DE102010048791A1 - Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity - Google Patents
Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity Download PDFInfo
- Publication number
- DE102010048791A1 DE102010048791A1 DE102010048791A DE102010048791A DE102010048791A1 DE 102010048791 A1 DE102010048791 A1 DE 102010048791A1 DE 102010048791 A DE102010048791 A DE 102010048791A DE 102010048791 A DE102010048791 A DE 102010048791A DE 102010048791 A1 DE102010048791 A1 DE 102010048791A1
- Authority
- DE
- Germany
- Prior art keywords
- flow
- floating
- funnel
- impeller
- construction according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/062—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
- F03B17/063—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B9/00—Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
- E02B9/02—Water-ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
- F05B2240/133—Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/93—Mounting on supporting structures or systems on a structure floating on a liquid surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
Schwimmende Wasserkraftanlagen nach dem Schiffsmühlen-Prinzip sind als Investitionsgegenstand der erneuerbaren Energietechnik zwar aktuell, aber bisher nicht wirtschaftlich. Die drei Faktoren der Leistungsformel P = ½ m·v2·η ließen bisher nicht ausreichend steigern.Floating hydropower plants based on the ship mill principle are currently up-to-date investment objects in renewable energy technology, but have not yet been economically viable. The three factors of the performance formula P = ½ m · v 2 · η have so far not sufficiently increase.
Der Wirkungsgrad η von historischen Schiffmühlen liegt unter 0,3, der bei Kraftwerken mit Wasserturbinen-Anlagen reicht hingegen bis 0,95.The efficiency η of historic ship mills is below 0.3, whereas that of power plants with water turbine plants is up to 0.95.
Zudem war das Schluckvermögen (Masse m) des tiefschlächtigen Laufrades von Schiffsmühlen durch die Schaufel-Tauchtiefe von 0,25 Laufrad-Radius wegen des Ein- und Austauchwiderstandes begrenzt.In addition, the buoyancy (mass m) of the low-speed impeller of ship mills was limited by the blade depth of 0.25 impeller radius because of the insertion and Ausauchwiderstandes.
Desweiteren weisen die wenigsten Flüsse eine jahresdurchschnittliche Fließgeschwindigkeit von 1,5 m/s auf, mit der eine historische Schiffsmühle bei Schluckvermögen von rund 2,5 cbm/s nur etwa 1,5 kW an Leistung erreicht. Für Wirtschaftlichkeit zur Stromerzeugung ist annähernd die 6-fache Leistung erforderlich.Furthermore, the fewest rivers have an annual average flow velocity of 1.5 m / s, with which a historic ship mill achieves only about 1.5 kW of power with a capacity of about 2.5 cbm / s. For efficiency in power generation, almost 6 times the power is required.
Die Schiffsmühlen-Leistung könnte sich über Wirkungsgrad η mit einem tiefschlächtigen Wasserrad mit Pendel- bzw. Klappschaufeln in einem Laufrad-Gerinne annähernd verdoppelt lassen (η = 0,6), da diese einen minimierten Austauchwiderstand haben. Zugleich kann mit den Pendelschaufeln die Tauchtiefe (0,5 R) und damit das Schluckvermögen (Masse m) verdoppelt werden.The ship mill power could be approximately doubled (η = 0.6) over efficiency η with a deep waterwheel with pendulum or folding vanes in an impeller channel (η = 0.6), as these have a minimized replacement resistance. At the same time, the immersion depth (0.5 R) and thus the absorption capacity (mass m) can be doubled with the pendulum blades.
Lösungen für die Leistungssteigerung über die künstliche Beschleunigung der Fluß-Fließgeschwindigkeit v1 waren bisher begrenzt. Bei Schiffsmühlen nutzte man die beschleunigte Strömung zwischen zwei Brücken-Pfeilern. Da diese bis unter die Sohle gründen, verengten diese damit den gesamten Flussquerschnitt. Bei dieser Verengung des Flusses handelte es sich physikalisch um das Venturi-Prinzip. Da der Venturi-Trichter geschlossene Systeme voraussetzt, kann man diese Art der Strömungsbeschleunigung nicht so ohne werteres auf schwimmende Anlagen übertragen.Solutions for increasing the performance via the artificial acceleration of the flow velocity v 1 were previously limited. In ship mills used the accelerated flow between two bridge piers. Since these are found below the sole, they narrowed the entire river cross section. This constriction of the river was physically the Venturi principle. Since the Venturi funnel requires closed systems, this type of flow acceleration can not be transferred to floating equipment in such a way.
Nutzt man nach dem Stand der Technik ein schwimmendes Laufrad-Gerinne und versieht es mit einem Stautrichter nach Venturi sowie einen Saugtrichter zu einer Schwimmkulisse, dann lässt sich die Leistung schon etwas mehr steigern.If, according to the state of the art, you use a floating impeller channel and provide it with a stowage gate to Venturi and a suction funnel to create a floating backdrop, then you can increase the performance a bit more.
Kombiniert man dieses Schwimmkulissen-Systeme in einer technisch neuartigen Konstruktion zur Strömungsbeschleunigung, dann bietet sich ein Lösungsansatz zu einer wirkungsvollen Leistungssteigerung schwimmender Anlagen.Combining this floating gate system in a technically novel design for flow acceleration, then offers a solution to an effective increase in performance of floating equipment.
Die Strömung beschleunigt zwar auch bei Flussbett-Verengungen, aber maßgebend für die Fließgeschwindigkeit, gut sichtbar bei Sohlrampen, ist das Fließgefälle im Reliefgelände.Although the flow also accelerates in the case of river bed constrictions, the flow gradient in the relief area is decisive for the flow velocity, which is clearly visible in the case of the bottom ramps.
Nun könnte man durch entsprechende Wasser-Baumaßnahmen das Fließgefälle teilweise entsprechend ändern. Dies ist sowohl ökologisch wie auch kostenmäßig keine umsetzbare Lösung.Now you could change the flow gradient partially by appropriate water-construction measures. This is not a viable solution both ecologically and in terms of cost.
Die Lösung liegt nach dem Prinzip der schiefen Ebene in einem Kulissen-Gefälleboden, analog einer Sohlrampe, als Vorrichtung in der Schwimmkulissenkonstruktion.The solution is based on the principle of the inclined plane in a backdrop slope floor, analogous to a Sohlrampe, as a device in the Schwimmkulissenkonstruktion.
Diese Schwimmkulissen-Konstruktion besteht aus einem Stautrichter (
Zur Dimension der Anlage nach dem Beispiel ist zu vermerken, dass diese in der Breite 9,00 m und in der Länge 9,20 m misst. Der Murecker Nachbau einer historischen Schiffsmühle mit einem Laufrad von 5,00 m Breite weist rund 12,00 m auf 13,00 m auf.To the dimension of the plant according to the example, it should be noted that it measures 9.00 m in width and 9.20 m in length. The Murecker replica of a historic ship mill with a wheel width of 5.00 m has about 12.00 m to 13.00 m.
Die schwimmende Sohlrampe (
Bei einer Fallhöhe von 0,45 m nach der Formel h = v2/2g ermittelt sich eine Fließgeschwindigkeit in der Sohlrampe von 2,97 m/s bzw. eine Gefällestrecke gleich Rampenlänge von 2,97 m. Bei der Fluss-Fließgeschwindigkeit v1 wird ein Wert von 1,00 m/s beispielhaft zugrunde gelegt.With a fall height of 0.45 m according to the formula h = v 2 / 2g, a flow velocity in the bottom ramp of 2.97 m / s or a slope path equal to a ramp length of 2.97 m is determined. The flow flow velocity v 1 is based on a value of 1.00 m / s by way of example.
Die Dimensionierung der Konstruktion muss so ausgelegt sein, dass der Zufluss-Volumenstrom am Trichtermund dem Schluckvermögen des Laufrades entspricht, damit die optimale Leistung erzielt werden kann. Beispiel-Rechnung:
Volumenstrom = 9,00 m × 0,45 m × 1,00 m/s = 4,05 cbm/s
Schluckvermögen = 0,5 × 3,00 m × 0,90 m × 2,97 m/s = 4,01 cbm/sThe sizing of the structure must be designed so that the inflow volume flow at the funnel and the impeller's absorption capacity are the same for optimum performance. Example calculation:
Volume flow = 9.00 m × 0.45 m × 1.00 m / s = 4.05 cbm / s
Swallowing capacity = 0.5 × 3.00 m × 0.90 m × 2.97 m / s = 4.01 cbm / s
Die Leistung P ermittelt sich aus der Wirkung der neuartigen Konstruktion einer schwimmenden Wasserkraftanlage mit vorgenannter Dimensionierung mit rund 10 kW (= 0,5 × 4,010 to/s × 2,97 2 (m/s) × 0,6 × 0,94), womit eine Wirtschaftlichkeitsgrenze erreicht wird.The power P is calculated from the effect of the novel design of a floating hydroelectric plant with the aforementioned dimensioning of around 10 kW (= 0.5 × 4.010 to / s × 2.97 2 (m / s) × 0.6 × 0.94) , whereby a profitability limit is reached.
Die Schwimmkulissen-Konstruktion besteht aus einer beplankten Skelettbauweise (
Die neue Konstruktionseinheit der Schwimmkulissen-Konstruktion mit dem Prinzip zur Strömungsbeschleunigung mit Trichter- und Gefälle-Vorrichtung ist nicht nur bei offenen Gerinnen mit einem Wasserrad sondern auch bei geschlossenen Gerinnen schwimmender Strömungsturbinen-Anlagen unterschiedlicher Bauart anzuwenden und daher kann auf analoge Wasserkraftanlagen-Konstruktionen übertragen werden.The new construction of the floating gate design with the principle of flow acceleration with funnel and incline device is applicable not only to open water gutters but also to the closed channels of floating turbines of different designs and therefore can be transferred to analogue hydropower plant designs ,
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010048791A DE102010048791A1 (en) | 2010-10-18 | 2010-10-18 | Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010048791A DE102010048791A1 (en) | 2010-10-18 | 2010-10-18 | Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102010048791A1 true DE102010048791A1 (en) | 2012-04-19 |
Family
ID=45895849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102010048791A Withdrawn DE102010048791A1 (en) | 2010-10-18 | 2010-10-18 | Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102010048791A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020159449A1 (en) * | 2019-01-29 | 2020-08-06 | Rivertum D.O.O. | Acceleration channels with momentum generators |
US11008998B2 (en) | 2016-10-27 | 2021-05-18 | Upravljanje Kaoticnim Sustavima d.o.o. | Floating screw turbines device |
US11319920B2 (en) | 2019-03-08 | 2022-05-03 | Big Moon Power, Inc. | Systems and methods for hydro-based electric power generation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1048664A (en) * | 1911-08-14 | 1912-12-31 | Thomas H Downward | Water-power system. |
US2764871A (en) * | 1951-03-31 | 1956-10-02 | Dowling Patrick | Hydro-electric power apparatus |
DE10302203A1 (en) * | 2003-01-20 | 2004-08-05 | Helmut Lehner | Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel |
WO2007023432A2 (en) * | 2005-08-22 | 2007-03-01 | Pieter Malan | Water barricade incorporating floating waterwheel |
WO2007072513A1 (en) * | 2005-12-20 | 2007-06-28 | Ener Water Limited | Hydroelectric floating device and hydroelectric power station comprising such a device |
WO2008137677A1 (en) * | 2007-05-02 | 2008-11-13 | Hofmann Energy Systems Llc | Waterwheel apparatus and methods |
WO2009121824A2 (en) * | 2008-03-31 | 2009-10-08 | Aweg Ag Für Wasser Und Energie | Hydropower plant |
DE202009011950U1 (en) * | 2008-10-18 | 2009-12-10 | Peickert, Ulrich Joachim Christian, Dipl.-Arch. | Hydropower plant with water wheels, floats, automatic height regulation, small wind turbines and photovoltaic |
WO2011039406A1 (en) * | 2009-10-02 | 2011-04-07 | Jorma Einolander | Device for producing energy by hydropower |
-
2010
- 2010-10-18 DE DE102010048791A patent/DE102010048791A1/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1048664A (en) * | 1911-08-14 | 1912-12-31 | Thomas H Downward | Water-power system. |
US2764871A (en) * | 1951-03-31 | 1956-10-02 | Dowling Patrick | Hydro-electric power apparatus |
DE10302203A1 (en) * | 2003-01-20 | 2004-08-05 | Helmut Lehner | Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel |
WO2007023432A2 (en) * | 2005-08-22 | 2007-03-01 | Pieter Malan | Water barricade incorporating floating waterwheel |
WO2007072513A1 (en) * | 2005-12-20 | 2007-06-28 | Ener Water Limited | Hydroelectric floating device and hydroelectric power station comprising such a device |
WO2008137677A1 (en) * | 2007-05-02 | 2008-11-13 | Hofmann Energy Systems Llc | Waterwheel apparatus and methods |
WO2009121824A2 (en) * | 2008-03-31 | 2009-10-08 | Aweg Ag Für Wasser Und Energie | Hydropower plant |
DE202009011950U1 (en) * | 2008-10-18 | 2009-12-10 | Peickert, Ulrich Joachim Christian, Dipl.-Arch. | Hydropower plant with water wheels, floats, automatic height regulation, small wind turbines and photovoltaic |
WO2011039406A1 (en) * | 2009-10-02 | 2011-04-07 | Jorma Einolander | Device for producing energy by hydropower |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11008998B2 (en) | 2016-10-27 | 2021-05-18 | Upravljanje Kaoticnim Sustavima d.o.o. | Floating screw turbines device |
WO2020159449A1 (en) * | 2019-01-29 | 2020-08-06 | Rivertum D.O.O. | Acceleration channels with momentum generators |
US11319920B2 (en) | 2019-03-08 | 2022-05-03 | Big Moon Power, Inc. | Systems and methods for hydro-based electric power generation |
US11835025B2 (en) | 2019-03-08 | 2023-12-05 | Big Moon Power, Inc. | Systems and methods for hydro-based electric power generation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT413868B (en) | POWER BUOY | |
DE102007029921B3 (en) | Apparatus for generating energy and fresh water in the sea | |
DE102010048791A1 (en) | Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity | |
DE102010008103A1 (en) | Surface hydro-electric power station for generating power from running water, has floating bodies connected with each other, where different arrangements of bodies such as parallel arrangement, are provided based on availability of surface | |
DE202007016897U1 (en) | Pumped storage power plant with cavern as lower basin | |
DE202006014721U1 (en) | Floating pontoon electricity generating station also incorporates top-mounted solar panels and wind turbines | |
DE102006014205A1 (en) | Floating waterwheel to produce electricity has waterwheel mounted on multi-hull craft so that it can rotate freely between hulls | |
DE20008482U1 (en) | Floating energy plant for the offshore area for the generation of electrical energy | |
DE102008009453A1 (en) | Hydroelectric power station for generating electricity from sea, has pipes and water tank, whose volumes are measured such that station is permanently supplied with water and operated during eddy and flood tides and in intermediate time | |
DE202013006981U1 (en) | Band hydropower plant | |
WO2014190448A1 (en) | Method and apparatus for generating electricity by using river water | |
DE202008011923U1 (en) | Power generator for water courses with water level adjustment | |
DE10302203A1 (en) | Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel | |
DE2446980A1 (en) | Water wheel for electric power generation - has impeller in longitudinal sections suspended to float in stream | |
AT412363B (en) | WATER POWER PLANT | |
DE10329465A1 (en) | Immersed water power generator for extracting power from wave energy has Archimedes screw whose screw thread is divided into individual vanes with vane profile attached to axle at distance apart | |
DE202006009953U1 (en) | Floating turbine with up and down drive in tower filled with water has tube diameter adapted to that of the watertight tower | |
DE3627130A1 (en) | Bladed wheel having automatically pivoting blades of different shapes | |
WO2021127790A1 (en) | Run-of-the-river power plant | |
Ahmed | RECENT DEVELOPMENTS IN NILE CONTROL. | |
DE202012003839U1 (en) | Pilot plant for the further development of structures, in particular energy-generating pumped-storage power plants, CO2-free energy-generating and flood-proof houses, onshore wind turbines and offshore wind turbines | |
DE202005010121U1 (en) | Tsunami-safe building has guide rods swivel mounted on each side of buoyant foundation through swivel bearings connected to ground and with centre tube for anchorage to floating island | |
Williams | The Romance of Modern Engineering: Containing Interesting Descriptions in Non-technical Language of the Nile Dam, the Panama Canal, the Tower Bridge, the Brooklyn Bridge, the Trans-Siberian Railway, the Niagara Falls Power Co., Bermuda Floating Dock, Etc., Etc | |
DE202018002586U1 (en) | Small hydropower plants with linear generators and small turbines | |
DE202023100781U1 (en) | Small storage power plants for energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: E02B0009020000 Ipc: F03B0007000000 |
|
R163 | Identified publications notified | ||
R120 | Application withdrawn or ip right abandoned |
Effective date: 20121110 |