Es ist herauszustellen, dass in diesen anschließenden Experimenten die Scheiben elektrostatisch verklemmt wurden, wodurch ihre Temperatur abgesenkt wurde, dicht an diejenige der Plattentemperatur. Es wurde herausgefunden, dass die Verfahren nach wie vor wirksam sind bei diesen niedrigen Scheibentemperaturen.It is to highlight that in these subsequent experiments the slices were electrostatically jammed, lowering their temperature was close to that of the plate temperature. It was found that the procedures are still effective at these low levels Disk temperatures.
Die
Die
Die
ZusammenfassungSummary
(Ohne Figur)(Without figure)
Ein poröser dielektrischer Film mit einem niedrigen k-Wert wird beschrieben, wobei die exponierte Oberfläche oder Oberflächen des Filmes im wesentlichen nicht porös sind. Ein Verdichtungsverfahren wird beschrieben zur Behandlung derartiger exponierter Oberflächen, um die porösen Oberflächen nichtporös zu machen.One porous Dielectric film with a low k-value is described the exposed surface or surfaces of the film are essentially non-porous. A compaction process is described for the treatment of such exposed surfaces the porous ones surfaces non-porous close.
Claims (19)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0213708A GB0213708D0 (en) | 2002-06-14 | 2002-06-14 | Dielectric films |
GB0213708.1 | 2002-06-14 | ||
GB0213888.1 | 2002-06-18 | ||
GB0213888A GB0213888D0 (en) | 2002-06-18 | 2002-06-18 | Dielectric films |
US39205702P | 2002-06-28 | 2002-06-28 | |
US60/392,057 | 2002-06-28 | ||
PCT/GB2003/002494 WO2003107411A2 (en) | 2002-06-14 | 2003-06-10 | Dielectric film |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10392480T5 true DE10392480T5 (en) | 2005-09-01 |
Family
ID=29740467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10392480T Withdrawn DE10392480T5 (en) | 2002-06-14 | 2003-06-10 | Dielectric films |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU2003236897A1 (en) |
DE (1) | DE10392480T5 (en) |
GB (2) | GB2410832A (en) |
WO (1) | WO2003107411A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6914014B2 (en) * | 2003-01-13 | 2005-07-05 | Applied Materials, Inc. | Method for curing low dielectric constant film using direct current bias |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6351039B1 (en) * | 1997-05-28 | 2002-02-26 | Texas Instruments Incorporated | Integrated circuit dielectric and method |
US6361837B2 (en) * | 1999-01-15 | 2002-03-26 | Advanced Micro Devices, Inc. | Method and system for modifying and densifying a porous film |
US6114259A (en) * | 1999-07-27 | 2000-09-05 | Lsi Logic Corporation | Process for treating exposed surfaces of a low dielectric constant carbon doped silicon oxide dielectric material to protect the material from damage |
EP1292973B1 (en) * | 2000-06-23 | 2015-09-09 | Honeywell International, Inc. | Method to restore hydrophobicity in dielectric films and materials |
EP1195801B1 (en) * | 2000-09-29 | 2014-01-29 | Imec | Process for plasma treating an isolation layer with low permittivity |
-
2003
- 2003-06-10 DE DE10392480T patent/DE10392480T5/en not_active Withdrawn
- 2003-06-10 WO PCT/GB2003/002494 patent/WO2003107411A2/en not_active Application Discontinuation
- 2003-06-10 GB GB0419112A patent/GB2410832A/en not_active Withdrawn
- 2003-06-10 AU AU2003236897A patent/AU2003236897A1/en not_active Abandoned
-
2004
- 2004-10-14 GB GBGB0422825.0A patent/GB0422825D0/en active Pending
Also Published As
Publication number | Publication date |
---|---|
GB2410832A (en) | 2005-08-10 |
AU2003236897A1 (en) | 2003-12-31 |
WO2003107411A2 (en) | 2003-12-24 |
AU2003236897A8 (en) | 2003-12-31 |
GB0422825D0 (en) | 2004-11-17 |
WO2003107411A3 (en) | 2004-03-04 |
GB0419112D0 (en) | 2004-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19935946B4 (en) | Method for forming a dielectric layer | |
DE112007003795B4 (en) | Porous silicon dielectric and manufacturing process | |
DE112005002692B3 (en) | Use of polydentate ligands to seal pores in low-k dielectrics as well as semiconductor devices fabricated therewith | |
DE10222083B4 (en) | Isolation method for a semiconductor device | |
DE60005874T2 (en) | Manufacturing process for a porous silicon oxide film | |
DE69115498T2 (en) | MULTI-LAYER CONNECTION CMOS DEVICE WITH EJECTED GLASS | |
DE4310955C2 (en) | Process for processing a semiconductor wafer | |
DE4140180C2 (en) | Method of manufacturing a semiconductor device | |
DE3834241A1 (en) | SEMICONDUCTOR DEVICE | |
DE112007002215T5 (en) | Dielectric spacers for metal joints and process for their preparation | |
DE69015564T2 (en) | FULLY EFFECTED CONNECTING STRUCTURE WITH TITANIUM / TUNGSTEN AND SELECTIVE CVD TUNGSTEN. | |
DE19844451A1 (en) | Barrier layer structure, especially for copper interconnections in a VLSI | |
DE19629886A1 (en) | Mfg. semiconductor device with buried electrode conductor | |
DE10131716B4 (en) | A method of manufacturing a capacitor for a semiconductor memory device by a two-stage thermal treatment | |
EP1128428A2 (en) | Method of manufacturing a semiconductor device | |
DE19614331A1 (en) | Semiconductor component with conductive layer | |
DE102009010844B4 (en) | Providing enhanced electromigration performance and reducing the degradation of sensitive low-k dielectric materials in metallization systems of semiconductor devices | |
DE102004017411B4 (en) | In situ metal barrier deposition for sputter etching on a connection structure | |
DE102010040071B4 (en) | A method for restoring surface properties of sensitive low ε dielectrics in microstructure devices using in-situ surface modification | |
US6527856B2 (en) | Method for changing surface termination of a perovskite oxide substrate surface | |
DE102008044987B4 (en) | A method of reducing particles in PECVD processes for depositing a low dielectric constant material using a plasma assisted post deposition step | |
DE69416808T2 (en) | Method of manufacturing a multilayer semiconductor device | |
DE10339990B4 (en) | A method of fabricating a metal line having increased resistance to electromigration along an interface of a dielectric barrier layer by implanting material into the metal line | |
EP1118122A1 (en) | Integrated circuit and method for producing the same | |
DE102006025342A1 (en) | An insulated gate semiconductor device and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
8127 | New person/name/address of the applicant |
Owner name: APPLIED MATERIALS, INC., SANTA CLARA, CALIF., US |
|
R081 | Change of applicant/patentee |
Owner name: APPLIED MATERIALS, INC., SANTA CLARA, US Free format text: FORMER OWNER: TRIKON TECHNOLOGIES LIMITED, NEWPORT, GWENT, GB Effective date: 20110215 Owner name: APPLIED MATERIALS, INC., US Free format text: FORMER OWNER: TRIKON TECHNOLOGIES LIMITED, NEWPORT, GB Effective date: 20110215 |
|
R016 | Response to examination communication | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20130101 |