-
Die Erfindung betrifft einen Widerstand, insbesondere einen Strommesswiderstand zur Messung eines elektrischen Stroms.
-
Ein derartiger Strommesswiderstand ist beispielsweise aus
EP 0 605 800 A1 bekannt und besteht aus zwei plattenförmigen Anschlussteilen aus einem elektrisch leitfähigen Leitermaterial (z. B. Kupfer) und einem zwischen die beiden Anschlussteile eingesetzten, ebenfalls plattenförmigen Widerstandselement aus einem niederohmigen Widerstandsmaterial (z. B. Manganin
®). Der zu messende elektrische Strom wird über die beiden Anschlussteile in den Strommesswiderstand eingeführt bzw. von dem Widerstand abgeführt und fließt durch das niederohmige Widerstandselement, so dass der Spannungsabfall über dem niederohmigen Widerstandselement entsprechend dem Ohmschen Gesetz ein Maß für den elektrischen Strom bildet.
-
Dieser bekannte Strommesswiderstand kann beispielsweise auf einer Platine montiert werden, die zur Kontaktierung des Strommesswiderstands vier Kontaktierungsflächen (”pads”) aufweist, wobei zwei der Kontaktierungsflächen zum Einspeisen bzw. Abführen des zu messenden elektrischen Stroms dienen, während die beiden anderen Kontaktierungsflächen Spannungsabgriffe bilden, um die über dem Widerstandselement abfallende elektrische Spannung zu messen. Problematisch an dieser konstruktiven Gestaltung der Spannungsabgriffe ist zunächst die thermische und mechanische Kopplung zwischen dem Strommesswiderstand und der auf der Platine befindlichen Messschaltung. Ein weiterer Nachteil dieser konstruktiven Gestaltung der Spannungsabgriffe besteht darin, dass die Leiterschleife zwischen den Spannungsabgriffen und der Messschaltung eine relativ große Fläche aufspannt und damit eine Antenne bildet, die für Störstrahlungen empfindlich ist.
-
Eine andere konstruktive Gestaltung der Spannungsabgriffe ist aus
DE 199 06 276 A1 bekannt. Hierbei wird die Messschaltung (z. B. ASIC: Application Specific Integrated Circuit) direkt auf dem Strommesswiderstand montiert. Diese der konstruktive Gestaltung der Spannungsabgriffe ist jedoch ebenfalls mit einer mechanischen und thermischen Kopplung zwischen dem Strommesswiderstand und der Messschaltung verbunden.
-
Der Erfindung liegt deshalb die Aufgabe zugrunde, einen entsprechend verbesserten Strommesswiderstand zu schaffen.
-
Diese Aufgabe wird durch einen erfindungsgemäßen Widerstand gemäß dem Hauptanspruch gelöst.
-
Die Erfindung sieht zunächst in Übereinstimmung mit dem Stand der Technik vor, dass der Widerstand zwei Anschlussteile aufweist, um den zu messenden elektrischen Strom in den Widerstand einzuleiten bzw. von dem Widerstand abzuführen. Die beiden Anschlussteile bestehen deshalb aus einem elektrisch leitfähigen Leitermaterial (z. B. Kupfer oder eine Kupferlegierung), um die Messung nicht durch die über den Anschlussteilen abfallende elektrische Spannung zu verfälschen.
-
In dem bevorzugten Ausführungsbeispiel der Erfindung sind die Anschlussteile plattenförmig, wie es beispielsweise auch aus der eingangs zitierten Patentanmeldung
EP 0 605 800 A1 bekannt ist. Die plattenförmigen Anschlussteile können hierbei wahlweise eben oder gebogen sein, wobei eine gebogene Ausführung der Anschlussteile beispielsweise sinnvoll sein kann, damit das Widerstandselement durch einen Luftspalt von der darunter oder darüber befindlichen Platine mit der Messelektronik getrennt ist, was zu einer besseren passiven Kühlung des Widerstandselements bzw. thermischer Entkopplung führt und dadurch zur Verbesserung der Messgenauigkeit beiträgt.
-
Darüber hinaus weist der erfindungsgemäße Widerstand in Übereinstimmung mit dem Stand der Technik ein Widerstandselement auf, das aus einem niederohmigen Widerstandsmaterial (z. B. Manganin®) besteht, dessen spezifischer elektrischer Widerstand jedoch größer ist als der spezifische elektrische Widerstand des Leitermaterials der beiden Anschlussteile. Das Widerstandselement ist elektrisch zwischen die beiden Anschlussteile eingesetzt, so dass der elektrische Strom durch das Widerstandselement fließt. Anstelle von Manganin® (CuMn12Ni) können im Rahmen der Erfindung auch andere Widerstandsmaterialien eingesetzt werden, wie beispielsweise Nickel-Chrom-Legierungen (z. B. NiCr20AlSi, NiCr6015, NiCr8020, NiCr3020), Kupfer-Mangan-Nickel-Legierungen (z. B. CuNi30Mn, CuNi23Mn) oder Kupfer-Nickel-Legierungen (z. B. CuNi15, CuNi10, CuNi6, CuNi2).
-
Weiterhin verfügt der erfindungsgemäße Widerstand über zwei Spannungsabgriffe an den beiden Anschlussteilen, um die über dem Widerstandselement abfallende elektrische Spannung zu messen, da diese Spannung entsprechend dem Ohmschen Gesetz ein Maß für den durch den Widerstand fließenden elektrischen Strom bildet.
-
Die beiden Spannungsabgriffe sind mit zwei Messleitungen verbunden, die an eine entsprechende Messschaltung angeschlossen werden können, um die über dem Widerstandselement abfallende elektrische Spannung zu messen.
-
Im Gegensatz zu dem eingangs beschriebenen Stand der Technik sind diese beiden Messleitungen jedoch zumindest auf einem Teil ihrer Länge als sogenannte flexible Leiterplatte (im Folgenden Fexleitung genannt) ausgebildet, wobei die Flexleitung vorzugsweise zumindest auf einem Teil ihrer Länge fest mit dem Widerstand verbunden ist.
-
In dem bevorzugten Ausführungsbeispiel der Erfindung sind die Messleitungen als Leiterbahnen auf einem flexiblen Folienträger ausgebildet, wobei der Folienträger auch Kontaktierungsflächen trägt zur elektrischen Kontaktierung der beiden Anschlussteile des erfindungsgemäßen Widerstands, wobei die Leiterbahnen auf dem Folienträger mit diesen Kontaktierungsflächen verbunden sind. Es sind aber auch andere Ausführungsformen der Flexleitung vorstellbar, z. B. die Verwendung von sogenannten Flachbandkabeln aus einzelnen Litzen, die über eine gemeinsame Isolation miteinander verbunden sind.
-
Vorzugsweise sind die beiden Messleitungen zur Kontaktierung der beiden Anschlussteile des Widerstands auf gegenüberliegenden Seiten des Folienträgers angeordnet. Es ist jedoch im Rahmen der Erfindung alternativ auch möglich, dass die beiden Messleitungen zur Kontaktierung der beiden Anschlussteile des Widerstands auf derselben Seite des Folienträgers angeordnet sind.
-
Weiterhin besteht im Rahmen der Erfindung die Möglichkeit, dass auf dem Folienträger eine zusätzliche Masseleitung ausgebildet ist, die aus einer Leiterbahn auf dem Folienträger besteht und zur elektrischen Erdung des Widerstands dient, wobei die Masseleitung vorzugsweise mit einem der beiden Anschlussteile verbunden ist. Für spezielle Anwendungen (z. B. der Anschluss eines Temperatursensors auf einem Anschlussteil oder auf dem Widerstandselement) sind Ausführungen mit weiteren Leiterbahnen denkbar.
-
Vorteilhaft an der Verwendung eines Folienträgers zur konstruktiven Gestaltung der Spannungsabgriffe ist die Tatsache, dass die Spannungsabgriffe durch ein einziges Bauteil realisiert werden können. Der Folienträger kann also mit den darauf aufgebrachten Leiterbahnen und Kontaktierungsflächen in herkömmlicher Weise hergestellt werden und muss dann lediglich mit dem widerstand verbunden werden.
-
Es wurde bereits vorstehend zum Stand der Technik erwähnt, dass die Messleitungen zwischen den Spannungsabgriffen und der Messschaltung eine Leiterschleife bilden, die eine Fläche aufspannt und dadurch eine Antenne zum Empfang von Störstrahlung bildet. Die erfindungsgemäße konstruktive Gestaltung der Messleitungen ermöglicht vorteilhaft eine äußerst geringe Fläche der von den Messleitungen aufgespannten Leiterschleife, so dass der erfindungsgemäße Widerstand gegenüber Störstrahlung wesentlich weniger empfindlich ist als herkömmliche Widerstände. Die von der Leiterschleife aufgespannte Fläche ist bei dem erfindungsgemäßen Widerstand vorzugsweise kleiner als 1 cm2, 0,3 cm2, 0,2 cm2 oder sogar kleiner als 0,1 cm2.
-
Zur Ermöglichung einer derart kleinen Fläche der von den Messleitungen aufgespannten Leiterschleife werden die Messleitungen von den außen liegenden Spannungsabgriffen vorzugsweise zunächst nach innen zu einem Anschlusspunkt bzw. Anschlussbereich geführt, von wo die Messleitungen dann in einem gemeinsamen Kabelstrang nach außen geführt werden. Die beiden Messleitungen werden also von den Spannungsabgriffen ausgehend vorzugsweise zunächst auf kürzestem Weg zu einem gemeinsamen Kabelstrang zusammengeführt, um die von der Leiterschleife der Messleitung aufgespannte Fläche zu minimieren.
-
Hierbei sind die Messleitungen und/oder der gemeinsame Kabelstrang vorzugsweise als Streifenleiter ausgebildet, jedoch können die Messleitungen alternativ auch als Leiterbahnen auf dem flexiblen Folienträger ausgebildet sein, wie vorstehend beschrieben wurde.
-
Zwischen den Spannungsabgriffen und dem Anschlusspunkt verlaufen die Messleitungen vorzugsweise parallel zur Hauptstromflussrichtung in dem Widerstandselement. Der gemeinsame Kabelstrang mit den darin befindlichen beiden Messleitungen wird dagegen von dem Anschlusspunkt ausgehend vorzugsweise quer, insbesondere rechtwinklig, zur Hauptstromflussrichtung in dem Widerstandselement nach außen geführt.
-
Weiterhin ist zu erwähnen, dass die beiden Messleitungen und/oder der gemeinsame Kabelstrang mit den beiden Messleitungen auf der Oberfläche des Widerstandselements befestigt sein kann und vorzugsweise parallel zur Oberfläche des Widerstandselements verläuft.
-
Die beiden Spannungsabgriffe zur Messung der über dem Widerstandselement abfallenden elektrischen Spannung sind vorzugsweise direkt an der Kante zwischen den Anschlussteilen und dem Widerstandselement angeordnet, um zu vermeiden, dass die Messung der über dem Widerstandselement abfallenden Spannung durch Spannungsabfälle innerhalb der Anschlussteile verfälscht wird.
-
Darüber hinaus sind die beiden Spannungsabgriffe vorzugsweise mittig an dem jeweiligen Anschlussteil angebracht, d. h. in der Mitte zwischen den parallel zur Hauptstromflussrichtung verlaufenden beiden Seitenkanten des jeweiligen Anschlussteils.
-
Die Befestigung der beiden Spannungsabgriffe an den Anschlussteilen kann beispielsweise durch eine Lötverbindung erfolgen, insbesondere durch das sogenannte Reflow-Löten. Alternativ besteht jedoch auch die Möglichkeit, die Spannungsabgriffe durch eine Schweißverbindung an den Anschlussteilen zu befestigen. Ferner besteht sogar die Möglichkeit, die Spannungsabgriffe durch eine elektrisch leitfähige Klebeverbindung an den Anschlussteilen anzubringen.
-
Weiterhin besteht im Rahmen der Erfindung die Möglichkeit, dass die Erwärmung des Widerstandselements durch eine Wärmesenke minimiert wird, die elektrisch von dem Widerstandselement isoliert ist, aber thermisch und physisch mit dem Widerstandselement verbunden wird. Die in dem Widerstandselement entstehende elektrische Verlustwärme wird dann zumindest teilweise von der Wärmesenke aufgenommen und abgeführt, was insbesondere in einem Kurzschlussfall wichtig ist, da dann eine erhebliche elektrische Verlustwärme in dem Widerstandselement entsteht.
-
Die Wärmesenke besteht aus einem Wärmesenkenmaterial, das vorzugsweise eine größere spezifische Wärmekapazität aufweist als das Leitermaterial der Anschlussteile und/oder als das Widerstandsmaterial des Widerstandselements. Beispielsweise kann die spezifische Wärmekapazität des Wärmesenkenmaterials im Rahmen der Erfindung größer sein als 400 J/kg·K, 600 J/kg·K oder 800 J/kg·K. Ferner ist zu erwähnen, dass die Wärmesenke vorzugsweise eine wesentlich größere Wärmekapazität aufweist als das Widerstandsmaterial, beispielsweise um einen Faktor von mindestens 10, 20 oder mindestens 30. Die Wärmekapazität der Wärmesenke lässt sich jedoch nicht nur durch die Auswahl eines geeigneten Wärmesenkenmaterial mit einer großen spezifischen Wärmekapazität erhöhen, sondern auch durch die Verwendung einer Wärmesenke mit einem möglichst großen Bauvolumen und/oder einer möglichst großen Masse. Die Wärmesenke weist deshalb vorzugsweise eine wesentlich größere Masse und/oder ein wesentlich größeres Bauvolumen auf als das Widerstandselement.
-
Neben einer möglichst großen Wärmekapazität der Wärmesenke ist es jedoch auch wichtig, dass die Wärmesenke eine möglichst gute Wärmeleitfähigkeit aufweist, um die in dem Widerstandselement entstehende elektrische Verlustwärme möglichst gut aufzunehmen und an die Umgebung abzuführen. Das Wärmesenkenmaterial weist deshalb vorzugsweise eine spezifische Wärmeleitfähigkeit von mehr als 100 W/m·K, 150 W/m·K oder 200 W/m·K auf. Beispielsweise kann die Wärmesenke aus Aluminium oder Aluminiumlegierung oder aus einem mit Aluminium-Kupfer plattierten Material bestehen.
-
In dem bevorzugten Ausführungsbeispiel der Erfindung weist die Wärmesenke ein Oberteil und ein Unterteil auf, die das Widerstandselement oben bzw. unten thermisch und physisch kontaktieren, wobei die Wärmesenke das Widerstandselement vorzugsweise auf seiner gesamten Fläche berührt, um einen möglichst guten Wärmeübergang von dem Widerstandselement auf die Wärmesenke zu erreichen.
-
Weiterhin ist zu erwähnen, dass die Wärmesenke in der Regel aus einem Material besteht, das nicht nur thermisch leitfähig ist, sondern auch elektrisch, was die Gefahr von Kurzschlüssen über dem Widerstand in sich birgt. Die Wärmesenke weist deshalb vorzugsweise eine elektrisch isolierende Oberflächenschicht auf, beispielsweise eine eloxierte Oxidschicht.
-
Zur Verbesserung des Wärmeübergangs von dem Widerstandselement auf die Wärmesenke kann zwischen der Wärmesenke und dem Widerstandselement ein Wärmeleitmittel angeordnet werden, insbesondere eine Wärmeleitpaste oder eine dünne Keramikschicht.
-
Weiterhin ist zu erwähnen, dass zur Verbesserung des Wärmeflusses vom Kühlkörper zu einem Anschlussteil (z. B. Massepunkt) ein oder beide Wärmesenken über das Anschlussteil geführt werden können, wobei ein einseitiger Kurzschluss zwischen Wärmesenke und Anschlussteil in Kauf genommen werden kann.
-
Ferner ist zu erwähnen, dass das Widerstandselement in der Mitte zwischen den beiden Anschlussteilen einen größeren Stromflussquerschnitt aufweisen kann als außen an den Kontaktstellen zu den Anschlussteilen. Dies ist vorteilhaft, weil dann der Ohmsche Widerstand in der Mitte zwischen den beiden Anschlussteilen wesentlich kleiner ist, so dass dort dann auch weniger thermische Verlustleistung entsteht. Dies ist wiederum sinnvoll, weil die Abführung der thermischen Verlustleistung über die Anschlussteile erfolgt, so dass in der Nähe der Anschlussteile eine höhere Verlustleistung entstehen kann als in der Mitte zwischen den beiden Anschlussteilen.
-
Darüber hinaus ist zu erwähnen, dass das Widerstandselement selbst wesentlich dünner sein kann als die Anschlussteile. Es besteht jedoch alternativ auch die Möglichkeit, dass die Anschlussteile dieselbe Dicke aufweisen wie das Widerstandselement.
-
Vorzugsweise wird im Rahmen der Erfindung ein Widerstandsmaterial verwendet, das gegenüber dem Leitermaterial (z. B. Kupfer) nur eine geringe Thermospannung aufweist. Dies ist vorteilhaft, da die Strommessung dann kaum durch Thermospannungen verfälscht wird. Vorzugsweise zeigt das Widerstandsmaterial deshalb in der Thermoelektrischen Spannungsreihe gegenüber Kupfer eine Thermospannung von weniger als 1 mV/100 K, 0,5 mV/100 K oder sogar weniger als 0,2 mV/100 K.
-
Hierbei ist zu erwähnen, dass das Widerstandsmaterial im Vergleich zum Material der Anschlussteile hochohmig ist und einen spezifischen elektrischen Widerstand aufweist, der vorzugsweise größer ist als 10–5 Ω·m, 5·10–5 Ω·m oder sogar größer als 10–4 Ω·m.
-
Für eine möglichst temperaturkonstante Messung ist es weiterhin vorteilhaft, wenn das Widerstandsmaterial einen spezifischen elektrischen Widerstand mit einem möglichst kleinen linearen Temperaturkoeffizienten aufweist. Bei dem erfindungsgemäßen Widerstand ist der Temperaturkoeffizient des Widerstandsmaterials deshalb vorzugsweise kleiner als 5·10–4 K–1, 2·10–4 K–1, 10–4 K–1 oder sogar kleiner als 5·10–5 K–1.
-
Schließlich ist zu erwähnen, dass die Erfindung nicht auf den vorstehend beschriebenen Widerstand als einzelnes Bauteil beschränkt ist. Vielmehr umfasst die Erfindung auch eine komplette Messanordnung zur Strommessung mit einem derartigen Widerstand und einer damit verbundenen Messschaltung zur Messung der über dem Widerstand abfallenden elektrischen Spannung. Hierbei ist es vorteilhaft, wenn die Messschaltung von dem Widerstand thermisch und mechanisch entkoppelt ist.
-
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
-
1 eine perspektivische Explosionsdarstellung eines erfindungsgemäßen Strommesswiderstands,
-
1a ein abgewandeltes Ausführungsbeispiel des Widerstandselementes mit aufgelöteten/aufgeschweißten Anschlussteilen aus Kupfer,
-
2 ein anderes Ausführungsbeispiel eines erfindungsgemäßen Strommesswiderstands mit einem Folienträger mit darauf befindlichen Leiterbahnen zur konstruktiven Gestaltung der Spannungsabgriffe,
-
3 den Strommesswiderstand aus 2 ohne den Folienträger, sowie
-
4 den Folienträger aus 2 ohne den Strommesswiderstand.
-
Im Folgenden wird nun unter Bezugnahme auf die Explosionsdarstellung in 1 ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Strommesswiderstands 1 beschrieben.
-
Der Strommesswiderstand 1 weist zwei plattenförmige Anschlussteile 2, 3 auf, um den zu messenden elektrischen Strom in den Strommesswiderstand 1 einzuleiten bzw. von dem Strommesswiderstand 1 abzuführen. Die beiden plattenförmigen Anschlussteile 2, 3 bestehen in diesem Ausführungsbeispiel aus Kupfer, um Spannungsabfälle innerhalb der Anschlussteile 2, 3 zu vermeiden.
-
Es ist aber auch eine Ausführung der Anschlussteile 2, 3 in der Form denkbar, dass Cu-Plättchen oder Plättchen eines anderen leitfähigen Materials flächig auf das entsprechend verlängerte Widerstandmaterial aufgelötet oder geschweißt sind, was in 1A dargestellt ist.
-
Zwischen die beiden Anschlussteile 2, 3 ist ein niederohmiges plattenförmiges Widerstandselement aus Nickel-Chrom oder Kupfer-Nickel eingesetzt, wobei das Widerstandselement 4 durch eine Verschweißung (bevorzugt Elektronenstrahlverschweißung) mit den beiden Anschlussteilen 2, 3 verbunden ist.
-
Bei einer Strommessung fließt der zu messende elektrische Strom also durch das Widerstandselement 4, so dass der Spannungsabfall über dem Widerstandselement 4 entsprechend dem Ohmschen Gesetz ein Maß für den zu messenden elektrischen Strom bildet. Zur Messung dieses Spannungsabfalls sind zwei Spannungsabgriffe 5, 6 vorgesehen, wobei der Spannungsabgriff 5 physisch und elektrisch mit dem Anschlussteil 2 verbunden ist, während der Spannungsabgriff 6 physisch und elektrisch mit dem anderen Anschlussteil 3 verbunden ist. An die beiden Spannungsabgriffe 5, 6 sind zwei Messleitungen 7, 8 angeschlossen, die als Flexleiter ausgebildet sind und in einer Nut 9 in dem Widerstandselement 4 von den außen liegenden Anschlussteilen 2, 3 nach innen zu einem Verbindungspunkt 10 und dann in einem gemeinsamen Kabelstrang 11 durch ein Loch im oberen Wärmesenkenbauteil 12 nach außen geführt sind, um die über dem Widerstandselement 4 abfallende elektrische Spannung messbar zu machen.
-
Darüber hinaus weist der Strommesswiderstand 1 zwei Wärmesenkenbauteile 12, 13 auf, die aus Aluminium mit einer eloxierten Oberflächenoxidschicht bestehen, wobei die beiden Wärmesenkenbauteile 12, 13 das Widerstandselement 4 an seiner Oberseite bzw. an seiner Unterseite vollflächig thermisch und physisch kontaktieren, um einen möglichst guten Wärmeübergang von dem Widerstandselement 4 auf die beiden Wärmesenkenbauteile 12, 13 zu erreichen. Zur Verbesserung des Wärmeübergangs ist zwischen dem Widerstandselement 4 und den beiden Wärmesenkenbauteilen 12, 13 eine Wärmeleitpaste angebracht. Bei der Montage werden die beiden Wärmesenkenbauteile 12, 13 durch Schrauben 14, 15 zusammengeschraubt.
-
Ferner ist noch zu erwähnen, dass sich in den beiden Anschlussteilen 2, 3 jeweils eine Anschlussbohrung 16, 17 befindet, um beispielsweise eine Stromklemme anschließen zu können.
-
In diesem Ausführungsbeispiel weist das Wärmesenkenbauteil 13 eine Zunge 18 auf, die seitlich in Deckung mit dem Anschlussteil 2 liegt und ebenfalls eine Anschlussbohrung 19 aufweist, wobei die beiden Anschlussbohrungen 16, 19 fluchten.
-
Die 2 bis 4 zeigen ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Strommesswiderstands 1, wobei dieses Ausführungsbeispiel teilweise mit dem vorstehend beschriebenen Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.
-
Eine Besonderheit dieses Ausführungsbeispiels besteht in der konstruktiven Gestaltung der Spannungsabgriffe 5, 6 zur Kontaktierung der Anschlussteile 2, 3 des Strommesswiderstands 1. So sind die beiden Spannungsabgriffe 5, 6 als Kontaktierungsflächen beidseitig auf einem Folienträger 20 angebracht. Die Anschlussflächen sind dabei so positioniert, dass die Innenkanten mit der Stoßlinie zwischen Anschlussteilen und Widerstandselement übereinstimmen. Darüber hinaus befindet sich auf dem Folienträger 20 beidseitig noch eine weitere Kontaktierungsfläche 21, die einen Massekontakt bilden soll.
-
Zur Verbesserung der mechanischen Stabilität und der Lötbarkeit der Kontaktflächen können die Spannungsabgriffe 5, 6 und die Kontaktierungsflächen 21 für den Massekontakt und die Kontaktierungsflächen 25–27 für die Kontaktierung zu der Messschaltung 28 jeweils Bohrungen aufweisen, die durch den Folienträger 20 hindurchgehen und Verbindungen zu den auf der Oberseite liegenden Leiterflächen herstellen. Alle restlichen Leiterbahnen und Durchkontaktierungen sind durch eine Lack- oder Folienbeschichtung elektrisch isoliert und vor Benetzung mit Lot geschützt.
-
Darüber hinaus befinden sich auf dem Folienträger 20 Leiterbahnen 22–24, welche die Spannungsabgriffe 5, 6 und die Kontaktierungsfläche 21 mit entsprechenden Kontaktierungsflächen 25–27 verbinden, wobei sich die Kontaktierungsflächen 25–27 am gegenüberliegenden Ende des Folienträgers 20 befinden und einen Anschluss einer Messschaltung 28 ermöglichen.
-
Die Leiterbahnen 22–24 sind jeweils auf beiden Seiten mit Lack oder einer Folie elektrisch isoliert.
-
Die Kontaktierungsflächen 25–27 befinden sich hierbei auf derselben Seite des Folienträgers 20, wohingegen sich die Leiterbahnen 22, 23 einerseits und die Leiterbahn 24 andererseits auf gegenüberliegenden Seiten des Folienträgers 20 befinden. Der Folienträger 20 weist deshalb Durchkontaktierungen 29, 30 auf, um eine elektrische Verbindung von der Vorderseite zur Rückseite des Folienträgers 20 herzustellen.
-
Der Folienträger 20 bildet also mit den Spannungsabgriffen 5, 6 und den Kontaktierungsflächen 21, 25–27 und den Leiterbahnen 22–24 ein einheitliches Bauteil 31, das eine Spannungsmessung an dem Strommesswiderstand 1 ermöglicht.
-
Darüber hinaus ermöglicht das Bauteil 31 eine mechanische und thermische Entkopplung zwischen dem Strommesswiderstand 1 einerseits und der Messschaltung 28 andererseits.
-
Ein weiterer Vorteil des Bauteils 31 besteht darin, dass die von den Leiterbahnen 22, 24 aufgespannte Leiterschleife zwischen den Spannungsabgriffen 5, 6 eine äußerst geringe Fläche aufspannt, insbesondere dann, wenn die auf gegenüber liegenden Seiten des Folienträgers 20 geführten Leitungen 22 und 24 deckungsgleich (in der sogenannten Streifenleiteranordnung) verlaufen, so dass die gesamte Messanordnung gegenüber Störstrahlung wesentlich weniger empfindlich ist.
-
Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. Darüber hinaus beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den in Bezug genommenen Ansprüchen.
-
Bezugszeichenliste
-
- 1
- Strommesswiderstand
- 2, 3
- Anschlussteile
- 4
- Widerstandselement
- 5, 6
- Spannungsabgriffe
- 7, 8
- Messleitungen
- 9
- Nut
- 10
- Verbindungspunkt
- 11
- Kabelstrang
- 12, 13
- Wärmesenkenbauteile
- 14, 15
- Schrauben
- 16, 17
- Anschlussbohrung
- 18
- Zunge
- 19
- Anschlussbohrung
- 20
- Folienträger
- 21
- Kontaktierungsfläche
- 22
- Leiterbahn
- 23
- Leiterbahn
- 24
- Leiterbahn
- 25
- Kontaktierungsfläche
- 26
- Kontaktierungsfläche
- 27
- Kontaktierungsfläche
- 28
- Messschaltung
- 29
- Durchkontaktierung
- 30
- Durchkontaktierung
- 31
- Bauteil
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- EP 0605800 A1 [0002, 0008]
- DE 19906276 A1 [0004]