-
Gegenstand der vorliegenden Erfindung sind Zusammensetzungen, geeignet zur Herstellung von Polyurethanschäumen, die zumindest eine Polyolkomponente, mindestens ein Treibmittel, einen Katalysator, der die Ausbildung einer Urethan- oder Isocyanurat-Bindung katalysiert, einen Silizium-haltigen Schaumstabilisator und gegebenenfalls weitere Additive und gegebenenfalls eine Isocyanat-Komponente enthalten, dadurch gekennzeichnet, dass sie als Treibmittel mindestens einen ungesättigten Fluorchlorkohlenwasserstoff oder Fluorkohlenwasserstoff und zusätzlich mindestens ein Tensid TD, welches kein Siliziumatom und einen HLB-Wert kleiner 10, bevorzugt kleiner 7, besonders bevorzugt kleiner 6 aufweist, enthalten, wobei der Anteil der Summe der Tenside TD in der Zusammensatzung von 0,05 und 20 Massenteile pro 100 Massenteile Polyolkomponenten beträgt, ein Verfahren zur Herstellung von Polyurethan- bzw. Polyisocyanuratschaumstoffen, insbesondere Hartschäume, ausgehend von diesen Polyolzusammensetzungen, die Verwendung der Schaumstoffe, insbesondere als Isolationsmaterialien sowie die Isolationsmaterialien selbst.
-
Die Herstellung von Polyurethan- bzw. Polyisocyanuratschaumstoffen durch Verschäumung schaumfähiger Reaktionsmischungen auf der Basis von Polyisocyanaten, Verbindungen mit reaktionsfähigen Wasserstoffatomen, Treibmitteln, Stabilisatoren und gegebenenfalls weiteren Zusatzstoffen wird heute im großtechnischen Maßstab betrieben. Ein wichtiges Einsatzgebiet dieser Schaumstoffe ist die Isolation, insbesondere die Wärmedämmung. Zur Herstellung von Isolierschaumstoffen ist es erforderlich, harte Schäume mit relativ niedrigem 3Raumgewicht von < 50 kg/m und – als wesentlichem Kriterium – möglichst vielen kleinen geschlossenen Zellen (hohe Zelldichte) zu erzeugen.
-
Damit sich ein Schaum bilden kann, ist ein Treibgas erforderlich. Gängige Treibmittel sind hierbei Kohlenwasserstoffe, (teil)-halogenierte gesättigte und ungesättigte Kohlenwassenstoffe sowie CO2-erzeugende Substanzen.
-
Neben der Fähigkeit, im Verlauf der Verschäumung viele kleine, homogene geschlossene Zellen zu bilden, zeichnen sich bevorzugte Treibmittel durch eine geringe Gasphasenwärmeleitfähigkeit sowie durch ein geringes Treibhauspotential (GWP = Global Warming Potential) aus. In diesem Zusammenhang konnten in der Vergangenheit ungesättigte Halogenkohlenwasserstoffe, sogenannte HFO-Treibmittel, als besonders effektive Treibmittel identifiziert werden. Die Verwendung von HFO-Treibmitteln zur Herstellung von Polyurethanschäumen wird Beispielsweise in Schriften
EP 2154223 A1 ,
EP 2197 935 B1 sowie
US 2009/0305875 A1 beschrieben.
-
Trotz der erwiesenen Wirksamkeit von ungesättigten Halogenkohlenwasserstoffen als Treibmitteln ist ein Nachteil dieser Substanzen, dass sie oftmals nur unzureichend mischbar mit dem zu verschäumenden Polyurethansystem bzw. mit den eingesetzten Basisrohstoffen zur PU-Schaumherstellung sind. Dies führt dazu, dass entsprechende Mischungen nur eine geringe Lagerstabilität aufweisen und häufig zu Phasenseparation in zwei oder mehrere Phasen neigen was u.a. zu defekten im erhaltenen PU-Schaum führen kann.
-
Besonders beim Einsatz von vorformulierten Polyurethansystemen bei der Herstellung von Isolationsmaterialien für Kühlmöbel (Kühl- und Gefrierschränke bzw. -Truhen) Wert auf die Separationsstabilität der Polyurethansysteme bzw. Polyolmischungen gelegt wird. Hierbei ist es üblich, das Treibmittel vor der Verschäumung mit der sogenannten A-Komponente abzumischen, welche neben dem Treibmittel aus einem oder mehreren Polyolen, einem oder mehreren Katalysatoren, Schaumstabilisatoren, Wasser, ggf. Flammschutzmittel und ggf. weiteren Additiven und Zusatzstoffen besteht. Diese wird im Verlauf der Verschäumung mit der sogenannten B-Komponente, welche in der Regel aus einem nicht additivierten Isocyanat, meist polymeres MDI, besteht. Vermischt und geschäumt. Um einen störungsfreien Ablauf des Verschäumprozesses zu ermöglichen ist es hierbei erforderlich, dass die A-Komponente eine ausreichende Separationsstabilität besitzt und es so während der Verschäumung nicht zu unerwünschten Entmischungsphänomenen kommt, welche wie oben beschrieben zu Schaumdefekten führen können.
-
Darüber hinaus kann durch eine hinreichende Lagerstabilität einer vorformulierten A-Komponente bei großtechnischen Verschäumverfahren ein störungsfreier Produktionsablauf gewährleistet werden. So kann beispielsweise bei längeren Anlagenstillständen, z.B. bei Wartungsarbeiten oder über das Wochenende, eine Separation des Systems in Leitungen und Vorratsbehältern vermieden werden, welche beim Wiederanfahren der Anlage unweigerlich zu schweren Schaumstörungen führen würden.
-
Aufgabe der vorliegenden Erfindung war deshalb die Bereitstellung einer Zusammensetzung enthalten mindesten eine Polyolkomponente, mindestens ein Treibmittel dadurch gekennzeichnet, dass es sich um einen ungesättigten Halogenkohlenwasserstoff handelt, einen Katalysator, der die Ausbildung einer Urethan- oder Isocyanurat-Bindung katalysiert, und gegebenenfalls weitere Additive, wobei die Zusammensetzung dadurch gekennzeichnet ist, dass sie für mindestends drei Tage separationstabil ist.
-
Zur Lösungsvermittlung zwischen Polyol-Systemen und Treibmitteln wurde in der Vergangenheit die Verwendung von verschiedenen Tensiden vorgeschlagen.
-
WO 2007/094780 beschreibt Polyolmischungen enthaltend Kohlenwasserstoffe als Treibmittel, wobei den Mischungen zur Verbesserung der Löslichkeit des Treibmittels in der Mischung ein Ethoxylat-Propoxylat-Tensid zugegeben wird.
-
US 6472446 beschreibt Polyolmischungen enthaltend Kohlenwasserstoffe als Treibmittel, wobei den Mischungen zur Verbesserung der Löslichkeit des Treibmittels in der Mischung ein Butanol gestartetes Propylenoxidpolyether-Tensid zugegeben wird.
-
WO 98/42764 beschreibt ebenfalls Polyolmischungen enthaltend Kohlenwasserstoffe als Treibmittel, wobei den Mischungen zur Verbesserung der Löslichkeit des Treibmittels in der Mischung ein C12-C15 gestarteter Polyether als Tensid zugegeben wird.
-
WO 96/12759 beschreibt ebenfalls Polyolmischungen enthaltend Kohlenwasserstoffe als Treibmittel, wobei den Mischungen zur Verbesserung der Löslichkeit des Treibmittels in der Mischung ein Tensid zugegeben wird, welches einen Alkylrest mit mindestens 5 Kohlenstoff-atomen aufweist.
-
EP 0767199 A1 beschreibt die Verwendung von Diethanolamiden von Fettsäuren natürlicher Herkunft als Tensid zur Herstellung von Polyolmischungen, die Kohlenwasserstoffe als Treibmittel aufweisen.
-
In
EP 1520873 A2 werden Mischungen von Halogenkohlenwasserstoff-Treibmitteln und Treibmittel-Verstärker, die ein Molekulargewicht von kleiner 500 g/mol aufweisen, beschrieben, wobei die Treibmittel-Verstärker Polyether oder Monoalkohole, wie z. B Ethanol, Propanol, Butanol, Hexanol, Nonanol oder Decanol, sein können. Das Verhältnis von Treibmittel zu Treibmittel-Verstärker wird mit 60 bis 95 Massen-% zu 40 bis 5 Massen-% angegeben. Bei den verwendeten Halogenkohlenwasserstoffen handelt es sich jedoch nicht um HFO-Treibmittel. Darüber wird in dieser Schrift nicht offenbart, ob die eingesetzten Treibmittelverstärker zu einer Kompatibilisierung des Treibmittels in Polyolen führen.
-
WO 2013/026813 beschreibt Mikroemulsionen von Polyolen und unpolaren organischen Verbindungen, welche durch Einsatz mindestens einer halogenfreien Verbindung, die mindestens eine amphiphile Verbindung ausgewählt aus nichtionischen Tensiden, Polymeren und Mischungen davon und mindestens eine von dieser Verbindung verschiedenen Verbindung enthält, erhalten wird und deren Verwendung bei der Herstellung von Polyurethanen. Die eingesetzten unpolaren Verbindungen können anteilig auch fluorierte Verbindungen enthalten. Polyolbasierte Mikroemulsionen, welche ausschließlich halogenierte unpolare Verbindungen enthalten, werden in dieser Schrift nicht beschrieben.
-
Da sich die Lösungseigenschaften von halogenierten Kohlenwasserstoffen fundamental von denen nicht fluorierter Kohlenwasserstoffe unterscheiden, ist eine Übertragbarkeit der für Kohlenwasserstoff-basierte Treibmittel vorgeschlagenen Additive auf die vorliegende Fragestellung nicht möglich.
-
Überraschenderweise wurde gefunden, dass separationsstabile Zusammensetzungen aus Polyol(en), Additiven und HFO-Treibmitteln bereitgestellt werden können, wenn der Mischung zusätzlich ein Tensid zugesetzt wird, welches einen HLB-Wert kleiner 10, bevorzugt kleiner 7, besonders bevorzugt kleiner 6 aufweist.
-
Üblicher Weise wird der HLB-Wert dazu verwendet, Emulgatoren für die Herstellung von Öl-Wasser-Emulsionen auszuwählen. Es war daher nicht absehbar, dass sich ein solcher Wert auch für die Auswahl von Tensiden für nicht-wasserbasierte Polyolsysteme eignet. Der HLB-Wert eines Tensids lässt sich hierbei gemäß der Inkrementen-Methode nach Griffin (
W. C. Griffin, J. Cos. Cosmet. Chem., 1950, 311:5, 249) und McGowan (
J. C. McGowan, Tenside Surfactants Detergents, 1990, 27, 229) berechnen. Gemäß dieser Methode lässt sich der HLB-Wert eines Moleküls aus einzelnen Inkrementen seiner molekularen Bausteine gemäß Gleichung 1 zusammensetzen.
HLB = 7 + ΣHh + ΣHl (Gl. 1) H
h und H
l sind hierbei die HLB-Gruppenzahlen der einzelnen hydrophilen bzw. lipophilen Molekülbausteine. Typische Werte für H
h und H
l sind in Tabelle 1 aufgelistet. Tab. 1: HLB-Gruppenzahlen verschiedener Molekülbausteine (siehe auch Tabelle 3 in R. Sowada und J. C. McGowan, Tenside Surfactants Detergents, 1992, 29, 109)
| Molekülbaustein | HLB-Gruppenzahl |
Hh | -O- (Ether) | 1,3 |
-OH (frei) | 1,12 |
-COOH (frei) | 2,09 |
-COO- (Ester) | 2,28 |
-CONH-R (Amid) | 2,136 |
-CON-R2 (Amid) | 2,319 |
-NH2 (frei) | 8,59 |
-(CH2CH2O)- | 0,353 |
Hl | -CH3 | –0,658 |
-CH2-R | –0,457 |
-CH-R2 | –0,295 |
-CH= | –0,402 |
-
Gegenstand der vorliegenden Erfindung sind deshalb Zusammensetzungen, geeignet zur Herstellung von Polyurethanschäumen, die zumindest eine Polyolkomponente, mindestens ein Treibmittel, einen Katalysator, der die Ausbildung einer Urethan- oder Isocyanurat-Bindung katalysiert, einen Silizium-haltigen Schaumstabilisator und gegebenenfalls weitere Additive und gegebenenfalls eine Isocyanat-Komponente enthalten, welche dadurch gekennzeichnet sind, dass sie als Treibmittel mindestens einen ungesättigten Fluorchlorkohlenwasserstoff oder ungesättigten Fluorkohlenwasserstoff und zusätzlich mindestens ein Tensid TD, welches kein Siliziumatom und einen HLB-Wert kleiner 10, bevorzugt kleiner 7, besonders bevorzugt kleiner 6 aufweist, enthalten, wobei die Konzentration des Tensids TD in der Zusammensatzung von 0,05 und 20 Gew.-% bezogen auf die Gesamtzusammensetzung beträgt.
-
Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Polyurethan- bzw. Polyisocyanuratschaumstoffen, insbesondere Hartschäume, ausgehend von diesen Polyolzusammensetzungen, die Verwendung der Schaumstoffe, insbesondere als Isolationsmaterialien, sowie die Isolationsmaterialien selbst.
-
Ein weiterer Gegenstand der vorliegenden Erfindung sind Polyurethanschaumstoffe, welche auf Basis des oben beschriebenen Verfahrens hergestellt wurden.
-
Die erfindungsgemäßen Zusammensetzungen haben den Vorteil, dass größere Mengen an HFO-Treibmittel in die Zusammensetzungen eingebracht werden können, ohne dass die Zusammensetzungen, auch nach einer Lagerung von 72 Stunden, eine mit bloßem Auge erkennbare Phasenseparation zeigen.
-
Ein weiterer Vorteil der Erfindungsgemäßen Zusammensetzungen ist, dass in ihnen auch hochsilikonige Schaumstabilisatoren verwendet werden können, welche sich ansonsten negativ auf die Verträglichkeit von Polyol und Treibmittel auswirken würden, ohne zu einer Phasenseparation Mischung kommt.
-
Die erfindungsgemäßen Gegenstände werden nachfolgend beispielhaft beschrieben, ohne dass die Erfindung auf diese beispielhaften Ausführungsformen beschränkt sein soll. Sind nachfolgend Bereiche, allgemeine Formeln oder Verbindungsklassen angegeben, so sollen diese nicht nur die entsprechenden Bereiche oder Gruppen von Verbindungen umfassen, die explizit erwähnt sind, sondern auch alle Teilbereiche und Teilgruppen von Verbindungen, die durch Herausnahme von einzelnen Werten (Bereichen) oder Verbindungen erhalten werden können. Werden im Rahmen der vorliegenden Beschreibung Dokumente zitiert, so soll deren Inhalt, insbesondere in Bezug auf den Sachverhalt, in dessen Zusammenhang das Dokument zitiert wurde, vollständig zum Offenbarungsgehalt der vorliegenden Erfindung gehören. Bei Prozentangaben handelt es sich, wenn nicht anders angegeben, um Angaben in Gewichtsprozent. Werden nachfolgend Mittelwerte angegeben, so handelt es sich, wenn nicht anderes angegeben, um Gewichtsmittel. Werden nachfolgend Parameter angegeben, die durch Messung bestimmt wurden, so wurden die Messungen, wenn nicht anders angegeben, bei einer Temperatur von 25 °C und einem Druck von 101.325 Pa durchgeführt.
-
Unter Polyurethanschaum (PU-Schaum) wird im Rahmen der vorliegenden Erfindung Schaum verstanden, der als Reaktionsprodukt basierend auf Isocyanaten und Polyolen bzw. Verbindungen mit Isocyanat-reaktiven Gruppen erhalten wird. Es können hierbei neben dem Namen gebenden, Polyurethan auch weitere funktionelle Gruppen gebildet werden, wie z.B. Allophanate, Biurete, Harnstoffe oder Isocyanurate. Daher werden unter PU-Schäumen im Sinne der vorliegenden Erfindung sowohl Polyurethanschäume (PUR-Schäume) als auch Polyisocyanurat-Schäume (PIR-Schäume) verstanden. Bevorzugte Polyurethanschäume sind Polyurethanhartschäume.
-
Ungesättigte Halogenkohlenwasserstoffe werden Im Rahmen der vorliegenden Anmeldungen auch als HFO bezeichnet. Halogenkohlenwasserstoffe können dabei ein oder mehrere gleiche oder unterschiedliche Halogene aufweisen. Treibmittel auf Basis von ungesättigten Halogenkohlenwasserstoffen werden dem entsprechend als HFO-Treibmittel bezeichnet.
-
Die erfindungsgemäße Zusammensetzung, geeignet zur Herstellung von Polyurethanschäumen, die zumindest eine Polyolkomponente, mindestens ein Treibmittel, einen Katalysator, der die Ausbildung einer Urethan- oder Isocyanurat-Bindung katalysiert, einen Silizium-haltigen Schaumstabilisator und gegebenenfalls weitere Additive und gegebenenfalls eine Isocyanat-Komponente enthält, zeichnet sich dadurch aus, dass sie als Treibmittel mindestens einen ungesättigten Halogenkohlenwasserstoff, vorzugsweise einen ungesättigten Fluorchlorkohlenwasserstoff und/oder ungesättigten Fluorkohlenwasserstoff, und mindestens ein Tensid TD, welches kein Siliziumatom aufweist und einen HLB-Wert kleiner 10, bevorzugt kleiner 7, besonders bevorzugt kleiner 6 aufweist, enthält, wobei der Anteil der Summe der Tenside TD in der Zusammensatzung von 0,05 und 20 Massenteile pro 100 Massenteile Polyolkomponente beträgt.
-
Die erfindungsgemäßen Zusammensetzungen weisen vorzugsweise von 0,1 bis 15 und bevorzugt von 0,5 bis 10 Massenteile an Tensiden TD pro 100 Massenteile Polyolkomponente auf.
-
Als Tensid TD weist die erfindungsgemäße Zusammensetzung vorzugsweise mindestens eine Verbindung der Formel (I) R-[C(O)]x-Y (I) mit x = 0 oder 1, vorzugsweise 0, R ein linearer, verzweigter oder cyclischer, gesättigter oder ungesättigter, vorzugsweise gesättigter Kohlenwasserstoffrest, mit mindestens 4, vorzugsweise von 8 bis 30, bevorzugt von 9 bis 20 und besonders bevorzugt 9 bis 18 Kohlenstoffatomen, und Y = O-R1 oder NR1R2 oder O-CH2-CH(OR3)-CH2OH, jeweils mit R1 und R2 gleiche oder verschiedene Reste (CnH2nO)m-H, wobei n = 2 bis 4, vorzugsweise n = 2 oder 3, besonders bevorzugt n = 2 ist, sowie m = 0–15, bevorzugt m = 0 oder 1–10, besonders bevorzugt m = 0 oder 1–6, ganz besonders bevorzugt m = 0 und R1 und R2 untereinander gleich oder verschieden sein dürfen, und mit R3 = H oder R‘ oder C(O)R‘, wobei R‘ ein Kohlenwasserstoffrest analog zur Definition von R ist und gleich oder verschieden zum Rest R sein kann.
-
Besonders bevorzugte Tenside TD sind solche, die mindestens einen Kohlenwasserstoffrest mit mindestens 4 Kohlenstoffatomen, bevorzugt mit mindestens 8 Kohlenstoffatomen und besonders bevorzugt mit 9 bis 18 Kohlenstoffatomen aufweisen, und die einen HLB-Wert kleiner 10, bevorzugt kleiner 7, besonders bevorzugt kleiner 6 aufweisen.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 0 und Y = O-R1 ist, so enthält die Zusammensetzung als Tensid TD vorzugsweise Alkohol-Alkoxylate auf der Basis von Oktanol, Nonanol, Isononanol, Caprylalkohol, Decanol, Laurylalkohol, Tridecanol, Isotridecanol, Myristylalkohol, Cetylalkohol, Stearylalkohol oder Isostearylalkohol, besonders bevorzugt Ethoxylate dieser Substanzen. Die Herstellung entsprechender Fettalkoholalkoxylaten kann wie im Stand der Technik beschrieben erfolgen.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 0 und Y = O-R1, mit m = 0, ist, so enthält die Zusammensetzung als Tensid TD vorzugsweise Oktanol, Nonanol, insbesondere Isononanol, Caprylalkohol, Laurylalkohol, Tridecanol, Isotridecanol, Myristylalkohol, Cetylalkohol, Stearylalkohol, Isostearylalkohol, Tridecanol, Decanol, Dodecanol oder ein Gemisch diese Substanzen, bevorzugt Iso-Tridecanol und/oder, vorzugsweise oder, Iso-Nonanol 1(3,5,5-Trimethylnonan-1-ol). Tenside TD der Formel (I) mit x = 0 und Y = O-R sind bevorzugt solche, bei denen m = 0 ist.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 0 und Y = NR1R2 mit m = 0 ist, so enthält die Zusammensetzung als Tensid TD ein Fettamin, bevorzugt Oktylamin, Nonylamin, Isononylamin, Caprylamin, Laurylamin, Tridecylamin, Isotridecylamin, Myristylamin, Cetylamin, Stearylamin oder Isostearylamin. Für m und n ungleich 0 sind die Tenside TD besonders bevorzugt Ethoxylate dieser Amine.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 0 und Y = O-CH2-CH(OR3)-CH2OH ist so sind hierbei Glycerin-mono- und Diether von gesättigten oder ungesättigten Alkoholen, wie z.B. Oktanol, Nonanol, Isononanol, Caprylalkohol, Laurylalkohol, Tridecanol, Isotridecanol, Myristylalkohol, Cetylalkohol, Stearylalkohol oder Isostearylalkohol besonders bevorzugt.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 1 und Y = O-R1 ist, so enthält die Zusammensetzung als Tensid TD vorzugsweise Alkoxylate, besonders bevorzugt Ethoxylate, von gesättigten oder ungesättigten Fettsäuren mit bis zu 30 C-Atomen wie z. B. Buttersäure (Butansäure), Capronsäure (Hexansäure), Caprylsäure (Octansäure), Caprinsäure (Decansäure), Laurinsäure (Dodecansäure), Myristinsäure (Tetradecansäure), Palmitinsäure (Hexadecansäure), Stearinsäure (Octadecansäure), Arachinsäure (Eicosansäure), Behensäure (Docosansäure), Lignocerinsäure (Tetracosansäure), Palmitölsäure ((Z)-9-Hexadecensäure), Ölsäure ((Z)-9-Hexadecensäure), Elaidinsäure ((E)-9-Octadecensäure), cis-Vaccensäure ((Z)-11-Octadecensäure), Linolsäure ((9Z,12Z)-9,12-Octadecadiensäure), alpha-Linolensäure ((9Z,12Z,15Z)-9,12,15-Octadecatriensäure), gamma-Linolensäure ((6Z,9Z,12Z)-6,9,12-Octadecatriensäure), Di-homo-gamma-Linolensäure ((8Z,11Z,14Z)-8,11,14-Eicosatriensäure), Arachidonsäure ((5Z,8Z,11Z,14Z)-5,8,11,14- Eicosatetraensäure), Erucasäure ((Z)-13-Docosensäure), Nervonsäure ((Z)-15-Tetracosensäure), Rizinolsäure, Hydroxystearinsäure und Undecenylsäure, sowie deren Mischungen.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) auf, bei dem x = 1 und Y = O-CH2-CH(OR3)-CH2OH ist, so enthält die Zusammensetzung als Tensid TD vorzugsweise Mono- oder Digylceride, insbesondere bevorzugt sind hierbei Mono- und Digylceride von geradkettigen gesättigten oder ungesättigten Fettsäuren mit bis zu 30 C-Atomen wie z. B. Buttersäure (Butansäure), Capronsäure (Hexansäure), Caprylsäure (Octansäure), Caprinsäure (Decansäure), Laurinsäure (Dodecansäure), Myristinsäure (Tetradecansäure), Palmitinsäure (Hexadecansäure), Stearinsäure (Octadecansäure), Arachinsäure (Eicosansäure), Behensäure (Docosansäure), Lignocerinsäure (Tetracosansäure), Palmitölsäure ((Z)-9-Hexadecensäure), Ölsäure ((Z)-9-Hexadecensäure), Elaidinsäure ((E)-9-Octadecensäure), cis-Vaccensäure ((Z)-11-Octadecensäure), Linolsäure ((9Z,12Z)-9,12-Octadecadiensäure), alpha-Linolensäure ((9Z,12Z,15Z)-9,12,15-Octadecatriensäure), gamma-Linolensäure ((6Z,9Z,12Z)-6,9,12-Octadecatriensäure), Di-homo-gamma-Linolensäure ((8Z,11Z,14Z)-8,11,14-Eicosatriensäure), Arachidonsäure ((5Z,8Z,11Z,14Z)-5,8,11,14- Eicosatetraensäure), Erucasäure ((Z)-13-Docosensäure), Nervonsäure ((Z)-15-Tetracosensäure), Rizinolsäure, Hydroxystearinsäure und Undecenylsäure, sowie deren Mischungen.
-
Weist die erfindungsgemäße Zusammensetzung ein Tensid TD der Formel (I) mit x = 1 auf, bei dem Y = NR
1R
2 ist, so enthält die Zusammensetzung als Tensid TD vorzugsweise ein Fettsäureamid eines Mono- oder Dialkanolamins, besonders bevorzugt des Diisopropanolamins oder des Diethanolamins. Die Herstellung von Säureamiden kann nach den im Stand der Technik bekannten Verfahren, so wie z. B. in
DE 1802500 ;
DE 1802503 ,
DE 1745443 ,
DE 1745459 oder
US 3578612 beschrieben, erfolgen. Es können hier als Rohstoffe z. B. die entsprechenden Carbonsäuren verwendet werden und die Amidbildung unter Wasserabspaltung stattfinden. Ebenso können Carbonsäureester, wie beispielsweise Methylester eingesetzt werden, wobei dann Methanol abgespalten wird. Besonders bevorzugt ist die Verwendung von Glyceriden aus den natürlich vorkommenden Fetten und Ölen, wobei das bei der Amidierung entstehende Glycerin im Reaktionsgemisch verbleiben kann. Ebenso können beispielweise bei der Umsetzung von Triglyceriden mit Aminen noch Di- und Mono-Glyceride im Reaktionsgemisch vorliegen, wenn die Reaktionsbedingungen entsprechend gewählt wurden. Bei Verwendung von Carbonsäureestern werden gegebenenfalls entsprechende Katalysatoren wie z.B. Alkoholate eingesetzt, die eine Amidierung bei relativ milden Bedingungen, im Vergleich zur oben genannten Wasserabspaltung, ermöglichen. Bei der Verwendung von höher-funktionellen Aminen (DETA, AEEA, TRIS) kann es bei der Herstellung der Amide auch zur Bildung von entsprechenden cyclischen Amiden kommen wie Imidazolinen oder Oxazolinen.
-
Falls bei der Amidierung ein basischer Katalysator verwendet wird kann es vorteilhaft sein mit einer entsprechenden Menge an organischer oder anorganischer Säure anschließend eine Neutralisation durchzuführen. Geeignete Verbindungen sind dem Fachmann bekannt.
-
Besonders bevorzugt ist die Neutralisation, der durch basische Katalyse hergestellten Amide, mit organischen Anhydriden von Dicarbonsäuren, da diese mit den zur Verfügung stehenden OH- oder NH-Funktionen reagieren können und dadurch angebunden werden, und somit später im fertigen Schaum nicht in Form von freien Carbonsäuren als Emission anfallen können. Außerdem werden z. B. bei der Verwendung von Alkali-Alkoholaten bei der Neutralisation dann entsprechende Ester gebildet, so dass die freien Alkohole nicht aus dem System entweichen können.
-
Bevorzugte organische Anhydride sind cyclische Anhydride wie zum Beispiel Bernsteinsäureanhydrid, Maleinsäureanhydrid, Alkylbernsteinsäureanhydride, wie Dodecylbersteinsäureanhydrid oder Polyisobutylenbernsteinsäureanhydrid, ebenso geeignet sind Addukte von Maleinsäureanhydrid an entsprechende Polyolefine wie beispielsweise Polybutadiene, Copolymere aus Maleinsäureanhydrid und Olefinen, Stryrol-Maleinsäureanhydrid-Copolymere, Vinylether-Maleinsäureanhydrid-Copolymere, sowie generell Copolymere die Maleinsäureanhydrid als Monomer enthalten, Phthalsäureanhydrid, Benzophenontetracarboxyldianhydrid, Pyromellitsäuredianhydrid, Itaconsäure-Anhydrid oder ähnliche Strukturen. Beispiele für kommerziell erhältliche Anhydride dieser Art sind z. B. die Poylvest®-Typen von Evonik Degussa GmbH oder Ricon® MA-Typen von Sartomer.
-
Sämtliche Reaktionsschritte können in Substanz oder auch in geeigneten Lösungsmitteln durchgeführt werden. Bei Verwendung von Lösungsmitteln kann der Gehalt an „Aktivsubstanz“ im Bereich von 10 bis 99 Massen-% bevorzugt 20 bis 98 Massen-%, besonders bevorzugt 30 bis 97 Massen-% bezogen auf die Gesamtzusammensetzung liegen.
-
Carbonsäuren:
-
Als Carbonsäuren können zur Herstellung der Tenside der Formel (I) mit x = 1 z. B. Monocarbonsäuren, Dicarbonsäuren, Tricarbonsäuren, Tetracarbonsäuren auf Basis von aliphatischen oder aromatischen Kohlenwasserstoffen oder deren Derivate eingesetzt werden.
-
Beispiele für Alkylreste der Monocarbonsäuren sind z.B.: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl, und dergleichen, bevorzugt sind hier 2-Ethylhexansäure, Nonansäure, Isononansäure.
-
Beispiele für Alkenylgruppen sind z.B.: Ethenyl, Propenyl, Butenyl, Pentenyl, Hexenyl, Heptenyl, Octenyl, Nonenyl, Decenyl, und dergleichen.
-
Beispiele für aromatische Säuren sind z. B.: Aryl und Alkylaryl (Alkylaryl ist festgelegt als eine Aryl-substituierte Alkyl- or Arylalkygruppe), wie beispielsweise: Phenyl, Alkylsubstituiertes Phenyl, Naphthyl, Alkyl-substitutiertes Naphthyl Tolyl, Benzyl, Dimethylphenyl, Trimethylphenyl, Phenylethyl, Phenylpropyl, Phenylbutyl, Propyl-2-phenylethyl, Salicyl und dergleichen.
-
Aromatische Dicarbonsäuren können z. B. sein: Isophthalsäure, Terephthalsäure oder Phthalsäure. Als aliphatische Dicarbonsäuren können beispielsweise verwendet werden: Bernsteinsäure, Malonsäure, Adipinsäure, Dodecandicarbonsäure, Maleinsäure, Fumarsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Weinsäure, Äpfelsäure, Malonsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Zitronensäure.
-
Als höher funktionelle Säuren können beispielsweise eingesetzt werden: Trimesinsäure, Pyromellitsäure, Benzophenontetracarbonsäure
-
Bevorzugte Säuren sind geradkettige gesättigte oder ungesättigte Fettsäuren mit bis zu 40 C-Atomen wie z. B. Buttersäure (Butansäure), Capronsäure (Hexansäure), Caprylsäure (Octansäure), Caprinsäure (Decansäure), Laurinsäure (Dodecansäure), Myristinsäure (Tetradecansäure), Palmitinsäure (Hexadecansäure), Stearinsäure (Octadecansäure), Arachinsäure (Eicosansäure), Behensäure (Docosansäure), Lignocerinsäure (Tetracosansäure), Palmitölsäure ((Z)-9-Hexadecensäure), Ölsäure ((Z)-9-Hexadecensäure), Elaidinsäure ((E)-9-Octadecensäure), cis-Vaccensäure ((Z)-11-Octadecensäure), Linolsäure ((9Z,12Z)-9,12-Octadecadiensäure), alpa-Linolensäure ((9Z,12Z,15Z)-9,12,15-Octadecatriensäure), gamma-Linolensäure ((6Z,9Z,12Z)-6,9,12-Octadecatriensäure), Di-homo-gamma-Linolensäure ((8Z,11Z,14Z)-8,11,14-Eicosatriensäure), Arachidonsäure ((5Z,8Z,11Z,14Z)-5,8,11,14-Eicosatetraensäure), Erucasäure ((Z)-13-Docosensäure), Nervonsäure ((Z)-15-Tetracosensäure), Rizinolsäure, Hydroxystearinsäure und Undecenylsäure, sowie deren Mischungen, wie z.B. Rapsölsäure, Soyafettsäure, Sonnenblumenfettsäure, Erdnussfettsäure und Tallölfettsäure. Weiterhin können Dimer- und Oligomerfettsäuren, wie sie bei der Oligomerisierung ungesättigter Fettsäuren entstehen, verwendet werden.
-
Quellen für geeignete Fettsäuren oder Fettsäureester besonders Glyceride können pflanzliche oder tierische Fett, Öle oder Wachse sein. Beispielsweise können verwendet werden: Schweineschmalz, Rindertalg, Gänsefett, Entenfett, Hühnerfett, Pferdefett, Walöl, Fischöl, Palmöl, Olivenöl, Avokadoöl, Samenkernöle, Kokosöl, Palmkernöl, Kakaobutter, Baumwollsamenöl, Kürbiskernöl, Maiskeimöl, Sonnenblumenöl, Weizenkeimöl, Traubenkernöl, Sesamöl, Leinsamenöl, Sojabohnenöl, Erdnussöl, Lupinöl, Rapsöl, Senföl, Rizinusöl, Jatropaöl, Walnussöl, Jojobaöl, Lecithin z.B. auf Basis von Soja, Raps, oder Sonneblumen, Knochenöl, Klauenöl, Lanolin, Emuöl, Hirschtalg, Murmeltieröl, Nerzöl, Borretschöl, Distelöl, Hanföl, Kürbisöl, Nachtkerzenöl, Tallöl, sowie Carnaubawachs, Bienenwachs, Candelillawachs, Ouricuriwachs, Zuckerrohrwachs, Retamowachs, Carandaywachs, Raffiawachs, Espartowachs, Alfalfawachs, Bambuswachs, Hempwachs, Douglastannenwachs, Korkwachs, Sisalwachs, Flachswachs, Baumwollwachs, Dammarwachs, Teewachs, Kaffeewachs, Reiswachs, Oleanderwachs, Bienenwachs oder Wollwachs.
-
Amine:
-
Zur Herstellung der Verbindungen der Formel (I) mit x = 1 geeignete, mindestens eine OH-Funktion aufweisende Hydroxylamine sind zum Beispiel: Diethanolamin, Monoethanolamin, Diisopropanolamin, Isopropanolamin, Digylkolamin (2-(2-Aminoethoxy)ethanol), 3-Amino-1-propanol und Polyetheramine wie Polyetheramin D 2000 (BASF), Polyetheramin D 230 (BASF), Polyetheramin T 403 (BASF), Polyetheramin T 5000 (BASF) oder auch entsprechende Jeffamin-Typen von Huntsman.
-
Erfindungsgemäße Verbindungen der Formel (I) mit x = 1 können auch kommerziell erhältliche Amide mit OH- oder NH-Funktionen sein, wie beispielsweise von Evonik Goldschmidt: Rewomid® DC 212 S, Rewomid® DO 280 SE, Rewocid® DU 185 SE, Rewolub® KSM, REWOMID® C 212, REWOMID® IPP 240, REWOMID® SPA, Rewopon® IM AO, Rewopon® IM AN oder Rewopon® IM R 40, sowie DREWPLAST® 154, NINOL® 1301, NINOL® 40-CO, NINOL® 1281, NINOL® COMF, NINOL® M-10 und ethoxylierte Diethanolamide wie NINOL® C-4 l, NINOL® C-5, NINOL® 1301 von Stepan oder DACAMID® MAL und DACAMID® DC von Sasol. Ein bevorzugtes Amid ist insbesondere Cocoamid DEA.
-
In einer bevorzugten Ausführungsform der Erfindung wird die Amidierung mit einem Unterschuss an Amin durchgeführt, so dass im Endprodukt möglichst wenig oder gar kein freies Amin mehr vorliegt. Da Amine generell durch ihre reizende oder ätzende Wirkung, keine vorteilhaften toxikologischen Eigenschaften haben, ist eine Minimierung der Amin-Anteile erwünscht und vorteilhaft. Bevorzugt sind die Amin-Anteile in der erfindungsgemäß verwendeten Abmischung, insbesondere die Anteile an primären und sekundären Amingruppen tragenden Verbindungen kleiner als 5 Gew.-%, besonders bevorzugt kleiner 3 Gew.-%, insbesondere bevorzugt kleiner als 1 Gew.-% bezogen auf die Summe aus Aminen und Amiden.
-
Besonders bevorzugt sind als Tenside TD in der erfindungsgemäßen Zusammensetzung solche der Formel (I), bei denen x = 0 und Y = NR1R2 oder Y = O-R1 und m = 0 ist, mit R1 und R2 wie oben beschrieben, ganz besonderes bevorzugt Cocoamid DEA, Isotridecanol oder Isononanol vorhanden.
-
Die erfindungsgemäße Zusammensetzung enthält ein oder mehrere Polyole. Die Polyolkomponente ist vorzugsweise verschieden von den in der Zusammensetzung vorhandenen Tensiden TD. Geeignete Polyole im Sinne dieser Erfindung sind alle organischen Substanzen mit mehreren gegenüber Isocyanaten reaktiven Gruppen sowie deren Zubereitungen. Bevorzugte Polyole sind alle zur Herstellung von Polyurethan-Schäumen üblicherweise verwendeten Polyetherpolyole und Polyesterpolyole. Polyetherpolyole werden durch Umsetzung von mehrwertigen Alkoholen oder Aminen mit Alkylenoxiden gewonnen. Polyesterpolyole basieren auf Estern mehrwertiger Carbonsäuren (meist Phthalsäure oder Terephthalsäure) mit mehrwertigen Alkoholen (meist Glycolen). Entsprechend den geforderten Eigenschaften der Schäume werden entsprechende Polyole verwendet, wie beispielsweise beschrieben in:
US 2007/0072951 A1 ,
WO 2007/111828 A2 ,
US 2007/0238800 ,
US 6359022 B1 oder
WO 96 12759 A2 . Ebenso werden bevorzugt verwendbare Pflanzenöl-basierende Polyole in verschiedenen Patentschriften beschrieben, wie beispielsweise in der
WO 2006/094227 ,
WO 2004/096882 ,
US 2002/0103091 ,
WO 2006/116456 und
EP 1 678 232.
-
Die erfindungsgemäße Zusammensetzung enthält vorzugsweise mindestens ein physikalisches Treibmittel, d.h. eine leichtflüchtige (Siedetemperatur kleiner 100 °C, vorzugsweise kleiner 70 °C) Flüssigkeit oder ein Gas, auf Basis eines ungesättigten Halogenkohlenwasserstoffs, vorzugsweise ungesättigten Fluorkohlenwasserstoffes und/oder Fluorchlorkohlenwasserstoffes. Bevorzugte ungesättigte Halogenkohlenwasserstoffe sind Trans-1,3,3,3-tetrafluoro-1-propen (HFO-1234zeE), 2,3,3,3-Tetrafluoro-1-propen (HFO-1234yf), Cis-1,1,1,4,4,4-Hexafluoro-2-buten (HFO-1336mzzZ), Trans-1,1,1,4,4,4-Hexafluoro-2-buten (HFO-1336mzzE) und Trans-1-Chloro-3,3,3-trifluoro-1-propen (HFO-1233zd-E). Das HFO-Treibmittel kann optional mit weiteren physikalischen Co-Treibmitteln kombiniert werden, wobei diese vorzugsweise keine Kohlenwasserstoffe sind. Bevorzugte Co-Treibmittel sind beispielsweise gesättigte oder ungesättigte Fluorkohlenwasserstoffe, besonders bevorzugt 1,1,1,2-Tetrafluoroethan (HFC-134a), 1,1,1,3,3-Pentafluoropropan (HFC-245fa), 1,1,1,3,3-Pentafluorobutan (HFC-365mfc), 1,1,1,2,3,3,3-Heptafluoropropan (HFC-227ea) 1,1-Difluoroethan (HFC-152a), gesättigte Fluorchlorkohlenwasserstoffe, besonders bevorzugt 1,1-Dichloro-1-fluoroethan (HCFC-141b), Sauerstoff-haltige Verbindungen, besonders bevorzugt Methylformiat oder Dimethoxymethan, oder Chlorkohlenwasserstoffe, besonders bevorzugt 1,2-Dichlorethan, oder Gemische dieser Treibmittel.
-
Besonders bevorzugte erfindungsgemäße Zusammensetzungen weisen als physikalische Treibmittel keine Kohlenwasserstoffe, wie z. B. n-Pentan, Isopentan oder Cyclopentan auf.
-
Die bevorzugten Einsatzmengen an physikalischem Treibmittel richten sich ganz nach der gewünschten Dichte des herzustellenden Schaumstoffes und liegen typischerweise im Bereich von 5 bis 40 Massenteilen bezogen auf 100 Massenteile Polyol.
-
Neben physikalischen Treibmitteln können auch chemische Treibmittel enthalten sein, die mit Isocyanaten unter Gasentwicklung reagieren, wie beispielsweise Wasser oder Ameisensäure.
-
Als Schaumstabilisator enthält die erfindungsgemäße Zusammensetzung mindestens einen Silizium-haltigen Schaumstabilisator, der von den Tensiden TD verschieden ist. Bevorzugte Silizium-haltige Schaumstabilisatoren sind organische Polyethersiloxane, wie z. B. Polyether-Polydimethylsiloxan-Copolymere. Typische Einsatzmengen an Silizium-haltigen Schaumstabilisatoren liegen bei 0,5 bis 5 Massenteilen pro 100 Massenteile Polyol, bevorzugt bei 1 bis 3 Massenteilen pro 100 Massenteile Polyol. Geeignete Silizium-haltige Schaumstabilisatorn werden z. B. in
EP 1873209 ,
EP 1544235 ,
DE 10 2004 001 408 ,
EP 0839852 ,
WO 2005/118668 ,
US 20070072951 ,
DE 2533074 ,
EP 1537159 EP 533202 ,
US 3933695 ,
EP 0780414 ,
DE 4239054 ,
DE 4229402 und
EP 867464 beschrieben und z. B. unter dem Markennamen Tegostab
® von der Evonik Industries vertrieben. Die Herstellung der Siloxane kann wie im Stand der Technik beschrieben erfolgen. Besonders geeignete Beispiele zur Herstellung sind z. B. in
US 4,147,847 ,
EP 0493836 und
US 4,855,379 beschrieben.
-
Darüber hinaus können die erfindungsgemäßen Zusammensetzungen weitere Komponenten, wie beispielsweise weitere Schaumstabilisatoren, Katalysatoren, Vernetzer, Flammschutzmittel, Füllstoffe, Farbstoffe, Antioxidantien und Verdicker / Rheologie-Additive enthalten. Diese weiteren Komponenten sind vorzugsweise keine Tenside TD bzw. von diesen verschieden.
-
Als Katalysator, der die Ausbildung einer Urethan- oder Iscyanurat-Bindung katalysiert, weist die erfindungsgemäße Zusammensetzung vorzugsweise einen oder mehrere Katalysatoren für die Reaktionen Isocyanat-Polyol und/oder Isocyanat-Wasser und/oder Isocyanat-Trimerisierung geeigneten Katalysator auf. Geeignete Katalysatoren im Sinne dieser Erfindung sind vorzugsweise Katalysatoren, die die Gelreaktion (Isocyanat-Polyol), die Treibreaktion (Isocyanat-Wasser) und/oder die Di- bzw. Trimerisierung des Isocyanats katalysieren. Typische Beispiele für geeignete Katalysatoren sind sind die Amine Triethylamin, Dimethylcyclohexylamin, Tetramethylethylendiamin, Tetramethylhexandiamin, Pentamethyldiethylentriamin, Pentamethyldipropylentriamin, Triethylendiamin, Dimethylpiperazin, 1,2-Dimethylimidazol, N-Ethylmorpholin, Tris(dimethylaminopropyl)hexahydro-1,3,5-triazin, Dimethylaminoethanol, Dimethylaminoethoxyethanol und Bis(dimethylaminoethyl)ether, Zinnverbindungen wie Dibutylzinndilaurat und Kaliumsalze wie Kaliumacetat und Kalium-2-ethylhexanoat. Geeignete Katalysatoren sind beispielsweise in
EP 1985642 ,
EP 1985644 ,
EP 1977825 ,
US 2008/0234402 ,
EP 0656382 B1 ,
US 2007/0282026 A1 und den darin zitierten Patentschriften genannt.
-
Bevorzugte in der erfindungsgemäße Zusammensetzung vorhandene Mengen an Katalysatoren richten sich nach dem Typ des Katalysators und liegen üblicherweise im Bereich von 0,05 bis 5 pphp (= Massenteile bezogen auf 100 Massenteile Polyol) bzw. 0,1 bis 10 pphp für Kaliumsalze.
-
Als Flammschutzmittel kann die erfindungsgemäße Zusammensetzung alle bekannten und zur Herstellung von Polyurethan-Schäumen geeigneten Flammschutzmittel aufweisen. Geeignete Flammschutzmittel im Sinne dieser Erfindung sind bevorzugt flüssige organische Phosphor-Verbindungen, wie halogenfreie organische Phosphate, z.B. Triethylphosphat (TEP), halogenierte Phosphate, z.B. Tris(1-chlor-2-propyl)phosphat (TCPP) und Tris(2-chlorethyl)phosphat (TCEP) und organische Phosphonate, z.B. Dimethylmethanphosphonat (DMMP), Dimethylpropanphosphonat (DMPP), oder Feststoffe wie Ammoniumpolyphosphat (APP) und roter Phosphor. Des Weiteren sind als Flammschutzmittel halogenierte Verbindungen, beispielsweise halogenierte Polyole, sowie Feststoffe, wie Blähgraphit und Melamin, geeignet.
-
Als weitere Additive können in der Zusammensetzung optional auch nach dem Stand der Technik bekannte weitere Komponenten enthalten sein, wie z. B. Polyether, Nonylphenolethoxylate oder nichtionische Tenside, die alle keine Tenside gemäß der Definition für die Tenside TD sind.
-
Die erfindungsgemäßen Zusammensetzungen können z. B zur Herstellung von Polyurethanschäumen, insbesondere Polyurethanhartschäumen verwendet werden. Insbesondere können die erfindungsgemäßen Zusammensetzungen in einem erfindungsgemäßen Verfahren zur Herstellung von Polyurethan- oder Polyisocyanuratschaumstoffen (Polyurethanschäume), insbesondere zur Herstellung von Polyurethanhartschäumen verwendet werden, die sich dadurch auszeichnen, dass eine erfindungsgemäße Zusammensetzung umgesetzt wird. Dazu wird eine erfindungsgemäße Zusammensetzung, die eine Isocyanatkomponente enthält, oder eine der erfindungsgemäßen Zusammensetzung, der eine Isocyanatkomponente zugegeben wurde, umgesetzt, insbesondere verschäumt.
-
Als Isocyanatkomponente sind alle zur Herstellung von Polyurethan-Schäumen, insbesondere Polyurethan- oder Polyisocyanurat-Hartschaumstoffen, geeigneten Isocyanatverbindungen verwendbar. Vorzugsweise weist die Isocyanat-Komponente ein oder mehrere organische Isocyanate mit zwei oder mehr Isocyanat-Funktionen auf. Geeignete Isocyanate im Sinne dieser Erfindung sind z. B. alle mehrfunktionalen organischen Isocyanate, wie beispielsweise 4,4´-Diphenylmethandiisocyanat (MDI), Toluoldiisocyanat (TDI), Hexamethylendiisocyanat (HMDI) und Isophorondiisocyanat (IPDI). Besonders geeignet ist das als „polymeres MDI“ („crude MDI“) bekannte Gemisch aus MDI und höher kondensierten Analogen mit einer mittleren Funktionalität von 2 bis 4. Beispiele für geeignete Isocyanate sind in
EP 1 712 578 A1 ,
EP 1 161 474 ,
WO 058383 A1 ,
US 2007/0072951 A1 ,
EP 1 678 232 A2 und der
WO 2005/085310 genannt.
-
Das Verhältnis von Isocyanat zu Polyol, ausgedrückt als Index, liegt vorzugsweise im Bereich von 40 bis 500, bevorzugt 100 bis 350. Der Index beschreibt dabei das Verhältnis von tatsächlich eingesetztem Isocyanat zu berechnetem Isocyanat (für eine stöchiometrische Umsetzung mit Polyol). Ein Index von 100 steht für ein molares Verhältnis der reaktiven Gruppen von 1 zu 1.
-
Das erfindungsgemäße Verfahren zur Herstellung von Polyurethanschäumen, insbesondere Polyurethanhartschäumen, kann nach den bekannten Methoden durchgeführt werden, beispielsweise im Handmischverfahren oder bevorzugt mit Hilfe von Verschäumungsmaschinen. Wird das Verfahren mittels Verschäumungsmaschinen durchgeführt, können Hochdruck- oder Niederdruckmaschinen verwendet werden. Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden.
-
Eine zusammenfassende Darstellung des Stands der Technik, der verwendbaren Rohstoffe und anwendbaren Verfahren findet sich in
"Ullmann's Encyclopedia of Industrial Chemistry" Vol. A21, VCH, Weinheim, 4. Auflage 1992, S. 665 bis 715.
-
Durch die Verwendung der erfindungsgemäßen Zusammensetzung bei der Herstellung von Polyurethanhartschäumen sind die erfindungsgemäßen Polyurethanschäume zugänglich.
-
Eine bevorzugte Polyurethan- bzw. Polyisocyanurat-Hartschaumformulierung im 3Sinne dieser Erfindung würde ein Raumgewicht von 20 bis 150 kg/m ergeben und hat vorzugsweise die in Tabelle 2 genannte Zusammensetzung. Tabelle 2: Zusammensetzung einer Polyurethan- bzw. Polyisocyanurat-Hartschaumformulierung
Komponente | Gewichtsteile |
Polyol | 100 |
Amin-Katalysator | 0,05 bis 5 |
Kalium-Trimerisierungskatalysator | 0 bis 10 |
Tenside TD | 0,05 bis 20 |
Wasser | 0,1 bis 20 |
HFO-Treibmittel | 1 bis 40 |
Flammschutzmittel | 0 bis 50 |
Isocyanat-Index: 80 bis 500 | |
-
Erfindungsgemäße Polyurethanschäume, insbesondere Polyurethanhartschäume, zeichnen sich außerdem auch dadurch aus, dass sie durch das erfindungsgemäße Verfahren erhältlich sind.
-
Bevorzugte erfindungsgemäße Polyurethanschäume, insbesondere Polyurethanhartschäume, die durch Verwendung der erfindungsgemäßen Zusammensetzung hergestellt wurden, weisen in frischem (d.h. für 24 h bei Raumtemperatur ausgehärtet) Zustand bei 23°C gemessen eine Wärmeleitfähigkeit kleiner 21 mW/m·K, bevorzugt kleiner 20 mW/m·K auf (Bestimmt mittels eines 2-Platten-Wärmeleitfähigkeits-Meßgerätes „Lambda Control“ der Firma Hesto.
-
Die erfindungsgemäßen Polyurethanschäume (Polyurethan- oder Polyisocyanuratschaumstoffe), insbesondere Polyurethanhartschäume, können als oder zur Herstellung von Isoliermaterialien, vorzugsweise Dämmplatten, Kühlschränken, Isolierschäumen, oder Sprühschäumen verwendet werden.
-
Erfindungsgemäße Kühlapparaturen zeichnen sich dadurch aus, dass sie als Isoliermaterial einen erfindungsgemäßen Polyurethanschaum (Polyurethan- oder Polyisocyanuratschaumstoff), insbesondere Polyurethanhartschaum, aufweisen.
-
In den nachfolgend aufgeführten Beispielen wird die vorliegende Erfindung beispielhaft beschrieben, ohne dass die Erfindung, deren Anwendungsbreite sich aus der gesamten Beschreibung und den Ansprüchen ergibt, auf die in den Beispielen genannten Ausführungsformen beschränkt sein soll.
-
Beispiele:
-
Vergleichsbeispiel 1:
-
Zur Bereitstellung einer verschäumbaren A-Komponente wurde 72,0 Gewichtsteile (GT) eines Polyols A (enthaltend ein aliphatisches Polyetherpolyol und ein MDA-gestartetes Polyetherpolyol, 2,3 Gewichtsteile Wasser, sowie eine Mischung aus den Amin-Katalysatoren DMCHA und PMDETA) mit 24,5 Teilen des HFO-Treibmittels Trans-1-Chloro-3,3,3-trifluoro-1-propen (HFO-1233zd-E) erhältlich unter dem Handelsnamen Solsitce LBA (Honeywell) vermischt. Zusätzlich wurden dieser Mischung noch 4 Teile verschiedener Polyethersiloxan-basierter Schaumstabilisatoren, erhältlich als TEGOSTAB
® BXXXX -Typen bei Evonik Industries AG beigemengt. Die genaue Zusammensetzung dieser Mischung ist in Tabelle 3 zusammengestellt. Tabelle 3: Zusammensetzung verschäumbarer A-Komponenten auf Basis des Polyols A sowie des HFO-Treibmittels 1233zd
Probe | Polyol A | Solsitce LBA | Stabilisator |
A1 | 72,0 GT | 24,5 GT | B8465–4,0 GT |
A2 | 72,0 GT | 24,5 GT | B8481–4,0 GT |
A3 | 72,0 GT | 24,5 GT | B8491–4,0 GT |
-
Nach Homogenisierung durch Rühren von Hand war bei allen Proben eine deutliche Trübung festzustellen. Darüber hinaus konnte nach einigen Tagen Lagerzeit eine makroskopische Phasenseparation der Proben beobachtet werden.
-
Erfindungsgemäßes Beispiel 1:
-
Zur Kompatibilisierung der in Vergleichsbeispiel 1 beschriebenen A-Komponenten wurde den Proben zusätzlich Isotridecanol (BASF SE) bzw. Cocoamid DEA (Diethanolamid) der Rewomid
® DC212 S der Evonik Industries AG als Tensid beigemischt. Die genaue Zusammensetzung der hierbei resultierenden Mischung ist in Tabelle 4 zusammengestellt. Nach Homogenisierung wurden in allen Fällen klare, optisch isotrope Proben erhalten, welche auch nach längerer Lagerzeit keine Phasenseparation zeigten. Tabelle 4: Zusammensetzung von Tensid-haltigen verschäumbaren A-Komponenten auf Basis des Polyols A sowie des HFO-Treibmittels 1233zd-E
Probe | Polyol A | Solsitce LBA | Stabilisator | Tensid TD |
A4 | 72,0 GT | 24,5 GT | B8465–4,0 GT | Isotridecanol–3,0 GT |
A5 | 72,0 GT | 24,5 GT | B8465–4,0 GT | Cocoamid DEA–7,0 GT |
A6 | 72,0 GT | 24,5 GT | B8481–4,0 GT | Isotridecanol–6,0 GT |
A7 | 72,0 GT | 24,5 GT | B8481 4,0 GT | Cocoamid DEA–10,0 GT |
A8 | 72,0 GT | 24,5 GT | B8491–4,0 GT | Isotridecanol–1,0 GT |
A9 | 72,0 GT | 24,5 GT | B8491–4,0 GT | Cocoamid DEA–1,0 GT |
-
Vergleichsbeispiel 2:
-
Zur Bereitstellung einer verschäumbaren A-Komponente wurde 74,0 Gewichtsteile (GT) eines Polyols B (enthaltend ein aliphatisches Polyetherpolyol und ein Phthalsäureanhydrid-basiertes Polyesterpolyol, 2,4 Gewichtsteile Wasser, sowie eine Mischung aus den Amin-Katalysatoren DMCHA und PMDETA) mit 24,0 Teilen des HFO-Treibmittels Solsitce LBA (Honeywell) vermischt. Zusätzlich wurden dieser Mischung noch 3 Teile eines Polyethersiloxan basierter Schaumstabilisator beigemengt. Die genaue Zusammensetzung dieser Mischung ist in Tabelle 5 zusammengestellt. Tabelle 5: Zusammensetzung verschäumbarer A-Komponenten auf Basis des Polyols B sowie des HFO-Treibmittels 1233zd
Probe | Polyol A | Solsitce LBA | Stabilisator |
A10 | 74,0 GT | 24,0 GT | B8465–3,0 GT |
A11 | 74,0 GT | 24,0 GT | B8481–3,0 GT |
A12 | 74,0 GT | 24,0 GT | B8491–3,0 GT |
-
Nach Homogenisierung war bei allen Proben eine deutliche Trübung festzustellen. Darüber hinaus konnte nach einigen Tagen Lagerzeit eine makroskopische Phasenseparation der Proben beobachtet werden.
-
Erfindungsgemäßes Beispiel 2:
-
Zur Kompatibilisierung der in Vergleichsbeispiel 2 beschriebenen A-Komponenten wurde den Proben zusätzlich Isotridecanol bzw. Cocoamid DEA (Diethanolamid) als Tensid TD beigemischt. Die genaue Zusammensetzung der hierbei resultierenden Mischung ist in Tabelle 6 zusammengestellt. Tabelle 6: Zusammensetzung von Tensid-haltigen verschäumbaren A-Komponenten auf Basis des Polyols A sowie des HFO-Treibmittels 1233zd
Probe | Polyol A | Solsitce LBA | Stabilisator | Tensid TD |
A4 | 74,0 GT | 24,0 GT | B8465–4,0 GT | Isotridecanol–0,5 GT |
A5 | 74,0 GT | 24,0 GT | B8465–4,0 GT | Cocoamid DEA–0,5 GT |
A6 | 74,0 GT | 24,0 GT | B8481–4,0 GT | Isotridecanol–4,0 GT |
A7 | 74,0 GT | 24,0 GT | B8481–4,0 GT | Cocoamid DEA–3,0 GT |
A8 | 74,0 GT | 24,0 GT | B8491–4,0 GT | Isotridecanol–0,5 GT |
A9 | 74,0 GT | 24,0 GT | B8491–4,0 GT | Cocoamid DEA–0,5 GT |
-
Nach Homogenisierung wurden in allen Fällen klare, optisch isotrope Proben erhalten, welche auch nach längerer Lagerzeit keine Phasenseparation zeigten.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- EP 2154223 A1 [0004]
- EP 2197935 B1 [0004]
- US 2009/0305875 A1 [0004]
- WO 2007/094780 [0010]
- US 6472446 [0011]
- WO 98/42764 [0012]
- WO 96/12759 [0013]
- EP 0767199 A1 [0014]
- EP 1520873 A2 [0015]
- WO 2013/026813 [0016]
- DE 1802500 [0038]
- DE 1802503 [0038]
- DE 1745443 [0038]
- DE 1745459 [0038]
- US 3578612 [0038]
- US 2007/0072951 A1 [0055, 0067]
- WO 2007/111828 A2 [0055]
- US 2007/0238800 [0055]
- US 6359022 B1 [0055]
- WO 9612759 A2 [0055]
- WO 2006/094227 [0055]
- WO 2004/096882 [0055]
- US 2002/0103091 [0055]
- WO 2006/116456 [0055]
- EP 1678232 [0055]
- EP 1873209 [0060]
- EP 1544235 [0060]
- DE 102004001408 [0060]
- EP 0839852 [0060]
- WO 2005/118668 [0060]
- US 20070072951 [0060]
- DE 2533074 [0060]
- EP 1537159 [0060]
- EP 533202 [0060]
- US 3933695 [0060]
- EP 0780414 [0060]
- DE 4239054 [0060]
- DE 4229402 [0060]
- EP 867464 [0060]
- US 4147847 [0060]
- EP 0493836 [0060]
- US 4855379 [0060]
- EP 1985642 [0062]
- EP 1985644 [0062]
- EP 1977825 [0062]
- US 2008/0234402 [0062]
- EP 0656382 B1 [0062]
- US 2007/0282026 A1 [0062]
- EP 1712578 A1 [0067]
- EP 1161474 [0067]
- WO 058383 A1 [0067]
- EP 1678232 A2 [0067]
- WO 2005/085310 [0067]
-
Zitierte Nicht-Patentliteratur
-
- W. C. Griffin, J. Cos. Cosmet. Chem., 1950, 311:5, 249 [0019]
- J. C. McGowan, Tenside Surfactants Detergents, 1990, 27, 229 [0019]
- "Ullmann's Encyclopedia of Industrial Chemistry" Vol. A21, VCH, Weinheim, 4. Auflage 1992, S. 665 bis 715 [0070]