DE102010044869A1 - Erdgasverflüssigung - Google Patents
Erdgasverflüssigung Download PDFInfo
- Publication number
- DE102010044869A1 DE102010044869A1 DE102010044869A DE102010044869A DE102010044869A1 DE 102010044869 A1 DE102010044869 A1 DE 102010044869A1 DE 102010044869 A DE102010044869 A DE 102010044869A DE 102010044869 A DE102010044869 A DE 102010044869A DE 102010044869 A1 DE102010044869 A1 DE 102010044869A1
- Authority
- DE
- Germany
- Prior art keywords
- feed fraction
- nitrogen
- heat exchange
- exchange process
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003949 liquefied natural gas Substances 0.000 title 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 120
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 45
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000005057 refrigeration Methods 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 239000003345 natural gas Substances 0.000 claims abstract description 5
- 238000009835 boiling Methods 0.000 claims description 12
- 230000005494 condensation Effects 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 6
- 238000013021 overheating Methods 0.000 claims description 3
- 230000008016 vaporization Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 5
- 241001295925 Gegenes Species 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/42—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/14—External refrigeration with work-producing gas expansion loop
- F25J2270/16—External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Es wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion, vorzugsweise von Erdgas, gegen einen Stickstoff-Kältekreislauf beschrieben, wobei die Abkühlung der Einsatzfraktion gegen anzuwärmenden, gasförmigen Stickstoff und die Verflüssigung der Einsatzfraktion gegen zu verdampfenden, flüssigen Stickstoff erfolgt. Erfindungsgemäß – erfolgt die Abkühlung und Verflüssigung der Einsatzfraktion in einem wenigstens dreistufigen Wärmetauschprozess (E1a–E1c), – wobei in dem ersten Abschnitt des Wärmetauschprozesses (E1a) die Einsatzfraktion (1) gegen überhitzten gasförmigen Stickstoff (9) soweit abgekühlt wird, dass eine im Wesentlichen vollständige Abtrennung (D2) der schwereren Komponenten (2') realisierbar ist, – in dem zweiten Abschnitt des Wärmetauschprozesses (E1b) die von schwereren Komponenten befreite Einsatzfraktion (2) gegen zu überhitzenden gasförmigen Stickstoff (9) teilverflüssigt wird. und – in dem dritten Abschnitt des Wärmetauschprozesses (E1c) die Einsatzfraktion (2) gegen teilzuverdampfenden Stickstoff (8) verflüssigt wird.
Description
- Die Erfindung betrifft ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion, vorzugsweise von Erdgas. gegen einen Stickstoff-Kältekreislauf, wobei die Abkühlung der Einsatzfraktion gegen anzuwärmenden, gasförmigen Stickstoff und die Verflüssigung der Einsatzfraktion gegen zu verdampfenden, flüssigen Stickstoff erfolgt.
- Die Verflüssigung von Kohlenwasserstoff-reichen Gasen, insbesondere von Erdgasen, findet kommerziell in einem Kapazitätsbereich von 10 bis 30.000 Tonnen LNG pro Tag (tato) statt. Bei Anlagen mittlerer Kapazität – hierunter seien Verflüssigungsprozesse mit einer Kapazität zwischen 300 und 3.000 tato LNG zu verstehen – und großer Kapazität – hierunter seien Verflüssigungsprozesse mit einer Kapazität zwischen 3.000 und 30.000 tato LNG zu verstehen – ist der Fachmann bestrebt, durch hohe Effizienz die Betriebskosten zu optimieren. Demgegenüber stehen bei kleineren Anlagen – hierunter seien Verflüssigungsprozesse mit einer Kapazität zwischen 10 und 300 tato LNG zu verstehen – niedrige Investitionskosten im Vordergrund. Bei derartigen Anlagen ist der Investitionskostenanteil einer eigenen Kälteanlage, bei der als Arbeitsmittel bspw. Stickstoff oder ein Stickstoff-Kohlenwasserstoff-Gemisch zur Anwendung kommt, erheblich. Daher wird ggf. auf eine Kälteerzeugung in der Verflüssigungsanlage verzichtet und ein geeignetes Kältemittel importiert. Üblicherweise wird in diesem Fall flüssiger Stickstoff verwendet und nach seiner Nutzung als Kältemittel gasförmig an die Atmosphäre abgegeben. Sofern in der Nähe befindliche Luftzerlegungsanlagen ungenutzte Produktmengen an flüssigem Stickstoff kostengünstig zur Verfügung stellen können, ist dieses Konzept für kleine Verflüssigungsanlagen durchaus kommerziell sinnvoll.
- Aus Kostengründen kommen bei kleinen. Flüssig-Stickstoff-gekühlten Anlagen im Regelfall gelötete Aluminium-Plattenwärmetauscher zur Anwendung. Diese Apparate sind jedoch empfindlich gegenüber starken thermischen Belastungen, wie sie bspw. durch ein Überangebot an Kältemittel und/oder großen Temperaturdifferenzen zwischen warmen und kalten Prozessströmen entstehen können. Die resultierenden mechanischen Spannungen können zu Schäden an diesen Apparaten führen.
- Zusätzlich ist zu beachten, dass während des Betriebs des Verflüssigungsprozesses die Gefriertemperatur der Einsatzfraktion nicht unterschritten werden darf. Der Festpunkt von Methan liegt mit –182°C deutlich über der atmosphärischen Siedetemperatur von Stickstoff, die –196°C beträgt. Ein Einfrieren der Anlage verursacht immer eine unerwünschte Betriebsstörung und kann zudem bleibende Schäden zur Folge haben.
- Ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion ist aus dem
US-Patent 5,390,499 bekannt. Dieses Verfahren eignet sich insbesondere für Anlagen kleiner Kapazität, wie sie eingangs erläutert wurden. Bei dem imUS-Patent 5.390,499 beschriebenen Verflüssigungsverfahren wird das zu verflüssigende Gas in zwei separaten Wärmetauschern gegen Stickstoff gekühlt und verflüssigt. Hierbei wird der flüssige tiefsiedende Stickstoff im zweiten Wärmetauscher vollständig verdampft und bis zu einer Temperatur angewärmt, bei der aus dem zu verflüssigenden Gas mittels eines Abscheiders schwerere Rohgaskomponenten flüssig abgezogen werden können. Bei einer wie in demUS-Patent 5,390,499 beschriebenen Verfahrensführung kann jedoch die Stelle, an der der Stickstoff vollständig verdampft ist, je nach Last erheblich schwanken. Dies kann zu unerwünschten Prozessbedingungen führen, die die vorgenannten Nachteile zur Folge haben. - Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion anzugeben, das die vorgenannten Nachteile vermeidet und insbesondere ein Verfahren schafft, das robust gegen betriebliche Störungen und Schäden ist.
- Zur Lösung dieser Aufgabe wird ein Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion vorgeschlagen, das dadurch gekennzeichnet ist, dass
- – die Abkühlung und Verflüssigung der Einsatzfraktion in einem wenigstens dreistufigen Wärmetauschprozess erfolgt,
- – wobei in dem ersten Abschnitt des Wärmetauschprozesses die Einsatzfraktion gegen überhitzten gasförmigen Stickstoff soweit abgekühlt wird, dass eine im Wesentlichen vollständige Abtrennung der schwereren Komponenten realisierbar ist,
- – in dem zweiten Abschnitt des Wärmetauschprozesses die von schwereren Komponenten befreite Einsatzfraktion gegen zu überhitzenden gasförmigen Stickstoff teilverflüssigt wird, und
- – in dem dritten Abschnitt des Wärmetauschprozesses die Einsatzfraktion gegen teilzuverdampfenden Stickstoff verflüssigt wird.
- Unter dem Begriff ”schwere Komponenten” seien nachfolgend Kohlenwasserstoffe ab Ethan zu verstehen.
- Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion sind dadurch gekennzeichnet. dass
- – der dreistufige Wärmetauschprozess in einem oder mehreren Wärmetauschern realisiert wird,
- – der Kondensationsdruck der von schwereren Komponenten befreiten Einsatzfraktion auf Werte zwischen 1 und 15 bara, vorzugsweise zwischen 1 und 8 bara eingestellt wird, und
- – der Siededruck des zu überhitzenden gasförmigen Stickstoffs auf Werte zwischen 5 und 30 bara, vorzugsweise zwischen 10 und 20 bara eingestellt wird.
- Das erfindungsgemäße Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion sowie weitere vorteilhafte Ausgestaltungen desselben seien nachfolgend anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
- Die zu verflüssigende Kohlenwasserstoff-reiche Einsatzfraktion wird über Leitung 1 einem Wärmetauscher E1 zugeführt. Dieser ist in drei Abschnitte bzw. Stufen a bis c aufgeteilt. Die Grenzen zwischen diesen Abschnitten bzw. Stufen sind durch die beiden gestrichelten Linien dargestellt. Im wärmsten Abschnitt a des Wärmetauschers E1 wird die Kohlenwasserstoff-reiche Einsatzfraktion gegen überhitzten gasförmigen Stickstoff, der dem Wärmetauscher E1 über Leitung
9 zugeführt wird, soweit abgekühlt, dass in einem dem Wärmetauscher E1 nachgeschalteten Abscheider D2 eine Abtrennung der schweren Komponenten aus der Einsatzfraktion möglich ist. Dazu wird die abgekühlte Einsatzfraktion aus dem Wärmetauscher E1 über Leitung1 dem Abscheider D2 zugeführt. Aus dessen Sumpf werden über Leitung2' , in der ein Ventil V1 vorgesehen ist. die unerwünschten, schweren Komponenten in flüssiger Form abgezogen und aus dem Prozess abgegeben. - Anstelle des in der Figur dargestellten Abscheiders D2 kann eine Rektifizierkolonne zur Anwendung kommen, die eine schärfere Abtrennung schwerer Komponenten bzw. höherer Kohlenwasserstoffe aus der Einsatzfraktion zu erreichen.
- Am Kopf des Abscheiders D2 wird über Leitung
2 die von schweren Komponenten befreite Einsatzfraktion abgezogen und dem zweiten Abschnitt b des Wärmetauschers E1 zugeführt. In diesem wird die von schweren Komponenten befreite Einsatzfraktion gegen zu überhitzenden gasförmigen Stickstoff9 teilverflüssigt. Anschließend erfolgt in der dritten Stufe c des Wärmetauschers E1 die vollständige Verflüssigung der Einsatzfraktion gegen teilzuverdampfenden Stickstoff, der dem Wärmetauscher E1 über die Leitung8 zugeführt wird. - Die verflüssigte Einsatzfraktion wird nach Durchgang durch den Wärmetauscher E1 über Leitung
3 , in der ein Regelventil V3 angeordnet ist, einem Speicherbehälter D4 zugeführt. Aus diesem kann das verflüssigte Produkt (LNG) über Leitung4 abgegeben werden. Das Regelventil V3 dient der Entspannung der verflüssigten Einsatzfraktion auf den Produktabgabedruck, der mindestens annähernd dem Atmosphärendruck entspricht. - Sofern der Stickstoff im dritten Abschnitt c des Wärmetauschers E1 bei einem Druck von mehr als 15 bara verdampft wird, ist seine Siedetemperatur nicht mehr tief genug, um die verflüssigte Einsatzfraktion soweit zu unterkühlen, dass eine Ausgasung nach einer Entspannung im Regelventil V3 verhindert werden kann. In diesem Fall wird das im Speicherbehälter D4 entstehende Boil-off-Gas vorteilhafterweise über Leitung
5 abgezogen, im Verdichter C3 verdichtet und der von schweren Komponenten befreiten Einsatzfraktion2 vor deren Verflüssigung wieder zugeführt und im Wärmetauscher E1 rückverflüssigt. Diese Verfahrensführung ist insbesondere bei einer nennenswerten Zwischenlagerung des LNG Produktes in einem atmosphärischen Flachbodentank D4 zu wählen, da somit auch das anfallende Boil-off-Gas verarbeitet wird. - Der für die Kältebereitstellung erforderliche Stickstoff wird dem Verflüssigungsprozess über Leitung
6 zugeführt. In vorteilhafter Weise ist ein Pufferbehälter D3 vorgesehen, der dem Ausgleich von Mengenschwankungen der zu verflüssigenden Einsatzfraktion und/oder des Kältemittels Stickstoff dient. Mittels einer Pumpe P1 wird flüssiger Stickstoff in der erforderlichen Menge über Leitung7 einem Abscheider D1 zugeführt. Aus dem Sumpf des Abscheiders D1 wird siedender Stickstoff entnommen und über Leitung8 durch den kältesten Abschnitt c des Wärmetauschers E1 geführt. Der dabei teilweise verdampfte Stickstoff wird anschließend über Leitung8' erneut dem Abscheider D1 zugeführt. - Sofern der noch zu beschreibende Rückverflüssigungsprozess betrieben wird, kann zumindest zeitweise die Kälteerzeugung durch die Rückverflüssigung des Stickstoffs den Kältebedarf der Erdgasverflüssigung übersteigen. Ein dadurch entstehendes Überangebot an flüssigem Stickstoff kann über Leitung
8'' und Ventil V6 in den Pufferbehälter D3 abgegeben werden. - Am Kopf des Abscheiders D1 wird über Leitung
9 gasförmiger Stickstoff abgezogen und dem mittleren Abschnitt b des Wärmetauschers E1 zugeführt. Im Gegenstrom zu der abzukühlenden und teilzuverflüssigenden Einsatzfraktion2 wird der gasförmige Stickstoff durch den zweiten und ersten Abschnitt des Wärmetauschers E1 geführt und dabei angewärmt sowie überhitzt. Der überhitzte Stickstoff wird anschließend über die Leitungsabschnitte10 und11 aus dem Prozess abgezogen. - Mittels des Regelventils V4 kann der Siededruck des zu überhitzenden gasförmigen Stickstoffs
9 geregelt werden. In vorteilhafter Weise wird dieser Siededruck auf Werte zwischen 5 und 30 bara, vorzugsweise zwischen 10 und 20 bara eingestellt. - In analoger Weise kann mittels des Regelventils V2 der Kondensationsdruck der von schwereren Komponenten befreiten Einsatzfraktion
2 geregelt werden. Dieser Kondensationsdruck wird vorzugsweise auf Werte zwischen 1 und 15 bara. vorzugsweise zwischen 1 und 8 bara eingestellt. - Mittels der Regelventile V2 und/oder V4 kann somit das Temperaturprofil im dritten Abschnitt c des Wärmetauschers E1 kontrolliert werden. Während mittels des Regelventils V2 der Kondensationsdruck der Einsatzfraktion im Abschnitt zwischen den Regelventilen V2 und V3 festgelegt wird, wird mittels des Regelventils V4 der Siededruck des Stickstoffs im Abscheider D1 und dem dritten Abschnitt c des Wärmetauschers E1 geregelt. Aufgrund der vorbeschriebenen Aufteilung des Wärmetauschprozesses in einen zweiten und dritten Abschnitt und mit der Phasentrennung im Abscheider D1 kann nunmehr exakt festgelegt werden, in welchem Abschnitt des Wärmetauschers E1 eine (Teil-)Verdampfung bzw. Überhitzung des Stickstoffes stattfindet.
- Durch die Aufteilung des Wärmetauschprozesses E1 in drei Abschnitte a bis c kann zuverlässig ausgeschlossen werden, dass die Phasengrenze zwischen flüssigem und gasförmigem Kältemittel innerhalb des Wärmetauschers E1 wandert und dadurch unerwünschte thermische und mechanische Spannungen innerhalb des Wärmetauschers E1 bewirkt werden.
- Sofern der Stickstoffsiededruck (pN2) und der Rohgaskondensationsdruck (pRG) nach der Ungleichung pRG (bara) ≥ 0,3 pN2 (bara) – 1 gewählt werden, wird eine thermische Überlastung des Wärmetauschers E1 durch unzulässig hohe Temperaturdifferenzen sicher vermieden.
- Durch die Begrenzung des Siededrucks des flüssigen Stickstoffs im dritten Abschnitt c des Wärmetauschers E1 und des Abscheiders D1 auf mindestens 5 bara – die zugehörige Siedetemperatur beträgt –179°C – kann sicher verhindert werden, dass im Wärmetauscher E1 eine Temperatur unterhalb der Gefriertemperatur von Methan auftritt. Somit sind Betriebsprobleme und ggf. Schäden durch Feststoffbildung ausgeschlossen.
- Der über Leitung
10 aus dem Wärmetauscher E1 abgezogene überhitzte Stickstoff kann alternativ zu einer Abführung über Leitung11 zumindest teilweise rückverflüssigt werden. Dazu wird der Stickstoff über die Leitungsabschnitte12 und13 einer Verdichtung zugeführt – in der Figur dargestellt durch eine zweistufige Verdichtereinheit C1/C2, wobei jeder Verdichtereinheit ein Wärmetauscher E3 bzw. E4 nachgeschaltet ist – und anschließend über Leitung14 einem Wärmetauscher E2 zugeführt. In diesem wird der Stickstoff rückverflüssigt und sodann über Leitung15 dem Abscheider D1 zugeführt. Eine Druckregulierung des Verdichters C2 erfolgt über das Regelventil V5. Zum Zwecke der Kältebereitstellung im Wärmetauscher E2 wird über Leitung16 ein Teilstrom des verdichteten Stickstoffstromes abgezogen, vorzugsweise mehrstufig entspannt – dargestellt durch die Gasexpander X1 und X2 – und anschließend über Leitung17 im Gegenstrom zu dem zu verflüssigenden Stickstoffstrom durch den Wärmetauscher E2 geführt. Die Wellen der Verdichter C1 und C2 sind vorzugsweise mit den Wellen der Gasexpander X2 und X1 gekoppelt. - Sofern der vorbeschriebene Rückverflüssigungsprozess betrieben wird, ist es vorteilhaft, dem Wärmetauscher E1 über Leitung
9 nur die Menge an gasförmigem Stickstoff zuzuführen, die für eine kleine positive Temperaturdifferenz von ca. 3°C zwischen den Strömen1 und10 am warmen Ende des Wärmetauschers E1 erforderlich ist. Die überschießende Menge an kaltem, gasförmigen Stickstoff wird über Leitung9' anteilig zur Rückverflüssigung im Wärmetauscher E2 verwendet. - Grundsätzlich kann der Verflüssigungsprozess mittels ”importiertem” Stickstoff – in diesem Falle wird der überhitzte Stickstoff aus dem Wärmetauscher E1 über die Leitungsabschnitte
10 und11 abgezogen –, mittels rückverflüssigtem Stickstoff oder durch eine beliebige Kombination beider Betriebsarten erfolgen. - ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- US 5390499 [0005, 0005, 0005]
Claims (4)
- Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Einsatzfraktion, vorzugsweise von Erdgas, gegen einen Stickstoff-Kältekreislauf, wobei die Abkühlung der Einsatzfraktion gegen anzuwärmenden, gasförmigen Stickstoff und die Verflüssigung der Einsatzfraktion gegen zu verdampfenden, flüssigen Stickstoff erfolgt, dadurch gekennzeichnet, dass – die Abkühlung und Verflüssigung der Einsatzfraktion in einem wenigstens dreistufigen Wärmetauschprozess (E1a–E1c) erfolgt. – wobei in dem ersten Abschnitt des Wärmetauschprozesses (E1a) die Einsatzfraktion (
1 ) gegen überhitzten gasförmigen Stickstoff (9 ) soweit abgekühlt wird. dass eine im Wesentlichen vollständige Abtrennung (D2) der schwereren Komponenten (2' ) realisierbar ist, – in dem zweiten Abschnitt des Wärmetauschprozesses (E1b) die von schwereren Komponenten befreite Einsatzfraktion (2 ) gegen zu überhitzenden gasförmigen Stickstoff (9 ) teilverflüssigt wird, und – in dem dritten Abschnitt des Wärmetauschprozesses (E1c) die Einsatzfraktion (2 ) gegen teilzuverdampfenden Stickstoff (8 ) verflüssigt wird. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der dreistufige Wärmetauschprozess (E1a–E1c) in einem oder mehreren Wärmetauschern realisiert wird.
- Verfahren nach Anspruch 1 oder 2. dadurch gekennzeichnet, dass der Kondensationsdruck der von schwereren Komponenten befreiten Einsatzfraktion (
2 ) auf Werte zwischen 1 und 15 bara, vorzugsweise zwischen 1 und 8 bara eingestellt wird (V2). - Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Siededruck des zu überhitzenden gasförmigen Stickstoffs (
9 ) auf Werte zwischen 5 und 30 bara, vorzugsweise zwischen 10 und 20 bara eingestellt wird (V4).
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010044869A DE102010044869A1 (de) | 2010-09-09 | 2010-09-09 | Erdgasverflüssigung |
CN201110294097.8A CN102410702B (zh) | 2010-09-09 | 2011-09-06 | 天然气的液化 |
ARP110103264A AR082919A1 (es) | 2010-09-09 | 2011-09-07 | Procedimiento para licuar una fraccion de partida rica en hidrocarburos |
CH01475/11A CH703773B1 (de) | 2010-09-09 | 2011-09-07 | Verfahren zum Verflüssigen einer kohlenwasserstoffreichen Einsatzfraktion. |
US13/226,633 US20120060553A1 (en) | 2010-09-09 | 2011-09-07 | Natural gas liquefaction |
NO20111212A NO20111212A1 (no) | 2010-09-09 | 2011-09-07 | Kondensasjon av naturgass |
BRPI1104609-0A BRPI1104609A2 (pt) | 2010-09-09 | 2011-09-08 | liquefaÇço de gÁs natural |
AU2011221424A AU2011221424B2 (en) | 2010-09-09 | 2011-09-09 | Natural gas liquefaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010044869A DE102010044869A1 (de) | 2010-09-09 | 2010-09-09 | Erdgasverflüssigung |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102010044869A1 true DE102010044869A1 (de) | 2012-03-15 |
Family
ID=45755973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102010044869A Pending DE102010044869A1 (de) | 2010-09-09 | 2010-09-09 | Erdgasverflüssigung |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120060553A1 (de) |
CN (1) | CN102410702B (de) |
AR (1) | AR082919A1 (de) |
AU (1) | AU2011221424B2 (de) |
BR (1) | BRPI1104609A2 (de) |
CH (1) | CH703773B1 (de) |
DE (1) | DE102010044869A1 (de) |
NO (1) | NO20111212A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115987A1 (de) | 2011-10-14 | 2013-04-18 | Linde Aktiengesellschaft | Erdgasverflüssigung |
WO2017103536A1 (fr) * | 2015-12-17 | 2017-06-22 | Engie | Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre |
EP3550238A1 (de) * | 2018-04-05 | 2019-10-09 | Waga Energy | Verflüssigungsverfahren von gasförmigem methan durch stickstoff-verdampfung, verflüssigungsanlage von gasförmigem methan, die dieses verfahren anwendet |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140157824A1 (en) * | 2012-12-06 | 2014-06-12 | L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for improved thermal performing refrigeration cycle |
EP2899116A3 (de) * | 2014-01-22 | 2015-11-25 | Meyer Werft GmbH & Co. KG | Verfahren und Tankvorrichtung zur Rückverflüssigung und Kühlung von Flüssigerdgas in Tanksystemen |
FR3021091B1 (fr) * | 2014-05-14 | 2017-09-15 | Ereie - Energy Res Innovation Eng | Procede et dispositif de liquefaction du methane |
JP6527714B2 (ja) * | 2015-02-25 | 2019-06-05 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 液体燃料ガスの供給装置および供給方法 |
CN104877724A (zh) * | 2015-05-11 | 2015-09-02 | 四川捷贝通能源科技有限公司 | 一种放空天然气回收的处理方法 |
US10393431B2 (en) * | 2016-08-05 | 2019-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for the integration of liquefied natural gas and syngas production |
US10634425B2 (en) * | 2016-08-05 | 2020-04-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integration of industrial gas site with liquid hydrogen production |
US11402151B2 (en) * | 2017-02-24 | 2022-08-02 | Praxair Technology, Inc. | Liquid natural gas liquefier utilizing mechanical and liquid nitrogen refrigeration |
TWI712769B (zh) * | 2017-11-21 | 2020-12-11 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | 蒸發氣體再冷凝裝置及具備其的液化天然氣供給系統 |
JP7026490B2 (ja) * | 2017-11-21 | 2022-02-28 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Bog再凝縮装置およびそれを備えるlng貯蔵システム。 |
FR3084453B1 (fr) * | 2018-07-25 | 2020-11-27 | Air Liquide | Procede et appareil de separation cryogenique d'un melange de monoxyde de carbone, d'hydrogene et de methane pour la production de ch4 |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US20210063083A1 (en) | 2019-08-29 | 2021-03-04 | Exxonmobil Upstream Research Company | Liquefaction of Production Gas |
US11083994B2 (en) | 2019-09-20 | 2021-08-10 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration |
US11808411B2 (en) | 2019-09-24 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen |
US11703277B2 (en) * | 2020-02-06 | 2023-07-18 | Cosmodyne, LLC | Systems and methods for natural gas cooling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390499A (en) | 1993-10-27 | 1995-02-21 | Liquid Carbonic Corporation | Process to increase natural gas methane content |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2725503B1 (fr) * | 1994-10-05 | 1996-12-27 | Inst Francais Du Petrole | Procede et installation de liquefaction du gaz naturel |
DE4440401A1 (de) * | 1994-11-11 | 1996-05-15 | Linde Ag | Verfahren zum Verflüssigen von Erdgas |
EP0723125B1 (de) * | 1994-12-09 | 2001-10-24 | Kabushiki Kaisha Kobe Seiko Sho | Anlage und Verfahren zur Gasverflüssigung |
FR2743140B1 (fr) * | 1995-12-28 | 1998-01-23 | Inst Francais Du Petrole | Procede et dispositif de liquefaction en deux etapes d'un melange gazeux tel qu'un gaz naturel |
DE19612173C1 (de) * | 1996-03-27 | 1997-05-28 | Linde Ag | Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes |
NO328493B1 (no) * | 2007-12-06 | 2010-03-01 | Kanfa Aragon As | System og fremgangsmåte for regulering av kjøleprosess |
-
2010
- 2010-09-09 DE DE102010044869A patent/DE102010044869A1/de active Pending
-
2011
- 2011-09-06 CN CN201110294097.8A patent/CN102410702B/zh not_active Expired - Fee Related
- 2011-09-07 US US13/226,633 patent/US20120060553A1/en not_active Abandoned
- 2011-09-07 CH CH01475/11A patent/CH703773B1/de unknown
- 2011-09-07 NO NO20111212A patent/NO20111212A1/no not_active Application Discontinuation
- 2011-09-07 AR ARP110103264A patent/AR082919A1/es active IP Right Grant
- 2011-09-08 BR BRPI1104609-0A patent/BRPI1104609A2/pt not_active Application Discontinuation
- 2011-09-09 AU AU2011221424A patent/AU2011221424B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390499A (en) | 1993-10-27 | 1995-02-21 | Liquid Carbonic Corporation | Process to increase natural gas methane content |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115987A1 (de) | 2011-10-14 | 2013-04-18 | Linde Aktiengesellschaft | Erdgasverflüssigung |
DE102011115987B4 (de) | 2011-10-14 | 2019-05-23 | Linde Aktiengesellschaft | Erdgasverflüssigung |
WO2017103536A1 (fr) * | 2015-12-17 | 2017-06-22 | Engie | Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre |
FR3045795A1 (fr) * | 2015-12-17 | 2017-06-23 | Engie | Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre |
EP3550238A1 (de) * | 2018-04-05 | 2019-10-09 | Waga Energy | Verflüssigungsverfahren von gasförmigem methan durch stickstoff-verdampfung, verflüssigungsanlage von gasförmigem methan, die dieses verfahren anwendet |
FR3079923A1 (fr) * | 2018-04-05 | 2019-10-11 | Waga Energy | Procede de liquefaction de methane gazeux par vaporisation d'azote, installation de liquefaction du methane gazeux mettant en œuvre le procede. |
Also Published As
Publication number | Publication date |
---|---|
AU2011221424B2 (en) | 2016-03-31 |
AR082919A1 (es) | 2013-01-16 |
CH703773A2 (de) | 2012-03-15 |
US20120060553A1 (en) | 2012-03-15 |
CN102410702B (zh) | 2016-01-20 |
BRPI1104609A2 (pt) | 2013-04-24 |
CH703773B1 (de) | 2015-02-27 |
CN102410702A (zh) | 2012-04-11 |
NO20111212A1 (no) | 2012-03-12 |
AU2011221424A1 (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010044869A1 (de) | Erdgasverflüssigung | |
EP0975923B1 (de) | Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes | |
DE102010011052A1 (de) | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion | |
WO2006094675A1 (de) | Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes | |
DE102016005632A1 (de) | Mischkolonne für Verfahren mit einem Einzelmischkältemittel | |
WO2008104308A2 (de) | Verfahren zum abtrennen von stickstoff aus verflüssigtem erdgas | |
DE102011109234A1 (de) | Verflüssigen eines Methan-reichen Gases | |
DE102015001858A1 (de) | Kombinierte Abtrennung von Schwer- und Leichtsiedern aus Erdgas | |
WO2003106906A1 (de) | Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes mit gleichzeitiger gewinnung einer c3+-reichen fraktion mit hoher ausbeute | |
WO2008022689A2 (de) | Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes | |
WO2010121752A2 (de) | Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion | |
WO2006136269A1 (de) | Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes | |
EP4179269A1 (de) | Verfahren und eine anlage zur auftrennung eines einsatzstroms | |
DE102011104725A1 (de) | Verfahren zum Verflüssigen einer Kohlenwasserstoffreichen Fraktion | |
WO2017054929A1 (de) | Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion | |
EP4007881A1 (de) | Verfahren und anlage zur herstellung von flüssigerdgas | |
DE1960301B2 (de) | Verfahren und einrichtung zum verfluessigen und unterkuehlen eines methanreichen verbrauchsgasstromes | |
DE102012008961A1 (de) | Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion | |
DE102016003305A1 (de) | Verfahren zum Abtrennen einer ethanreichen Fraktion aus Erdgas | |
DE102011115987B4 (de) | Erdgasverflüssigung | |
DE102015004125A1 (de) | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion | |
DE102013016695A1 (de) | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion | |
DE2702226A1 (de) | Verfahren zum verfluessigen eines gases mit hilfe von fluessigem erdgas | |
DE102005038266A1 (de) | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes | |
DE102010035230A1 (de) | Verfahren zum Abtrennen von Stickstoff aus Erdgas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: LINDE GMBH, DE Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE |