DE10327963A1 - Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics - Google Patents
Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics Download PDFInfo
- Publication number
- DE10327963A1 DE10327963A1 DE2003127963 DE10327963A DE10327963A1 DE 10327963 A1 DE10327963 A1 DE 10327963A1 DE 2003127963 DE2003127963 DE 2003127963 DE 10327963 A DE10327963 A DE 10327963A DE 10327963 A1 DE10327963 A1 DE 10327963A1
- Authority
- DE
- Germany
- Prior art keywords
- polarization beam
- beam splitter
- splitter according
- grid
- grid bars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
- G02B5/3091—Birefringent or phase retarding elements for use in the UV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3058—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3075—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state for use in the UV
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
Description
Die Erfindung betrifft einen Polarisationsstrahlteiler, bevorzugt zur Anwendung in der Mikroskopie oder in Projektionssystemen über einen breitbandigen Spektralbereich von 400 bis 700 nm sowie für Anwendungen in der UV-Lithografie im Wellenlängenbereich von 150 bis 400 nm, umfassend ein aus einem optisch transparentem Material bestehendes Trägersubstrat, auf dessen Oberfläche ein Array von parallel zueinander verlaufenden Gitterstegen aufgebracht ist, wobei die Gitterstege aus Vielfachschichtsystemen bestehen und das unter einem Einfallswinkel θ auf die Gitterstege und das Trägersubstrat auftreffende unpolarisierte Licht in einen reflektiven und einen transmissiven Polarisationsstrahlengang geteilt wird.The The invention relates to a polarization beam splitter, preferably to Application in microscopy or in projection systems via a broadband spectral range from 400 to 700 nm and for applications in UV lithography in the wavelength range from 150 to 400 nm, comprising one of an optically transparent one Material existing carrier substrate, on its surface applied an array of mutually parallel grid bars is, wherein the grid webs consist of multilayer systems and that at an angle of incidence θ on the grid bars and the carrier substrate impinging unpolarized light in a reflective and a transmissive polarization beam path is shared.
Bekannte
dielektrische Polarisationsstrahlteiler basieren auf der Verwendung
von unstrukturierten Dünnschichtsystemen,
wie sie beispielsweise in
Weitere
Lösungen
sind aus
Bekannte
diffraktive Anordnungen, wie sie beispielsweise von der Firma MOXTEK
(
Ein wesentlicher Nachteil eines diffraktiven Designs aus metallischen Materialien ist das Vorhandensein von Absorption von Lichtenergie in dieser optischen Komponente und wirkt sich nachteilig auf die optischen Eigenschaften des diffraktiven Polarisationsstrahlteilers (DPBS) aus. Bei Anwendungen, bei denen sehr hohe Lichtintensitäten erforderlich sind, wie beispielsweise in digitalen Kinoprojektoren, kann dies sogar zur Zerstörung des Bauelementes führen.One major disadvantage of a diffractive design of metallic Materials is the presence of absorption of light energy in this optical component and adversely affects the optical properties of the diffractive polarization beam splitter (DPBS). For applications where very high light intensities are required, as in digital cinema projectors, this can even be to destruction lead of the component.
Darüberhinaus
sind eine Vielzahl von schmalbandigen Lösungen für den sichtbaren und infraroten
Spektralbereich bekannt (
Ein schmalbandiges Design eines DPBS für den infraroten Spektralbereich, welches sich die Strukturierung eines dielektrischen Vollschichtsystems mittels des Effekts der anisotropen spektralen Reflektivität (ASR) zur Polarisationsteilung zunutze macht, wird beispielsweise in Rong-Chung Tyan, et al., „Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter", Journal of the Optical Society of America A, Vol.14, No.7/July 1997, p. 1627–1636 beschrieben. Hier wird ein Design aus alternierenden dielektrischen λ/4-Doppelschichten verwendet, bei dem der Effekt der anisotropen spektralen Reflektivität eintritt und für genau eine Wellenlänge λ zu den erforderlichen optischen Eigenschaften führt. Für den Einsatz im breitbandigen, sichtbaren Spektralbereich ist das beschriebene Design ungeeignet.One narrow-band design of a DPBS for the infrared spectral range, which is the structuring of a dielectric full-layer system by the effect of the anisotropic spectral reflectance (ASR) for polarization splitting, for example, in Rong-Chung Tyan, et al., "Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter ", Journal of the Optical Society of America A, Vol.14, No.7 / July 1997, p. 1627-1636 described. Here is a design of alternating dielectric λ / 4 bilayers used at which the effect of the anisotropic spectral reflectivity occurs and for exactly one wavelength λ to the required optical Properties leads. For the Use in the broadband, visible spectral range is the described Design inappropriate.
Ausgehend von den beschriebenen Nachteilen des Standes der Technik liegt der Erfindung die Aufgabe zugrunde, einen diffraktiven Polarisationsstrahlteiler dahingehend weiter zu entwickeln, dass unter Verwendung unpolarisierten Weißlichtes (UP) eine Strahlaufteilung über den gesamtem Wellängenbereich mit einer Effizienz von nahezu 100% und einer Winkelseparation von mehr als 90 Grad bei gleichzeitiger Verminderung von Lichtverlusten durch Absorption im Material selbst sowie durch unerwünschte Abstrahlung in andere Beugungsordnungen möglich ist.outgoing from the described disadvantages of the prior art is the Invention the task of a diffractive polarization beam splitter to further develop that using unpolarized White light (UP) a beam split over the entire Wellängenbereich with an efficiency of nearly 100% and an angular separation of more than 90 degrees with simultaneous reduction of light losses by absorption in the material itself as well as by unwanted radiation possible in other diffraction orders is.
Diese Aufgabe wird durch einen Polarisationsstrahlteiler der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, dass die einzelnen Schichten der Gitterstege aus nichtmetallischen, in ihrem optischen Verhalten verschiedenartig zusammengesetzten, dielektrischen Substanzen bestehen, wobei zweckmäßigerweise jeder Gittersteg mindestens drei (bei H-L-H oder vier bei H-L-H-L) Schichten aufweist, die gleiche oder unterschiedliche Schichtdicken zwischen 0,1 nm und 300 nm besitzen und die Gesamthöhe der Struktur der Gitterstege dabei in einem Bereich von 0,3 nm bis 30 μm liegt.These Task is by a polarization beam splitter the above described type according to the invention thereby solved, that the individual layers of the grid bars are made of non-metallic, in their optical behavior differently composed, consist dielectric substances, expediently each grid web has at least three (in H-L-H or four in H-L-H-L) layers, the same or have different layer thicknesses between 0.1 nm and 300 nm and the overall height the structure of the grid webs in a range of 0.3 nm to 30 microns is.
Die Schichten der Gitterstege bestehen dabei aus einer Kombination von verschiedenartig hochbrechenden Substanzen (H) und verschiedenartig niedrigbrechenden Substanzen (L), wobei die Reihenfolge alternierend (H1-L1-H1-L1 ...) oder nicht alternierend (H1-L1-H2-L2 ... oder H1-H2-L1-L2 ...) ist.The layers of the lattice webs consist of a combination of different high-index substances (H) and various low-index substances (L), the order alternating (H1-L1-H1-L1 ...) or not al terning (H1-L1-H2-L2 ... or H1-H2-L1-L2 ...).
Bedingt durch die Verwendung reiner dielektrischer Schichten, die sowohl in ihrer Abfolge bezüglich des reflektiven Verhaltens als auch in ihrer Höhe variierbar sind lassen sich Strukturprofile in Abhängigkeit vom Verwendungszweck optimieren. Die Vermeidung von metallischen Substanzen ermöglicht den Einsatz auch bei höheren Lichtintensitäten ohne dass der DPBS zerstört wird. Absorptionsverluste, die gerade bei Verwendung metallischer Substanzen auftreten werden weitestgehend vermieden, was wiederum zu einer Verbesserung der Effizienz gegenüber den Lösungen des Standes der Technik führt.conditioned through the use of pure dielectric layers, both in their sequence of reflective behavior as well as their height can be varied Structure profiles depending on from the purpose of use. The avoidance of metallic Substances enable the Use even at higher light intensities without destroying the DPBS becomes. Absorption losses, especially when using metallic Substances occurring are largely avoided, which in turn leads to an improvement in efficiency over the solutions of the prior art.
Darüberhinaus wird der Kontrast, insbesondere im blauen Spektralbereich, in dem metallische Substanzen stärker absorbieren, wesentlich verbessert.Furthermore is the contrast, especially in the blue spectral range, in the stronger metallic substances absorb, significantly improved.
Im Gegensatz zu den bisher bekannten Designs wird von einem für beide Polarisationszustände hochreflektierenden Vielschichtsystem (HR) ausgegangen (bis etwa 40 Schichten), das zunächst unstrukturiert ist. Es wird derart predesignt, dass die spektralen Eigenschaften, wie Breitbandigkeit und Wellenlängenbereich, ausreichend erfüllt sind. Anschließend wird das Schichtsystem entsprechend strukturiert.in the Unlike the previously known designs, one is for both Polarization states highly reflective Multilayer system (HR) is assumed (up to about 40 layers), the first is unstructured. It is predesigned so that the spectral Properties, such as broadband and wavelength range, are sufficiently fulfilled. Subsequently the layer system is structured accordingly.
Durch die Strukturierung wird der allgemein bekannte Effekt der Formdoppelbrechung ausgenutzt, um für die TE-Polarisation (s-Polarisation) eine hochreflektierende Struktur und die TM-Polarisation (p-Polarisation) eine antireflektierende Struktur zu erzeugen.By structuring becomes the well-known effect of shape birefringence exploited for TE polarization (s-polarization) a highly reflective structure and the TM polarization (p-polarization) an anti-reflective To create structure.
Vorteilhafterweise bestehen die hochbrechenden Substanzen (H) aus TiO2 und/oder Ta2O5 und/oder HfO2 und/oder Al2O3 und/oder Nb2O5 und/oder ZnS und/oder LaF3 oder weitere Lathanoidfluoride und die die niedrig brechenden Substanzen (L) aus SiO2 und/oder MgF2 und/oder Chiolith und/oder Kryolith und/oder AL2O3.advantageously, the high-index substances (H) consist of TiO2 and / or Ta2O5 and / or HfO2 and / or Al2O3 and / or Nb2O5 and / or ZnS and / or LaF3 or other lathanoid fluorides and the low-breaking substances (L) from SiO 2 and / or MgF 2 and / or chiolite and / or cryolite and / or Al2O3.
Zur Erreichung einer sehr hohen Breitbandigkeit erweist es sich als günstig, wenn die Schichtdicken der verschiedenartigen Schichten der Gitterstege zueinander kein ganzzahliges Verhältnis bilden.to Achieving a very high bandwidth proves it Cheap, when the layer thicknesses of the various layers of the grid bars do not form an integer relationship to each other.
Üblicherweise hat der Polarisationsstrahlteiler einen rechteckförmigen Querschnitt (lamellares Profil, wobei der Einfallswinkel θ des unpolarisierten Lichtes zur senkrecht auf dem Träger stehenden Ebene zwischen 30 und 60 Grad variierbar sein sollte.Usually the polarization beam splitter has a rectangular cross-section (Lamellar profile, where the angle of incidence θ of the unpolarized light perpendicular to the carrier standing level between 30 and 60 degrees should be variable.
Es sind jedoch auch trapezförmige Querschnittsformen der Gitterstege denkbar.It but are also trapezoidal Cross-sectional shapes of the grid bars conceivable.
Als vorteilhaft hat sich gezeigt, einen Einfallswinkel θ von 45 Grad zu wählen, um gerade bei einem lamellaren Profil eine Trennung der beiden Polarisatoren in Transmission und Reflektion zu realisieren.When Advantageously, it has been shown, an angle of incidence θ of 45 Degree to choose just for a lamellar profile a separation of the two polarizers to realize in transmission and reflection.
In Abhängigkeit vom Anwendungsfall kann es sich ferner als günstig erweisen, wenn das Trägersubstrat, welches unstrukturiert ist, zusätzlich eine antireflektierende Schicht (AR) aufweist.In dependence from the application case, it can also prove to be advantageous if the carrier substrate, which is unstructured, in addition an antireflecting layer (AR).
Hierdurch wird der durch Fresnel-Reflektion an der Substratoberfläche reflektierte Anteil der TM-Polarisation reduziert und damit der Kontrast in Reflexion erhöht.hereby This is reflected by Fresnel reflection on the substrate surface Proportion of TM polarization is reduced and thus the contrast in reflection elevated.
Um die Strahlteilung unter anderen Einfallswinkeln zu optimieren oder eine Trennung der beiden Polarisatoren entweder nur in Transmission oder nur in Reflexion zu erhalten, besteht eine erfindungsgemäße Ausgestaltung ferner darin, die Gitterstege so anzuordnen, dass ihr Querschnitt die Form eines Parallelogramms (schiefwinkliges Profil) besitzt, wobei die Schichten parallel zur Oberfläche des Trägersubstrates liegen und die Seitenflächen zur senkrecht auf der Oberfläche des Trägersubstrates stehenden Ebene einen Winkel α, der bis zu 45 Grad beträgt, einschließen. Die Unterätzung kann dabei geringfügig mit dem linken Fußpunkt der Gitterstege überlappen. Dies ist aber nicht zwingend erforderlich.Around to optimize beam splitting at different angles of incidence or a separation of the two polarizers either only in transmission or to obtain only in reflection, there is an embodiment of the invention Furthermore, it is to arrange the grid bars so that their cross-section has the shape of a parallelogram (skewed profile), wherein the layers are parallel to the surface of the carrier substrate and the faces perpendicular to the surface of the carrier substrate standing plane an angle α, which is up to 45 degrees. The undercut may be slightly with the left foot the grid bars overlap. But this is not mandatory.
Von Vorteil ist es ferner, wenn die Gitterperiode in einem Bereich von 50 bis 200 nm liegt und der Füllfaktor von 0,1 bis 0,9 gewählt wird.From It is also advantageous if the grating period is in a range of 50 to 200 nm and the fill factor chosen from 0.1 to 0.9 becomes.
Nachfolgend soll die Erfindung beispielhaft näher erläutert werden. Es zeigen:following the invention will be explained in more detail by way of example. Show it:
Das
von einer nicht näher
dargestellten Lichtquelle ausgehende unpolarisierte Licht UP trifft unter
einem Winkel θ von
45 Grad zur senkrecht auf der Trägersubstrat
Durch
die Strukturierung der Gitterstege
Die
erfindungsgemäße Anordnung
der Schichten H und L ist für
einen Wellenlängenbereich von
400 bis 700 nm, also breitbandig einsetztbar, wobei Beugungseffizienzen
rTE und tTM von > 95
für das
Nutzlicht (
Der
Kontrast in Reflexion ist dabei definiert als
- 11
- Trägersubstratcarrier substrate
- 2, 32, 3
- Gittersteggrid bar
- 44
- Ebenelevel
- 55
- Fußpunktnadir
- 66
- Überlappungoverlap
- GPGP
- Gitterperiodegrating period
- UPUP
- unpolarisiertes Lichtunpolarized light
- HH
- hochbrechende Schichthigh refractive index layer
- LL
- niedrigbrechende Schichtlow refractive layer
- ARAR
- antireflektierende Schichtantireflective layer
- TMTM
- p-polarisierte Komponentep-polarized component
- TETE
- s-polarisierte Komponentes-polarized component
- rTE, tTE, rTM, tTMRTE, tTE, rTM, tTM
- Effizienzenefficiencies
- θ, αθ, α
- Winkelangle
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003127963 DE10327963A1 (en) | 2003-06-19 | 2003-06-19 | Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003127963 DE10327963A1 (en) | 2003-06-19 | 2003-06-19 | Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10327963A1 true DE10327963A1 (en) | 2005-01-05 |
Family
ID=33495213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2003127963 Ceased DE10327963A1 (en) | 2003-06-19 | 2003-06-19 | Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10327963A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004041222A1 (en) * | 2004-08-26 | 2006-03-02 | Carl Zeiss Jena Gmbh | Photonic crystal structure, for a frequency selective reflector or diffractive polarization-dependent band splitter, has grate bars on a substrate of alternating low and high refractive material layers |
WO2006111319A2 (en) * | 2005-04-20 | 2006-10-26 | Carl Zeiss Smt Ag | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
DE102008002749A1 (en) | 2008-06-27 | 2009-12-31 | Carl Zeiss Smt Ag | Illumination optics for microlithography |
EP2158504A1 (en) * | 2007-06-22 | 2010-03-03 | Moxtek, Inc. | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
US7789515B2 (en) | 2007-05-17 | 2010-09-07 | Moxtek, Inc. | Projection device with a folded optical path and wire-grid polarizer |
US7800823B2 (en) | 2004-12-06 | 2010-09-21 | Moxtek, Inc. | Polarization device to polarize and further control light |
US7813039B2 (en) | 2004-12-06 | 2010-10-12 | Moxtek, Inc. | Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid |
DE102009045135A1 (en) | 2009-09-30 | 2011-03-31 | Carl Zeiss Smt Gmbh | Illumination optics for microlithography |
US7961393B2 (en) | 2004-12-06 | 2011-06-14 | Moxtek, Inc. | Selectively absorptive wire-grid polarizer |
US8248696B2 (en) | 2009-06-25 | 2012-08-21 | Moxtek, Inc. | Nano fractal diffuser |
CN103018832A (en) * | 2012-12-31 | 2013-04-03 | 江苏大学 | Polarization beam splitter |
US8873144B2 (en) | 2011-05-17 | 2014-10-28 | Moxtek, Inc. | Wire grid polarizer with multiple functionality sections |
US8913321B2 (en) | 2010-09-21 | 2014-12-16 | Moxtek, Inc. | Fine pitch grid polarizer |
US8913320B2 (en) | 2011-05-17 | 2014-12-16 | Moxtek, Inc. | Wire grid polarizer with bordered sections |
US8922890B2 (en) | 2012-03-21 | 2014-12-30 | Moxtek, Inc. | Polarizer edge rib modification |
US9348076B2 (en) | 2013-10-24 | 2016-05-24 | Moxtek, Inc. | Polarizer with variable inter-wire distance |
US9523805B2 (en) | 2010-09-21 | 2016-12-20 | Moxtek, Inc. | Fine pitch wire grid polarizer |
US10114161B2 (en) | 2010-12-30 | 2018-10-30 | Moxtek, Inc. | Multi-layer absorptive wire grid polarizer |
CN109116687A (en) * | 2018-10-30 | 2019-01-01 | 重庆大学 | A kind of photogenerated device of super resolution lithography |
US10175401B2 (en) | 2015-11-12 | 2019-01-08 | Moxtek, Inc. | Dual-purpose, absorptive, reflective wire grid polarizer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1195027A (en) * | 1997-09-18 | 1999-04-09 | Shimadzu Corp | Polarizing element of multilayer structure |
US5907436A (en) * | 1995-09-29 | 1999-05-25 | The Regents Of The University Of California | Multilayer dielectric diffraction gratings |
DE10025694A1 (en) * | 2000-05-24 | 2002-03-07 | Zeiss Carl | Diffraction grating used as a reflection grating in a Littrow configuration comprises parallel diffraction structures arranged on a support and each comprising a frame extending from the base surface of the support |
US20020063962A1 (en) * | 2000-11-24 | 2002-05-30 | Kyu Takada | Diffractive optical element |
US6532111B2 (en) * | 2001-03-05 | 2003-03-11 | Eastman Kodak Company | Wire grid polarizer |
-
2003
- 2003-06-19 DE DE2003127963 patent/DE10327963A1/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5907436A (en) * | 1995-09-29 | 1999-05-25 | The Regents Of The University Of California | Multilayer dielectric diffraction gratings |
JPH1195027A (en) * | 1997-09-18 | 1999-04-09 | Shimadzu Corp | Polarizing element of multilayer structure |
DE10025694A1 (en) * | 2000-05-24 | 2002-03-07 | Zeiss Carl | Diffraction grating used as a reflection grating in a Littrow configuration comprises parallel diffraction structures arranged on a support and each comprising a frame extending from the base surface of the support |
US20020063962A1 (en) * | 2000-11-24 | 2002-05-30 | Kyu Takada | Diffractive optical element |
US6532111B2 (en) * | 2001-03-05 | 2003-03-11 | Eastman Kodak Company | Wire grid polarizer |
Non-Patent Citations (2)
Title |
---|
TYAN Rong-Chung,et.al.: Design, fabrication, and acharacteri- zation of form-birefringent multilayer polarizing beam split- ter. In: Journal of the optical society of America, Vol.14, No.7,July 1997,S.1627-1636 * |
TYAN Rong-Chung,et.al.: Design, fabrication, and acharacteri- zation of form-birefringent multilayer polarizing beam split- ter. In: Journal of the optical society of America, Vol.14, No.7,July 1997,S.1627-1636; |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004041222A1 (en) * | 2004-08-26 | 2006-03-02 | Carl Zeiss Jena Gmbh | Photonic crystal structure, for a frequency selective reflector or diffractive polarization-dependent band splitter, has grate bars on a substrate of alternating low and high refractive material layers |
US8027087B2 (en) | 2004-12-06 | 2011-09-27 | Moxtek, Inc. | Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid |
US7961393B2 (en) | 2004-12-06 | 2011-06-14 | Moxtek, Inc. | Selectively absorptive wire-grid polarizer |
US7800823B2 (en) | 2004-12-06 | 2010-09-21 | Moxtek, Inc. | Polarization device to polarize and further control light |
US7813039B2 (en) | 2004-12-06 | 2010-10-12 | Moxtek, Inc. | Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid |
US7982854B2 (en) | 2005-04-20 | 2011-07-19 | Carl Zeiss Smt Gmbh | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
WO2006111319A2 (en) * | 2005-04-20 | 2006-10-26 | Carl Zeiss Smt Ag | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
US8854606B2 (en) | 2005-04-20 | 2014-10-07 | Carl Zeiss Smt Gmbh | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
WO2006111319A3 (en) * | 2005-04-20 | 2007-05-10 | Zeiss Carl Smt Ag | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
US8947772B2 (en) | 2006-08-31 | 2015-02-03 | Moxtek, Inc. | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
US8755113B2 (en) | 2006-08-31 | 2014-06-17 | Moxtek, Inc. | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
US7789515B2 (en) | 2007-05-17 | 2010-09-07 | Moxtek, Inc. | Projection device with a folded optical path and wire-grid polarizer |
EP2158504A1 (en) * | 2007-06-22 | 2010-03-03 | Moxtek, Inc. | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
EP2158504A4 (en) * | 2007-06-22 | 2012-02-29 | Moxtek Inc | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
CN103033870A (en) * | 2007-06-22 | 2013-04-10 | 莫克斯泰克公司 | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
DE102008002749A1 (en) | 2008-06-27 | 2009-12-31 | Carl Zeiss Smt Ag | Illumination optics for microlithography |
US9304405B2 (en) | 2008-06-27 | 2016-04-05 | Carl Zeiss Smt Gmbh | Microlithography illumination system and microlithography illumination optical unit |
US9778576B2 (en) | 2008-06-27 | 2017-10-03 | Carl Zeiss Smt Gmbh | Microlithography illumination system and microlithography illumination optical unit |
US8248696B2 (en) | 2009-06-25 | 2012-08-21 | Moxtek, Inc. | Nano fractal diffuser |
DE102009045135A1 (en) | 2009-09-30 | 2011-03-31 | Carl Zeiss Smt Gmbh | Illumination optics for microlithography |
WO2011039136A1 (en) | 2009-09-30 | 2011-04-07 | Carl Zeiss Smt Gmbh | Illumination optical unit for microlithography |
US9235137B2 (en) | 2009-09-30 | 2016-01-12 | Carl Zeiss Smt Gmbh | Illumination optical unit for microlithography |
US8913321B2 (en) | 2010-09-21 | 2014-12-16 | Moxtek, Inc. | Fine pitch grid polarizer |
US9523805B2 (en) | 2010-09-21 | 2016-12-20 | Moxtek, Inc. | Fine pitch wire grid polarizer |
US10114161B2 (en) | 2010-12-30 | 2018-10-30 | Moxtek, Inc. | Multi-layer absorptive wire grid polarizer |
US8913320B2 (en) | 2011-05-17 | 2014-12-16 | Moxtek, Inc. | Wire grid polarizer with bordered sections |
US8873144B2 (en) | 2011-05-17 | 2014-10-28 | Moxtek, Inc. | Wire grid polarizer with multiple functionality sections |
US8922890B2 (en) | 2012-03-21 | 2014-12-30 | Moxtek, Inc. | Polarizer edge rib modification |
CN103018832A (en) * | 2012-12-31 | 2013-04-03 | 江苏大学 | Polarization beam splitter |
US9348076B2 (en) | 2013-10-24 | 2016-05-24 | Moxtek, Inc. | Polarizer with variable inter-wire distance |
US9632223B2 (en) | 2013-10-24 | 2017-04-25 | Moxtek, Inc. | Wire grid polarizer with side region |
US9354374B2 (en) | 2013-10-24 | 2016-05-31 | Moxtek, Inc. | Polarizer with wire pair over rib |
US10175401B2 (en) | 2015-11-12 | 2019-01-08 | Moxtek, Inc. | Dual-purpose, absorptive, reflective wire grid polarizer |
CN109116687A (en) * | 2018-10-30 | 2019-01-01 | 重庆大学 | A kind of photogenerated device of super resolution lithography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10327963A1 (en) | Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics | |
DE60314706T2 (en) | Wire grid polarizer | |
DE69221002T2 (en) | Plate-shaped polarizing element, polarizing conversion unit with this element and a projector with this unit | |
DE3879593T2 (en) | OPTICAL IMAGE REVERSE SYSTEMS. | |
DE60114086T2 (en) | Optical diffraction element and optical system equipped therewith | |
DE60202636T2 (en) | Grid polarizer | |
DE68911184T2 (en) | Polarizer with dielectric layers. | |
DE69919204T2 (en) | MULTILAYER REFLECTOR WITH IMPROVED OPENING ANGLE AND SELECTIVE PERMEABILITY | |
DE202019103499U1 (en) | Compact optical collimator and system | |
DE60006261T2 (en) | ASYMMETRIC REFLECTION ASSEMBLY FOR THE ADDITION OF HIGH-PERFORMANCE LASER RADIATORS | |
DE10301665A1 (en) | Optical device with a barrier layer, optical system and projector | |
DE4042296A1 (en) | BEAM DIVIDERS FOR GENERATING A MULTIPLE OF SHARED LIGHT BEAMS FOR EACH WAVELENGTH COMPONENT OF AN INCIDENT LIGHT BEAM | |
EP1166166A1 (en) | Spectral light splitting and recombination device, and method for modulating light in a spectrally selective manner | |
DE112016005225B4 (en) | Wire grid polarizer and method of making same | |
KR20230152180A (en) | Anti-reflective coatings on optical waveguides | |
EP1402291B1 (en) | Method for producing light of a given polarisation state | |
DE10341596B4 (en) | Polarization beam splitter | |
DE10064143A1 (en) | Anti-reflection coating for ultraviolet light at large angles of incidence | |
DE60200260T2 (en) | Optical device for rotating the polarization of linearly polarized light | |
EP3077858B1 (en) | Polarization system | |
DE2443511A1 (en) | NARROW BAND REFLECTIVE POLARIZER | |
DE102004041222A1 (en) | Photonic crystal structure, for a frequency selective reflector or diffractive polarization-dependent band splitter, has grate bars on a substrate of alternating low and high refractive material layers | |
DE60221754T2 (en) | Polarization beam splitter and method for its production | |
DE60110941T2 (en) | WIDE ANGLE POLARIZING RADIATOR WITH CRUSH-MODULED (RUGATE) TEXTILE LAYER | |
DE3814742A1 (en) | ACHROMATIC PHASE RETARDER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8181 | Inventor (new situation) |
Inventor name: BLANCKENHAGEN, BERNHARD VON, DR., 73430 AALEN, DE Inventor name: PESCH, ALEXANDER, DIPL.-PHYS., 07745 JENA, DE Inventor name: SANDFUCHS, OLIVER, DR., 07743 JENA, DE |
|
8110 | Request for examination paragraph 44 | ||
R016 | Response to examination communication | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |
Effective date: 20140603 |