DE102011121971A1 - Process for modifying the pore size of zeolites - Google Patents
Process for modifying the pore size of zeolites Download PDFInfo
- Publication number
- DE102011121971A1 DE102011121971A1 DE102011121971A DE102011121971A DE102011121971A1 DE 102011121971 A1 DE102011121971 A1 DE 102011121971A1 DE 102011121971 A DE102011121971 A DE 102011121971A DE 102011121971 A DE102011121971 A DE 102011121971A DE 102011121971 A1 DE102011121971 A1 DE 102011121971A1
- Authority
- DE
- Germany
- Prior art keywords
- zeolite
- metal
- zeolites
- mfi
- exchanged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000008569 process Effects 0.000 title claims abstract description 18
- 239000011148 porous material Substances 0.000 title claims description 23
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 69
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 18
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 238000001179 sorption measurement Methods 0.000 claims abstract description 11
- 238000001354 calcination Methods 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000003868 ammonium compounds Chemical class 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- -1 RTE Chemical compound 0.000 claims description 3
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 claims description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 2
- 229910002796 Si–Al Inorganic materials 0.000 claims description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 2
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 150000001768 cations Chemical class 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000010949 copper Substances 0.000 description 9
- 238000005342 ion exchange Methods 0.000 description 9
- 238000003795 desorption Methods 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- 229910017090 AlO 2 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102220500397 Neutral and basic amino acid transport protein rBAT_M41T_mutation Human genes 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28095—Shape or type of pores, voids, channels, ducts
- B01J20/28097—Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/12—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
- B01J2229/126—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to reduce the pore-mouth size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/32—Reaction with silicon compounds, e.g. TEOS, siliconfluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/38—Base treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
Abstract
Die vorliegenden Erfindung betrifft ein Verfahren zur Modifizierung des Adsorptionsvermögens von Zeolithen, umfassend die Schritte des a) Bereitstellens eines metallausgetauschten, siliziumreichen Zeolithen, b) Behandelns des Zeolithen mit einer wässrigen Lösung eines Alkalisilikats, c) Filtrierens, Trocknens und Kalzinierens des behandelten Zeolithen d) Umsetzens des kalzinierten Zeolithen mit einer Ammoniumverbindung und anschließendem Kalzinieren. Weiter umfasst die vorliegende Erfindung einen modifizierten Zeolithen erhältlich mittels des erfindungsgemäßen Verfahrens und dessen Verwendung als Katalysator zur selektiven Reduktion von Kohlenwasserstoffen.The present invention relates to a process for modifying the adsorption capacity of zeolites, comprising the steps of a) providing a metal-exchanged, silicon-rich zeolite, b) treating the zeolite with an aqueous solution of an alkali metal silicate, c) filtering, drying and calcining the treated zeolite d) Reacting the calcined zeolite with an ammonium compound and then calcining. Furthermore, the present invention comprises a modified zeolite obtainable by means of the process according to the invention and its use as a catalyst for the selective reduction of hydrocarbons.
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Modifikation der Porengröße von Zeolithen sowie mittels des Verfahrens erhältlich Zeolithe, die unter anderem als Katalysator für die Selektive Katalytische Reduktion (SCR) von Kohlenwasserstoffen geeignet sind.The present invention relates to a process for the modification of the pore size of zeolites as well as to zeolites obtainable by the process which are suitable inter alia as a catalyst for the selective catalytic reduction (SCR) of hydrocarbons.
Metalldotierte Zeolithe sind aus dem Stand der Technik bekannt und finden zum Beispiel Verwendung als Katalysatoren in der stationären und mobilen Abgasreinigung. Insbesondere werden sie oft in Abgaskatalysatoren zur Reinigung von Dieselabgasen in Verbrennungsmotoren eingesetzt.Metal-doped zeolites are known from the prior art and are used, for example, as catalysts in stationary and mobile exhaust gas purification. In particular, they are often used in catalytic converters for the purification of diesel exhaust gases in internal combustion engines.
Aufgrund der schädlichen Auswirkung von Stickoxidemissionen auf die Umwelt ist es ein wichtiges Anliegen, diese Emissionen weiter zu verringern. Deutlich tiefere NOx-Emissionsgrenzwerte für stationäre und KFZ-Abgase als heutzutage üblich sind in den Vereinigten Staaten in naher Zukunft vorgesehen und werden auch in der Europäischen Union diskutiert.Due to the harmful impact of nitrogen oxide emissions on the environment, it is important to further reduce these emissions. Significantly lower NO x emission limits for stationary and automotive exhaust gases than currently available are foreseen in the United States in the near future and are also under discussion in the European Union.
Um diese Grenzwerte zu erzielen, kann im Fall von mobilen Verbrennungsmotoren (Dieselmotoren) dies nicht mehr ausschließlich durch innermotorische Maßnahmen erfüllt werden, sondern nur noch durch eine Abgasnachbehandlung, beispielsweise mit geeigneten Katalysatoren.In order to achieve these limits, in the case of mobile combustion engines (diesel engines), this can no longer be met by internal engine measures alone, but only by exhaust aftertreatment, for example with suitable catalysts.
Die Entstickung von Verbrennungsabgasen wird auch als DeNO bezeichnet. In der Automobiltechnik ist die selektive katalytische Reduktion (SCR) eine der wichtigsten DeNOx-Techniken. Als Reduktionsmittel dienen üblicherweise Kohlenwasserstoffe (HC-SCR) oder Ammoniak (NH3-SCR) bzw. NH3-Vorläufer wie Harnstoff (Ad-Blue®). Dabei haben sich Metallausgetauschte Zeolithe (auch als „metalldotierte Zeolithe” bezeichnet) als sehr aktive und in einem weiten Temperaturbereich einsetzbare SCR Katalysatoren erwiesen. Sie sind zumeist ungiftig und produzieren weniger N2O und SO3 als die üblichen auf V2O5 basierenden Katalysatoren. Insbesondere stellen eisendotierte Zeolithe durch ihre hohe Aktivität und Beständigkeit gegenüber Schwefel unter hydrothermalen Bedingungen gute Alternativen zu den herkömmlich eingesetzten Vanadiumkatalysatoren dar. Übliche Verfahren, Zeolithe mit Metallen zu dotieren, umfassen beispielsweise Methoden wie flüssigen Ionenaustausch, Festphasenionenaustausch, Dampfphasenionenaustausch, mechanisch-chemische Verfahren, Imprägnierungsverfahren und die so genannten Ex-Gerüst-Verfahren.The denitrification of combustion exhaust gases is also referred to as DeNO. In automotive engineering, selective catalytic reduction (SCR) is one of the most important DeNO x techniques. As the reducing agent commonly used hydrocarbons (HC-SCR) or ammonia (NH 3 -SCR) and NH 3 precursors such as urea (Ad-Blue ®). Metal-exchanged zeolites (also called "metal-doped zeolites") have proven to be very active SCR catalysts that can be used in a wide temperature range. They are mostly non-toxic and produce less N 2 O and SO 3 than the usual V 2 O 5 based catalysts. In particular, iron-doped zeolites, by virtue of their high activity and resistance to sulfur under hydrothermal conditions, are good alternatives to the conventionally employed vanadium catalysts. Conventional methods of doping zeolites with metals include, for example, methods such as liquid ion exchange, solid phase ion exchange, vapor phase ion exchange, mechanochemical processes, impregnation processes and the so-called ex-scaffolding procedures.
Beim SCR Verfahren gilt, es zwei unterschiedlichen Aufgabenstellungen gerecht zu werden, da zum Einen Kohlenwasserstoffe aus dem Abgas-Strom abgetrennt werden sollen, und zum Anderen eine katalytische Entstickung unter Verwendung von Eisen- oder Kupfer-dotierten Zeolithen gefordert wird. Eingesetzt als Kohlenwasserstoff-Falle (sog. cold start trap) wird häufig Zeolithmaterial in der H-Form.In the case of the SCR process, it is important to cope with two different tasks, since on the one hand hydrocarbons are to be separated from the exhaust gas stream and, on the other hand, a catalytic denitration using iron- or copper-doped zeolites is required. Used as a hydrocarbon trap (so-called cold start trap) is often zeolite material in the H-form.
Zeolithe, die als Kohlenwasserstoff-Falle eingesetzt werden, weisen bestimmte charakteristische Eigenschaften auf. So soll die Kohlenwasserstoffaufnahmekapazität möglichst hoch sein und die Zeolithe sollen gleichzeitig eine hohe Kohlenwasserstoff-Desorptionstemperatur aufweisen. Eine hohe Desorptionstemperatur ist insbesondere deshalb von Vorteil, da so der Desorptionsschritt gleichzeitig der Oxidation der Kohlenwasserstoffe dient, und diese bei höheren Temperaturen vollständiger abläuft.Zeolites used as hydrocarbon trap have certain characteristic properties. Thus, the hydrocarbon uptake capacity should be as high as possible and the zeolites should simultaneously have a high hydrocarbon desorption temperature. A high desorption temperature is particularly advantageous since the desorption step thus simultaneously serves for the oxidation of the hydrocarbons and the latter proceeds more completely at higher temperatures.
Werden dagegen Zeolithe in der SCR-Katalyse eingesetzt, ist eine hohe Kohlenwasserstoffadsorptionskapazität von Nachteil. Damit die katalytische Aktivität für die SCR-Reaktion jedoch gewährleistet ist, ist die Menge des eingesetzten Metallhaltigen Zeolithen fest vorgegeben (
Die SCR-Reaktion ist temperaturabhängig. Da diese Katalysatoren bevorzugt in Verbrennungsmotoren in PKWs oder LKWs zur Entstickung des Abgasstroms eingesetzt werden, wird ein hoher Anteil an Kohlenwasserstoffen im SCR-Zeolithen adsorbiert, da die SCR Reaktion meist bei unter 300°C, in Abhängigkeit von der Fahrweise des Kraftfahrzeugführers abläuft. Mit der starken Adsorption der Kohlenwasserstoffe im Zeolithen steigt das Risiko einer schlagartigen Entzündung, wenn kurzzeitige Temperaturspitzen auftreten. Dies führt zur Zerstörung des Zeolithmaterials, zur Schädigung des Katalysators und im schlimmsten Fall zu einer Entzündung und Explosion des Fahrzeugs.The SCR reaction is temperature dependent. Since these catalysts are preferably used in internal combustion engines in cars or trucks for denitrification of the exhaust stream, a high proportion of hydrocarbons in the SCR zeolite adsorbed because the SCR reaction usually takes place at below 300 ° C, depending on the driving style of the motor vehicle driver. With the strong adsorption of hydrocarbons in the zeolite increases the risk of sudden inflammation when short-term temperature peaks occur. This leads to the destruction of the zeolite material, damage to the catalyst and in the worst case to ignition and explosion of the vehicle.
Dieses Problem kann vermieden werden, wenn engporige Zeolithe als Katalysatoren verwendet werden, beispielsweise SAPO-34 mit einer CHA Topologie. Nachteil bei den engporigen Zeolithen ist, dass eine Eisenbeladung insbesondere durch Flüssigaustauschverfahren fast nicht möglich ist. Bekannt ist z. B. die Verwendung von kupferausgetauschtem SAPO-34, was bei der SCR Reaktion jedoch bei höheren Temperaturen zu erhöhter Lachgasbildung und einer geringeren Stabilität gegenüber Wasserdampf und Wasser führt. Darüber hinaus ist es möglich, dass kupferausgetauschte Zeolithe bei der SCR Reaktion zu Dioxinbildung neigen können.This problem can be avoided when using narrow pore zeolites as catalysts, for example SAPO-34 with a CHA topology. A disadvantage of the narrow-pored zeolites is that iron loading is almost impossible, in particular by liquid exchange processes. It is known z. Example, the use of copper-exchanged SAPO-34, which leads in the SCR reaction, however, at elevated temperatures to increased nitrous oxide formation and lower stability to water vapor and water. In addition, it is possible that copper-exchanged zeolites may be prone to dioxin formation in the SCR reaction.
Die Aufgabe der vorliegenden Erfindung bestand daher in der Bereitstellung eines Verfahrens, mit dem Zeolithe erhalten werden können, die eine hohe SCR-Aktivität und gleichzeitig ein geringes Adsorptionsvermögen für Kohlenwasserstoffe, insbesondere für aromatische Kohlenwasserstoffe aufweisen.The object of the present invention was therefore to provide a process with which zeolites can be obtained which have a high SCR activity and at the same time a low adsorption capacity for hydrocarbons, in particular for aromatic hydrocarbons.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Modifizierung des Adsorptionsvermögens von Zeolithen, umfassend die Schritte des
- a) Bereitstellens eines metallausgetauschten, siliziumreichen Zeolithen,
- b) Behandelns des Zeolithen mit einer wässrigen, Lösung eines Alkalisilikats,
- c) Filtrierens, Trocknens und Kalzinierens des behandelten Zeolithen
- d) Umsetzens des kalzinierten Zeolithen mit einer Ammoniumverbindung und anschließendem erneuten Kalzinieren
- a) providing a metal-exchanged, silicon-rich zeolite,
- b) treating the zeolite with an aqueous solution of an alkali silicate,
- c) filtering, drying and calcining the treated zeolite
- d) reacting the calcined zeolite with an ammonium compound and then re-calcining
Das erfindungsgemäße Verfahren ermöglicht überraschenderweise, dass die Größe der Eingangsporen von Zeolithen verringert werden kann, d. h. dass schon keine bzw. weniger Kohlenwasserstoffe, insbesondere aromatische Kohlenwasserstoffe ins Innere des Zeolithen diffundieren bzw. eindringen können, lässt jedoch die innere Struktur des Zeolithen, insbesondere den Durchmesser seiner inneren Kanäle unverändert.Surprisingly, the process of the present invention allows the size of the input spores of zeolites to be reduced, i. H. However, that no or less hydrocarbons, especially aromatic hydrocarbons can diffuse or penetrate into the interior of the zeolite, but leaves the internal structure of the zeolite, in particular the diameter of its inner channels unchanged.
Unter dem Begriff ”Zeolith” wird im Rahmen der vorliegenden Erfindung gemäß der Definition der International Mineralogical Association (
Die Zeolithstruktur enthält Hohlräume und Kanäle, die für jeden Zeolithen charakteristisch sind. Die Zeolithe werden gemäß ihrer Topologie in verschiedene Strukturen (siehe oben) eingeteilt. Das Zeolithgerüst enthält offene Hohlräume in Form von Kanälen und Käfigen, die normalerweise von Wassermolekülen und extra Gerüstkationen, die ausgetauscht werden können, besetzt sind. Auf ein Aluminiumatom kommt eine überschüssige negative Ladung, die durch diese Kationen kompensiert wird. Das Innere des Porensystems stellt die katalytisch aktive Oberfläche dar. Je mehr Aluminium und je weniger Silizium ein Zeolith enthält, desto dichter ist die negative Ladung in seinem Gitter und desto polarer seine innere Oberfläche. Die Porengröße und Struktur wird neben den Parametern bei der Herstellung (Verwendung bzw. Art von Templaten, pH, Druck, Temperatur, Anwesenheit von Impfkristallen) durch das Si/Al-Verhältnis bestimmt, das den größten Teil des katalytischen Charakters eines Zeolithen beeinflusst. Im vorliegenden Fall ist es besonders bevorzugt, wenn das Si/Al Verhältnis eines erfindungsgemäßen Zeolithen im Bereich von 10 bis 500 liegt (entspricht einem Verhältnis (Modul) von SiO2/Al2O3 von 20–1.000), bevorzugt von 10 bis 300.The zeolite structure contains voids and channels characteristic of each zeolite. The zeolites are classified according to their topology into different structures (see above). The zeolite framework contains open cavities in the form of channels and cages that are normally occupied by water molecules and extra framework cations that can be exchanged. An aluminum atom has an excess negative charge which is compensated by these cations. The interior of the pore system represents the catalytically active surface. The more aluminum and the less silicon a zeolite contains, the denser the negative charge in its lattice and the more polar its internal surface. The pore size and structure are determined by the Si / Al ratio, which affects most of the catalytic character of a zeolite, in addition to the parameters of preparation (use or type of template, pH, pressure, temperature, presence of seed crystals). In the present case, it is particularly preferred if the Si / Al ratio of a zeolite according to the invention is in the range from 10 to 500 (corresponds to a ratio (modulus) of SiO 2 / Al 2 O 3 of 20-1,000), preferably from 10 to 300 ,
Bei Flüssigaustauschverfahren zur Herstellung von metallausgetauschten (dotierten) Zeolithen besteht eine starke Affinität zum Eintausch mehrwertiger und schwerer Metallkationen gegen leichtere Kationen und insbesondere gegen Wasserstoff und/oder NH4 +.In liquid exchange processes for the preparation of metal-exchanged (doped) zeolites, there is a strong affinity for the exchange of polyvalent and heavy metal cations for lighter cations, and in particular against hydrogen and / or NH 4 + .
Bei den hydratisierten Zeolithen erfolgt die Dehydratisierung meistens bei Temperaturen unterhalb von etwa 400°C und ist zum größten Teil reversibel.In the case of the hydrated zeolites, the dehydration is usually carried out at temperatures below about 400 ° C and is for the most part reversible.
Durch die Anwesenheit von 2- oder 3-wertigen Kationen als Tetraederzentrum im Zeolithgerüst erhält der Zeolith eine negative Ladung in Form von so genannten Anionenstellen, in deren Nachbarschaft sich die entsprechenden Kationenpositionen befinden. Die negative Ladung wird durch den Einbau von Kationen in die Poren des Zeolithmaterials kompensiert. Die Zeolithe unterscheidet man hauptsächlich nach der Geometrie der Hohlräume, die durch das starre Netzwerk der SiO4/AlO4-Tetraeder gebildet werden. Die Eingänge zu den Hohlräumen werden von 8, 10 oder 12 ”Ringen” gebildet (eng-, mittel- und weitporige Zeolithe). Bestimmte Zeolithe zeigen einen gleichförmigen Strukturaufbau (z. B. ZSM-5 mit MFI-Topologie) mit linearen oder zickzackförmig verlaufenden Kanälen, bei anderen schließen sich hinter den Porenöffnungen größere Hohlräume an, z. B. bei den Y- und A-Zeolithen, mit den Topologien FAU und LTA. Generell sind 10 und 12 „Ring”-Zeolithe erfindungsgemäß bevorzugt.The presence of 2- or 3-valent cations as a tetrahedral center in the zeolite framework, the zeolite receives a negative charge in the form of so-called anion sites, in the vicinity of which are the corresponding cation positions. The negative charge is compensated by the incorporation of cations in the pores of the zeolite material. The zeolites are mainly distinguished by the geometry of the cavities formed by the rigid network of SiO 4 / AlO 4 tetrahedra. The entrances to the cavities are formed by 8, 10 or 12 "rings" (narrow, medium and large pore zeolites). Certain zeolites show a uniform structure structure (eg ZSM-5 with MFI topology) with linear or zigzag-shaped channels, in others close larger cavities behind the pore openings on, for. B. in the Y and A zeolites, with the topologies FAU and LTA. In general, 10 and 12 "ring" zeolites are preferred according to the invention.
Grundsätzlich kann im Rahmen der vorliegenden Erfindung jeder beliebige Zeolith, insbesondere jeder 10 und 12 „Ring”-Zeolith verwendet werden. Erfindungsgemäß bevorzugt sind Zeolithe mit den Topologien AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI. Ganz besonders bevorzugt Zeolithe der topologischen Strukturen BEA, MFI, FER, MOR, MTW und TUN. Erfindungsgemäß können ebenfalls zeolithähnliche Materialien verwendet werden, wie sie beispielsweise in der
Weiter sind so genannte Silikoaluminiumphosphate (SAPOs) erfindungsgemäß verwendbar, die aus isomorph ausgetauschten Aluminiumphosphaten herstellbar sind.Furthermore, so-called silicoaluminum phosphates (SAPOs) can be used according to the invention, which can be prepared from isomorphously exchanged aluminum phosphates.
Wichtig bei allen diesen vorgenannten Materialien ist nur, dass Sie maximal eine „10-Ring-Topologie” aufweisen.Important for all of the aforementioned materials is only that you have a maximum of a "10-ring topology".
Typischerweise wird der Metallgehalt bzw. der Austauschgrad eines Zeolithen maßgeblich durch die im Zeolithen vorliegende Metallspezies bestimmt. Dabei kann der Zeolith sowohl nur mit einem einzigen Metall oder mit verschiedenen Metallen dotiert sein.Typically, the metal content or degree of exchange of a zeolite is significantly determined by the metal species present in the zeolite. In this case, the zeolite can be doped with only a single metal or with different metals.
Es gibt in Zeolithen üblicherweise drei verschiedene Zentren, die als so genannte α-, β- und γ-Positionen bezeichnet werden, die die Position der Austauschplätze (auch als ”austauschbare Positionen bzw. Stellen” bezeichnet) definieren. Alle diese drei Positionen sind für Reaktanden während der NH3-SCR-Reaktion zugänglich, insbesondere beim Einsatz von MFI, BEA, FER, MOR, MTW und TRI Zeolithen.There are usually three different centers in zeolites, referred to as α, β and γ positions, which define the position of exchange sites (also referred to as "interchangeable locations"). All of these three positions are accessible to reactants during the NH 3 -SCR reaction, particularly when using MFI, BEA, FER, MOR, MTW, and TRI zeolites.
Die so genannten α-Typ Kationen zeigen die schwächste Bindung zum Zeolithgerüst und werden bei einem flüssigen Ionenaustausch zuletzt aufgefüllt. Der Besetzungsgrad ist ab einem Austauschgrad von rund 10% stark steigend mit steigendem Metallgehalt und beträgt insgesamt rund 10 bis 50% bei einem Austauschgrad bis M/Al = 0,5. Kationen an dieser Stelle stellen sehr aktive Redox-Katalysatoren dar.The so-called α-type cations show the weakest binding to the zeolite framework and are last filled in a liquid ion exchange. The occupancy rate is strongly increasing with increasing metal content from an exchange rate of about 10% and amounts to a total of about 10 to 50% at a degree of exchange to M / Al = 0.5. Cations at this point represent very active redox catalysts.
Die β-Typ Kationen zeigen hingegen eine mittlere Bindungsstärke zum Zeolithgerüst, die beim Flüssigionenaustausch, insbesondere bei kleinen Austauschgraden, die am meisten besetzte Position darstellen und katalysieren die HC-SCR-Reaktion am effektivsten. Diese Position wird gleich nach der γ-Position aufgefüllt und ihr Besetzungsgrad ist ab einem Austauschgrad von rund 10% sinkend mit steigenden Metallgehalt und Beträgt rund 50 bis 90% für einen Austauschgrad bis M/Al = 0,5. Im Stand der Technik ist bekannt, dass ab einem Austauschgrad von M/Al > 0,56 typischerweise nur noch mehrkernige Metalloxide ein- bzw. abgelagert werden.The β-type cations, on the other hand, show an average binding strength to the zeolite framework, which in the liquid ion exchange, especially at low exchange rates, represent the most occupied position and most effectively catalyze the HC-SCR reaction. This position is filled up immediately after the γ-position and its occupancy rate decreases from an exchange rate of about 10% with increasing metal content and is about 50 to 90% for a degree of exchange to M / Al = 0.5. It is known in the prior art that, starting from a degree of exchange of M / Al> 0.56, typically only polynuclear metal oxides are deposited or deposited.
Die γ-Typ Kationen sind diejenigen Kationen mit der stärksten Bindung zum Zeolithgerüst und thermisch am stabilsten. Sie sind die beim Flüssigionenaustausch am wenigsten besetzte Position, werden aber zuerst aufgefüllt. Kationen, insbesondere Eisen und Kobalt, an diesen Positionen sind hochaktiv und sind die katalytisch aktivsten Kationen.The γ-type cations are those cations with the strongest binding to the zeolite framework and thermally most stable. They are the least occupied position in liquid ion exchange, but are filled up first. Cations, especially iron and cobalt, at these positions are highly active and are the most catalytically active cations.
Die bevorzugten Metalle für den Austausch und die Dotierung sind katalytisch aktive Metalle wie Fe, Co, Ni, Cu, Ag, Co, V, Rh, Pd, Pt, Ir, ganz besonders bevorzugt Fe, Co, Ni und Cu, in ganz besonders bevorzugten Ausführungsformen Fe oder Cu, die auch verbrückte dimere Spezies bilden können, wie sie insbesondere bei hohen Austauschgraden hauptsächlich vorliegen.The preferred metals for exchange and doping are catalytically active metals such as Fe, Co, Ni, Cu, Ag, Co, V, Rh, Pd, Pt, Ir, most preferably Fe, Co, Ni and Cu, in particular preferred embodiments Fe or Cu, which can also form bridged dimeric species, as they are mainly present at high exchange degrees.
Insgesamt beträgt die Menge an Metall berechnet als entsprechendes Metalloxid 1 bis 5 Gew.-% bezogen auf das Gewicht des metalldotierten Zeolithen. Insbesonders bevorzugt ist, dass mehr als 50% der austauschbaren Stellen (d. h. α-, β- und γ-Stellen) ausgetauscht sind. Ganz besonders bevorzugt sind mehr als 70% der austauschbaren Stellen ausgetauscht. Es sollten jedoch immer noch freie Stellen verbleiben, die bevorzugt Brønstedt-Säurezentren sind. Dies liegt daran, dass NO sowohl auf den ausgetauschten Metallzentren stark absorbiert wird und auch in Ionenaustauschpositionen oder an Brønstedt Zentren des Zeolithgerüsts. Außerdem reagiert NH3 bevorzugt mit den stark sauren Brønstedt Zentren, deren Anwesenheit somit für eine erfolgreiche NH3-SCR Reaktion sehr wichtig ist. Die gleichzeitige Anwesenheit von freien Restaustauschplätzen und/oder Brønstedt-sauren Zentren und den metallgetauschten Gitterplätzen ist also erfindungsgemäß ganz besonders bevorzugt. Daher ist ein Austauschgrad von 70–90% am meisten bevorzugt. Bei mehr als 90% Austauschgrad wurde eine Aktivitätsminderung bei der Reduktion von NO zu N2 und der SCR-NH3 Reaktion beobachtet.Overall, the amount of metal calculated as the corresponding metal oxide 1 to 5 wt .-% based on the weight of the metal-doped zeolite. It is especially preferred that more than 50% of the exchangeable sites (ie α, β and γ sites) are replaced. Most preferably, more than 70% of interchangeable sites are replaced. However, vacancies should still remain, which are preferably Brønsted acid sites. This is because NO is strongly absorbed at both the exchanged metal centers and also at ion exchange sites or at Brønstedt centers of the zeolite framework. In addition, NH 3 preferentially reacts with the strongly acidic Brønstedt centers, the presence of which is therefore very important for a successful NH 3 -SCR reaction. The simultaneous presence of free residual exchange sites and / or Brønstedt acidic centers and the metal-exchanged lattice sites is thus according to the invention very particularly preferred. Therefore, a degree of exchange of 70-90% is most preferred. At more than 90% degree of exchange, activity reduction was observed in the reduction of NO to N 2 and the SCR-NH 3 reaction.
Aufgrund der Gefahr der hydrothermalen Desaktivierung von Metall-ausgetauschten Zeolithen, der eine Dealuminierung und Abwanderung von Metall aus den Ionenaustauschzentren des Zeolithen vorausgeht, ist es bevorzugt, dass die Dotierungsmetalle mit Aluminium möglichst keine stabilen Verbindung bilden, da dadurch eine Dealuminierung begünstigt wird.Due to the risk of hydrothermal deactivation of metal-exchanged zeolites, which precedes dealumination and migration of metal from the ion exchange centers of the zeolite, it is preferred that the doping metals do not form a stable compound with aluminum, as this promotes dealumination.
Die Behandlung mit einem Alkalisilikat unter den erfindungsgemäßen Bedingungen führt überraschenderweise zu einer Verringerung der Porengröße der Eingangsporen, die wiederum durch die damit verringerte Zugänglichkeit der inneren Zeolithoberfläche für größere organische Moleküle zu einer deutlich geringeren Kohlenwasserstoffbeladung führt.The treatment with an alkali silicate under the conditions according to the invention surprisingly leads to a reduction in the pore size of the input pores, which in turn leads to a significantly lower hydrocarbon loading due to the reduced accessibility of the inner zeolite surface for larger organic molecules.
Unter dem Begriff „Alkalisilikat” werden erfindungsgemäß wässrige basische Lösungen von SiO2 verstanden, die durch die allgemeine Formel M2O × SiO2 dargestellt werden können, wobei M ein oder mehrere Alkalimetalle, also Li, Na oder K ist. Derartige Verbindungen werden oft als Wasserglas oder als Alkalisalze der Kieselsäure bezeichnet.According to the invention, the term "alkali metal silicate" is understood to mean aqueous basic solutions of SiO 2 which can be represented by the general formula M 2 O.SiO 2 , where M is one or more alkali metals, ie Li, Na or K. Such compounds are often referred to as water glass or as alkali metal salts of silica.
Es ist bevorzugt, dass die mittleren Porengrößen (bestimmt gemäß
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird ein Zeolith eingesetzt, der eine mittlere Porengröße von 0,5 bis 0,6 nm aufweist.In one embodiment of the method according to the invention, a zeolite is used which has a mean pore size of 0.5 to 0.6 nm.
In Weiterbildungen der vorliegenden Erfindung wird der Zeolith ausgewählt aus der Gruppe bestehend aus ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ASV, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BCT, BEA, BEC, BIK, BOF, BOG, BPH, BRE, BSV, CAN, CAS, CDO, CFI, CGF, CGS, CHA, CHI, -CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EON, EPI, ERI, ESV, ETR, EUO, EZT, FAR, FAU, FER, FRA, GIS, GIU, GME, GON, GOO, HEU, IFR, IHW, IMF, ISV, ITE, ITH, ITR, ITW, IWR, IWS, IWV, IWW, JBW, JRY, KFI, LAU, LEV, LIO, LIT, LOS, LOV, LTA, LTF, LTL, LTN, MAR, MAZ, MEI, MEL, MEP, MER, MFI, MFS, MON, MOR, MOZ, MRE, MSE, MSO, MTF, MTN, MTT, MTW, MVY, MWW, NAB, NAT, NES, NON, NPO, NSI, OBW, OFF, OSI, OSO, OWE, PAR, PAU, PHI, PON, PUN, RHO, RON, RRO, RSN, RTE, RTH, RUT, RWR, RWY, SAF, SAO, SAS, SAT, SAV, SBE, SBN, SBS, SBT, SFE, SFF, SFG, SFH, SFN, SFO, SFS, SGT, SIV, SOD, SOF, SOS, SSF, SSY, STF, STI, STO, STT, STW, SVR, SZR, TER, THO, TOL, TON, TSC, TUN, UEI, UFI, UOS, UOZ, USI, UTL, VET, VFI, VNI, VSV, WEI, WEN, YUG und ZON.
deren Kristallstrukturen nach IZA unter
their crystal structures according to IZA under
In bestimmten Ausführungsformen der Erfindung werden Zeolithe verwendet, die maximal eine „10-Ring-Topologie” aufweisen, wie z. B. MFI, MEL und TUN. In einer Ausführungsform der vorliegenden Erfindung wird MFI eingesetzt. Ebenso kann auch ein Zeolith mit MOR Topologie verwendet werden.In certain embodiments of the invention zeolites are used which have a maximum of a "10-ring topology", such as. MFI, MEL and DO. In one embodiment of the present invention, MFI is used. Similarly, a zeolite with MOR topology can be used.
Die Zeolithe können sowohl in ihrer H oder NH4-Form eingesetzt werden, meist ist die H-Form bevorzugt.The zeolites can be used both in their H or NH 4 form, usually the H form is preferred.
Der metallausgetauschte Zeolith kann dabei in situ direkt mittels üblicher, dem Fachmann bekannter Methoden hergestellt und weiterverwendet werden, oder aber es kann auch ein kommerziell erhältlicher metallausgetauschter Zeolith in dem erfindungsgemäßen Verfahren eingesetzt werden.The metal-exchanged zeolite can in this case be prepared and reused directly in situ by means of customary methods known to the person skilled in the art, or a commercially available metal-exchanged zeolite can also be used in the process according to the invention.
Der siliziumreiche Zeolith wird erfindungsgemäß so ausgewählt, dass er ein Si-Al2(SiO2/Al2O3)-Verhältnis (Modul) zwischen 20 bis 1000 aufweist, in Weiterbildungen der Erfindung von 20 bis 200.The silicon-rich zeolite is selected according to the invention so that it has an Si-Al 2 (SiO 2 / Al 2 O 3 ) ratio (modulus) of between 20 and 1000, in developments of the invention from 20 to 200.
Die bevorzugte Anwendung für erfindungsgemäß erhaltene Zeolithe ist die Abgaskatalyse. Die Zeolithe müssen daher hydrothermal stabil sein. Unter einem SiO2/Al2O3 Verhältnis von 20 ist die hydrothermale Stabilität zu gering. Bei zu hohem Modul ist die Ionentauschkapazität d. h. die Menge an eintauschbarem Metall zu gering und der metallausgetauschte Zeolith damit wenig aktiv in der SCR Reaktion.The preferred application for zeolites obtained according to the invention is exhaust gas catalysis. The zeolites must therefore be hydrothermally stable. Under a SiO 2 / Al 2 O 3 ratio of 20, the hydrothermal stability is too low. If the modulus is too high, the ion exchange capacity, ie the amount of exchangeable metal, is too low and the metal exchanged zeolite is therefore less active in the SCR reaction.
Das Metall des metallausgetauschten Zeolithen ist in Ausführungsformen des erfindungsgemäßen Verfahrens ausgewählt aus der Gruppe bestehend aus Fe, Cu, Co, Mn, Au, Ag, Ru, Ce, Rh, Pt, Pd, Zr, Ag, W, La, sowie Mischungen davon, ganz besonders bevorzugt Fe, Cu, Co, Ni. In speziellen Ausführungsformen der vorliegenden Erfindung ist wie schon vorstehend erwähnt das Metall Eisen oder Kupfer.The metal of the metal-exchanged zeolite is selected in embodiments of the method according to the invention from the group consisting of Fe, Cu, Co, Mn, Au, Ag, Ru, Ce, Rh, Pt, Pd, Zr, Ag, W, La, as well as mixtures thereof, most preferably Fe, Cu, Co, Ni. In specific embodiments of the present invention, as already mentioned above, the metal is iron or copper.
In bevorzugten Ausführungen des Verfahrens wird die Kalzinierung in Schritt d) und f) bei einer Temperatur von 450°C bis 750°C durchgeführt. Bei höheren Temperaturen wird die Zeolithstruktur beschädigt.In preferred embodiments of the process, the calcination in step d) and f) is carried out at a temperature of 450 ° C to 750 ° C. At higher temperatures, the zeolite structure is damaged.
Als Ammoniumverbindung in Schritt e) wird bevorzugt Ammoniumnitrat oder Ammoniumsulfat insbesondere aus Kostengründen eingesetzt. Es ist allerdings möglich, auch andere Ammoniumverbindungen zu verwenden.The ammonium compound used in step e) is preferably ammonium nitrate or ammonium sulfate, in particular for reasons of cost. However, it is possible to use other ammonium compounds as well.
Die Aufgabe der vorliegenden Erfindung wird weiter gelöst durch die Bereitstellung eines Zeolithen mit modifizierter, bevorzugt reduzierter Porengröße der Eingangsporen erhältlich nach dem erfindungsgemäßen, vorstehend im Detail beschriebenen Verfahren. In diesem Zusammenhang ist wichtig noch einmal darauf hinzuweisen, dass die inneren Kanäle in ihrer Struktur bzw. ihrem Durchmesser unverändert bleiben.The object of the present invention is further achieved by providing a zeolite with a modified, preferably reduced pore size of the entrance pores obtainable by the process according to the invention described in detail above. In this context, it is important to point out again that the inner channels remain unchanged in their structure or their diameter.
Der Zeolith ist bevorzugt metallhaltig und das Metall ist ausgewählt aus der Gruppe bestehend aus Fe, Cu, Mn, Au, Ag, Ru, Ce, Rh, Pt, Pd, Zr, Ag, W, La sowie Mischungen davon. In bevorzugten Ausführungsformen ist das Metall ausgewählt aus Fe, Cu und Mn, bzw. Mischungen davon.The zeolite is preferably metal-containing and the metal is selected from the group consisting of Fe, Cu, Mn, Au, Ag, Ru, Ce, Rh, Pt, Pd, Zr, Ag, W, La and mixtures thereof. In preferred embodiments, the metal is selected from Fe, Cu and Mn, or mixtures thereof.
Typischerweise liegt der der Zeolith in der H-Form oder Ammonium-Form vor, so dass ggf. noch ein weiterer Austausch erfolgen kann.Typically, the zeolite is in the H-form or ammonium form, so that, if necessary, a further exchange can take place.
Verwendung findet der erfindungsgemäß erhältliche Zeolith als Katalysator oder Adsorber. In bevorzugten Ausführungsformen der vorliegenden Erfindung findet der erfindungsgemäß erhältliche Zeolith Verwendung in der selektiven Reduktion von Stickoxiden (SCR) in Gegenwart von Kohlenwasserstoffen, insbesondere in Kraftfahrzeugen.The zeolite obtainable according to the invention is used as catalyst or adsorber. In preferred embodiments of the present invention, the zeolite obtainable according to the invention finds use in the selective reduction of nitrogen oxides (SCR) in the presence of hydrocarbons, especially in motor vehicles.
Die Erfindung ist nachfolgend anhand von Abbildungen und Ausführungsbeispielen näher erläutert, ohne dass diese als einschränkend verstanden werden sollen.The invention is explained in more detail below with reference to figures and exemplary embodiments, without these being to be understood as limiting.
Methodenteil:Methods section:
Nachfolgend sind die verwendeten Methoden und Geräte aufgeführt, die jedoch nicht als einschränkend verstanden werden sollen.The methods and devices used are listed below, but should not be construed as limiting.
Bestimmung der BET-Oberfläche:Determination of the BET surface area:
Die Bestimmung der BET-Oberfläche erfolgte gemäß
Bestimmung der Porengrößenverteilung Determination of the pore size distribution
Die Bestimmung der Porengrößenverteilung erfolgte gemäß der
TPD MessungTPD measurement
Die TPD Messung erfolgte mittels eines AutochemII Geräts der Fa. Micromeritics Benzol/Toluol-TPD und wurde wie folgt durchgeführt: Pretreatment: He-Flow, 5°C/min. von Raumtemperatur auf 350°C, 2 h halten, abkühlen auf 40°C Beladung: Mit Benzol/Toluol (Dampfdruck bei 40°C) angereicherte He-Pulse durch Probe leiten, solange bis konstante Peakflächen erhalten werden (maximal 20 Pulse); Desorption: He-Flow, 10°C/min. von 40°C auf 500°C heizen, 2 h halten Detektion: mit Massenspektrometer (Benzol: amu = 78, Toluol: amu = 91)The TPD measurement was carried out by means of an Autochem II instrument from Micromeritics benzene / toluene-TPD and was carried out as follows: Pretreatment: He-flow, 5 ° C / min. from room temperature to 350 ° C, hold for 2 h, cool to 40 ° C loading: Pass He-pulses enriched with benzene / toluene (vapor pressure at 40 ° C) through the sample until constant peak areas are obtained (maximum 20 pulses); Desorption: He-flow, 10 ° C / min. from 40 ° C to 500 ° C, hold for 2 h Detection: with mass spectrometer (benzene: amu = 78, toluene: amu = 91)
XRD MessungXRD measurement
Die XRD Messungen erfolgten mittels eines D4 Endeavor Geräts der Fa. Bruker; Messparameter: Scantype: locked coupled Scanmode: continuous 2 theta range: 5–50 Step size: 0,030 deg 2 theta Time/step: 3,0 sec. Divergence slit: V12 mm Sample rotation: 30 rpm XRay-tube: Cu 40 kV, 40 mA.The XRD measurements were carried out by means of a D4 Endeavor device from Bruker; Measurement parameters: Scan type: locked coupled Scan mode: continuous 2 theta range: 5-50 Step size: 0.030 deg 2 theta Time / step: 3.0 sec. Divergence slit: V12 mm Sample rotation: 30 rpm XRay tube:
Ausführungsbeispieleembodiments
Beispiel 1: Herstellung eines RPS(reduced-pure-size)-MFI ZeolithenExample 1: Preparation of a reduced-pure-size (RPS) -MFI zeolite
100 g eines Fe-MFI Zeolithen (kommerziell erhältlich als Fe-TZP-302 von Süd-Chemie Zeolites GmbH Bitterfeld) werden in 400 g destilliertem Wasser dispergiert. Dann werden 140 g einer Na-Silikat Lösung (SiO2 Gehalt 26,7 Gew.-%) dazu gegeben. Die Mischung wird auf 55°C erhitzt und ca. 30 min gerührt. Anschließend wird der Zeolith abfiltriert und für 3 h bei 600°C kalziniert.100 g of a Fe-MFI zeolite (commercially available as Fe-TZP-302 from Süd-Chemie Zeolites GmbH Bitterfeld) are dispersed in 400 g of distilled water. Then 140 g of a Na silicate solution (SiO 2 content 26.7 wt .-%) are added. The mixture is heated to 55 ° C and stirred for about 30 min. Subsequently, the zeolite is filtered off and calcined at 600 ° C for 3 h.
Beispiel 2: XRD/BET MessungExample 2: XRD / BET measurement
Beispiel 3: Toluol TPD und Benzol-TPDExample 3: Toluene TPD and benzene TPD
Die Verengung der Poren des erfindungsgemäßen Zeolithen lässt sich anhand von Adsorptionsversuchen einfach nachweisen. Bei einer signifikanten Porenverengung wird die Adsorption von größeren (z. B. cyclischen oder verzweigten) Kohlenwasserstoffen deutlich abnehmen. Daher wurden Toluol und Benzol TPD Messungen durchgeführt. Dabei wird die zu messende Probe für 2 Stunden bei 350°C im Helium-Strom ausgeheizt. Anschließend bei 40°C mit Toluol bzw. Benzol beladen und dann mit einer Heizrate von 10 K/min auf 500°C erhitzt. Anschließend wurde mittels eines Massenspektrometers die Toluol bzw. Benzol Desorption als Funktion der Temperatur gemessen.The narrowing of the pores of the zeolite according to the invention can be easily detected on the basis of adsorption experiments. With a significant pore narrowing, the adsorption of larger (eg cyclic or branched) hydrocarbons will decrease significantly. Therefore, toluene and benzene TPD measurements were performed. The sample to be measured is baked for 2 hours at 350 ° C in a helium stream. Then loaded at 40 ° C with toluene or benzene and then heated at a heating rate of 10 K / min to 500 ° C. Subsequently, the toluene or benzene desorption was measured as a function of temperature by means of a mass spectrometer.
Man erkennt zum einen, dass bei RPS-Fe-MFI die desorbierte Menge an Toluol um den Faktor 3,3 niedriger ist als bei Fe-MFI. Und zum anderen ist das Maximum der Desorptionskurve bei RPS-Fe-MFI um ca. 40°C zu höherer Temperatur verschoben. Beide Ergebnisse zeigen, dass es die erfindungsgemäße Behandlungsmethode zu einer Verkleinerung der Poren geführt hat.It can be seen on the one hand that with RPS-Fe-MFI the desorbed amount of toluene is lower by a factor of 3.3 than in the case of Fe-MFI. On the other hand, the maximum desorption curve for RPS-Fe-MFI is shifted by about 40 ° C to a higher temperature. Both results show that the treatment method according to the invention has led to a reduction of the pores.
Auch bei der Adsorption des kleineren Benzolmoleküls zeigen sich Unterschiede zwischen RPS-Fe-MFI und Fe-MFI. Dies ist in den
Bei RPS-Fe-MFI ist die desorbierte Menge an Toluol um den Faktor 1,85 niedriger ist als bei Fe-MFI. Der Unterschied ist zwar kleiner als bei der Toluoladsorption, aber immer noch signifikant.For RPS Fe MFI, the desorbed amount of toluene is lower by a factor of 1.85 than in Fe MFI. Although the difference is smaller than in toluene adsorption, it is still significant.
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 102007024125 [0008] DE 102007024125 [0008]
- US 5250282 [0019] US 5250282 [0019]
- US 5098684 [0019] US 5098684 [0019]
- US 5102643 [0019] US 5102643 [0019]
Zitierte Nicht-PatentliteraturCited non-patent literature
- D. S. Coombs et al., Can. Mineralogist, 35, 1997, 1571 [0014] DS Coombs et al., Can. Mineralogist, 35, 1997, 1571 [0014]
- DIN 66135 [0032] DIN 66135 [0032]
- http://www.izaonline.org/ [0034] http://www.izaonline.org/ [0034]
- DIN 66131 [0054] DIN 66131 [0054]
- DIN ISO 9277 [0054] DIN ISO 9277 [0054]
- Europäischen Norm 2003-05 [0054] European standard 2003-05 [0054]
- Brunauer, S.; Emett, P.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. [0054] Brunauer, S .; Emett, P .; Plate, EJ Am. Chem. Soc. 1938, 60, 309. [0054]
- DIN 66135 [0055] DIN 66135 [0055]
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011121971A DE102011121971A1 (en) | 2011-12-21 | 2011-12-21 | Process for modifying the pore size of zeolites |
PCT/EP2012/076141 WO2013092707A1 (en) | 2011-12-21 | 2012-12-19 | Method for modifying the pore size of zeolites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011121971A DE102011121971A1 (en) | 2011-12-21 | 2011-12-21 | Process for modifying the pore size of zeolites |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102011121971A1 true DE102011121971A1 (en) | 2013-07-11 |
Family
ID=47471825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102011121971A Withdrawn DE102011121971A1 (en) | 2011-12-21 | 2011-12-21 | Process for modifying the pore size of zeolites |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102011121971A1 (en) |
WO (1) | WO2013092707A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10118164B2 (en) | 2012-02-17 | 2018-11-06 | Clariant Produkte (Deutschland) Gmbh | Platinum/palladium zeolite catalyst |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015018807A2 (en) * | 2013-08-09 | 2015-02-12 | Basf Se | Process for the oxygen free conversion of methane to ethylene on zeolite catalysts |
RU2672744C2 (en) | 2013-10-31 | 2018-11-19 | Джонсон Мэтти Паблик Лимитед Компани | Aei zeolite synthesis |
GB2556291B (en) * | 2013-10-31 | 2018-11-07 | Johnson Matthey Plc | Composition comprising AEI zeolite crystals |
DE102014204682A1 (en) | 2014-03-13 | 2015-10-01 | Umicore Ag & Co. Kg | Catalyst system for reducing noxious gases from gasoline internal combustion engines |
WO2015179228A1 (en) * | 2014-05-21 | 2015-11-26 | Chevron U.S.A. Inc. | Processes using molecular sieve ssz-95 |
CN105950136A (en) * | 2016-05-26 | 2016-09-21 | 华南理工大学 | White-light light-emitting material excited by laser light and preparation method thereof |
CN110240178B (en) * | 2018-03-09 | 2021-04-23 | 中国科学院大连化学物理研究所 | Selective molecular adsorption sieve and preparation method thereof |
DE102018108346A1 (en) | 2018-04-09 | 2019-10-10 | Umicore Ag & Co. Kg | Coated wall flow filter |
DE102018111246A1 (en) | 2018-05-09 | 2019-11-14 | Umicore Ag & Co. Kg | Method for coating a wall-flow filter |
DE102019100099B4 (en) | 2019-01-04 | 2022-09-08 | Umicore Ag & Co. Kg | Process for the production of catalytically active wall-flow filters, catalytically active wall-flow filters and their use |
DE102019100107A1 (en) | 2019-01-04 | 2020-07-09 | Umicore Ag & Co. Kg | Catalytically active filter substrate and process for its manufacture and use |
CN113830781B (en) * | 2020-06-08 | 2023-05-02 | 中国石油化工股份有限公司 | EUO molecular sieve and synthesis method and application thereof |
CN116133988A (en) | 2020-07-21 | 2023-05-16 | 雪佛龙美国公司 | Molecular sieve SSZ-122, synthesis and use thereof |
CN115676849B (en) * | 2021-07-29 | 2024-03-12 | 中国石油化工股份有限公司 | SVR structure silicon zirconium molecular sieve and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752596A (en) * | 1985-04-30 | 1988-06-21 | E. I. Du Pont De Nemours And Company | Modified 8-ring zeolites as catalysts |
US5098684A (en) | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
US5250282A (en) | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
EP0630652A2 (en) * | 1991-10-30 | 1994-12-28 | Nycomed Salutar, Inc. | Contrast media |
DE102007024125A1 (en) | 2007-05-24 | 2008-11-27 | Süd-Chemie AG | Metal-doped zeolite for use as catalyst material for use in cleaning of exhaust gases, particularly for reduction of nitrogen oxides, has doping metal, which is present in zeolites as monomeric or dimeric species |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1792743B1 (en) * | 1966-12-01 | 1972-12-07 | Herrmann Gebr | METHOD OF MANUFACTURING BONDED ZEOLITHIC MOLECULAR Sieves With Apparently Reduced Pore Diameters |
US9604204B2 (en) * | 2010-04-19 | 2017-03-28 | Shell Oil Company | Process for the preparation of a catalyst support |
-
2011
- 2011-12-21 DE DE102011121971A patent/DE102011121971A1/en not_active Withdrawn
-
2012
- 2012-12-19 WO PCT/EP2012/076141 patent/WO2013092707A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752596A (en) * | 1985-04-30 | 1988-06-21 | E. I. Du Pont De Nemours And Company | Modified 8-ring zeolites as catalysts |
US5098684A (en) | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
US5102643A (en) | 1990-01-25 | 1992-04-07 | Mobil Oil Corp. | Composition of synthetic porous crystalline material, its synthesis |
US5250282A (en) | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
EP0630652A2 (en) * | 1991-10-30 | 1994-12-28 | Nycomed Salutar, Inc. | Contrast media |
DE102007024125A1 (en) | 2007-05-24 | 2008-11-27 | Süd-Chemie AG | Metal-doped zeolite for use as catalyst material for use in cleaning of exhaust gases, particularly for reduction of nitrogen oxides, has doping metal, which is present in zeolites as monomeric or dimeric species |
Non-Patent Citations (7)
Title |
---|
Brunauer, S.; Emett, P.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. |
D. S. Coombs et al., Can. Mineralogist, 35, 1997, 1571 |
DIN 66131 |
DIN 66135 |
DIN ISO 9277 |
Europäischen Norm 2003-05 |
http://www.izaonline.org/ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10118164B2 (en) | 2012-02-17 | 2018-11-06 | Clariant Produkte (Deutschland) Gmbh | Platinum/palladium zeolite catalyst |
Also Published As
Publication number | Publication date |
---|---|
WO2013092707A1 (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011121971A1 (en) | Process for modifying the pore size of zeolites | |
EP2680953B1 (en) | Scr catalytic converter having improved hydrocarbon resistance | |
EP2718011B1 (en) | Process for the selective catalytic reduction of nitrogen oxides in the exhaust gases of diesel engines | |
EP2512667B1 (en) | Iron zeolites, method for producing iron zeolites, and method for catalytically reducing nitrogen oxides | |
EP1979075B1 (en) | Adsorber unit for volatile hydrocarbons comprising an adsorber material made from an iron-containing molecular sieve | |
DE102015206125A1 (en) | Iron- and copper-containing chabazite zeolite catalyst for use in NOx reduction | |
DE102017122679A1 (en) | New zeolite synthesis with alkaline earth metal | |
EP3793727B1 (en) | Stable small-pore zeolites | |
DE102007063604A1 (en) | Metal-doped zeolite and process for its preparation | |
DE102016111000A1 (en) | Against NH3 overdose tolerant SCR catalyst | |
DE102015105029A1 (en) | DIESEL OXIDATION CATALYST WITH NOX ADSORBER ACTIVITY | |
DE102010055728A1 (en) | Process for the conversion of nitrogen-containing compounds | |
DE102010007626A1 (en) | Copper-containing zeolite of the KFI type and use in SCR catalysis | |
DE202009018988U1 (en) | Copper-containing aluminosilicate zeolite catalyst | |
DE102017125040A1 (en) | HYDROCARBON INJECTION BY SMALL-PORE CU-ZEOLITE CATALYST | |
DE102017122001A1 (en) | RUTHENIUM, SHOWN ON SUPPORTS HAVING A RUTIL PHASE, AS STABLE CATALYSTS FOR NH3-SLIP APPLICATIONS | |
EP2043783B1 (en) | Method for producing metal-doped zeolites and use thereof for the catalytic conversion of nitrogen oxides | |
WO2009103549A1 (en) | Scr catalyst with ammonia accumulator function | |
WO2010054832A1 (en) | Metal-containing crystalline silicates | |
WO2018115044A1 (en) | Scr catalyst device containing vanadium oxide and molecular sieve containing iron | |
DE102010055679A1 (en) | Titano-silico-alumino-phosphate | |
DE102016102527A1 (en) | Catalyst with stable nitrogen monoxide (NO) oxidation performance | |
DE102006060807A1 (en) | Process for the preparation of a metal and proton loaded zeolite material | |
DE102007030895A1 (en) | Catalytic converter for hydrochloric acid-containing exhaust gases | |
DE102012003032A1 (en) | Platinum / palladium-zeolite catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, DE Free format text: FORMER OWNER: SUED-CHEMIE AG, 80333 MUENCHEN, DE Effective date: 20130625 |
|
R082 | Change of representative |
Representative=s name: STOLMAR & PARTNER, DE Effective date: 20130625 Representative=s name: PATENTANWAELTE STOLMAR & PARTNER, DE Effective date: 20130625 Representative=s name: STOLMAR & PARTNER PATENTANWAELTE PARTG MBB, DE Effective date: 20130625 |
|
R016 | Response to examination communication | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |