DE102018107435A1 - Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber - Google Patents
Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber Download PDFInfo
- Publication number
- DE102018107435A1 DE102018107435A1 DE102018107435.2A DE102018107435A DE102018107435A1 DE 102018107435 A1 DE102018107435 A1 DE 102018107435A1 DE 102018107435 A DE102018107435 A DE 102018107435A DE 102018107435 A1 DE102018107435 A1 DE 102018107435A1
- Authority
- DE
- Germany
- Prior art keywords
- reaction chamber
- oxidation
- gas
- chamber
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 36
- 230000003647 oxidation Effects 0.000 title claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 15
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 13
- 239000010959 steel Substances 0.000 title claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000012464 large buffer Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/767—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0457—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0257—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Die Erfindung betrifft ein verbessertes Verfahren zur Voroxidation von hochfestem Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer.
Die Reaktionskammer wird an einem Bandeintritt und einem Bandaustritt gegen Gasaustausch zwischen dem Ofenraum und der Reaktionskammer abgedichtet und ein Gas, das eine oxidierende Atmosphäre in der Reaktionskammer ausbildet, wird eingeleitet und das Gas wird dabei innerhalb der Reaktionskammer permanent umgewälzt.The invention relates to an improved process for the pre-oxidation of high-strength strip steel in a reaction chamber arranged in a furnace chamber.
The reaction chamber is sealed at a belt inlet and a belt outlet against gas exchange between the furnace chamber and the reaction chamber, and a gas forming an oxidizing atmosphere in the reaction chamber is introduced and the gas is thereby continuously circulated within the reaction chamber.
Description
Die Erfindung betrifft ein verbessertes Verfahren zur Voroxidation von oxidationsempfindlichem Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer, um hierdurch für eine sich unmittelbar daran anschließende Schmelztauchbeschichtung geeignete Oberflächeneigenschaften des zu beschichtenden Bandstahls einzustellen.The invention relates to an improved process for the preoxidation of oxidation-sensitive steel strip in a reaction chamber arranged in a furnace chamber, in order to thereby set suitable surface properties of the strip steel to be coated for a directly following hot dip coating.
Übliche hochfeste Bandstähle enthalten als Legierungselemente Mangan, Silicium und /oder Aluminium. Während der möglichen rekristallisierenden Glühung vor der Schmelztauchbeschichtung diffundieren diese Legierungselemente zur Bandoberfläche hin. Da diese Legierungselemente sehr sauerstoffaffin sind, werden sie, soweit sie sich an der Bandoberfläche bzw. in geringer Tiefe im Band befinden, nahezu unvermeidlich oxidiert. Das Grundmaterial Eisen wird dabei allerdings nicht oxidiert. Dieses Phänomen ist auch als selektive Oxidation bekannt. Die an der Oberfläche durch die selektive Oxidation gebildeten Mangan-, Silicium-, und/oder Aluminiumoxide beeinträchtigen jedoch die Benetzbarkeit der Bandoberfläche mit einem schmelzflüssigen Überzugsmetall (beispielsweise Zink), mit der Folge von Fehlstellen (sog. bare spots) bzw. einer schlechten Haftung des Überzugs mit der Bandoberfläche. Wobei für die Beschichtungsprobleme am hochfesten Stahl die Legierungszusammensetzung maßgeblich ist, vor allem die Neigung zur Bildung nicht reduzierbarer Oxide an der Oberfläche.Conventional high-strength strip steels contain manganese, silicon and / or aluminum as alloying elements. During the possible recrystallizing annealing prior to the hot dip coating, these alloying elements diffuse towards the strip surface. Since these alloying elements are very oxygen-affine, they are almost inevitably oxidized as far as they are at the strip surface or at a shallow depth in the strip. However, the basic material iron is not oxidized. This phenomenon is also known as selective oxidation. However, the surface, by the selective oxidation formed manganese, silicon, and / or aluminum oxides affect the wettability of the strip surface with a molten coating metal (for example zinc), with the result of defects (so-called bare spots) or a poor adhesion the coating with the tape surface. The alloy composition is decisive for the coating problems on high-strength steel, in particular the tendency to form non-reducible oxides at the surface.
Das betrifft beispielsweise folgende Stahlqualitäten :
Um die Haftung des Überzugs an der Bandoberfläche zu verbessern, ist in der
- 1. Erwärmen des Bandes unter reduzierender Atmosphäre, mit 2 bis 3 % Wasserstoffanteil, bis auf 650 bis 750°C;
- 2. Oxidieren der weitgehend aus Reineisen bestehenden Bandoberfläche in einer Reaktionskammer mit einer Atmosphäre mit 0,01 bis 1 % Sauerstoffanteil. Dabei wird eine Eisenoxidschicht gebildet, welche die vorher gebildeten Legierungsoxide abdeckt. Die Behandlungsdauer soll 1 bis 10 sec und die Dicke der gebildeten Oxidschicht soll 300 nm betragen;
- 3. Glühen des Bandstahls unter reduzierender Atmosphäre mit 2 bis 8% Wasserstoffanteil bis auf maximal 900°C. Dabei wird die Eisenoxidschicht wieder zu Reineisen reduziert, auf der dann das Überzugsmetall gut und sicher haftet.
- 1. heating the ribbon under reducing atmosphere, with 2 to 3% hydrogen content, up to 650 to 750 ° C;
- 2. Oxidizing the existing largely pure iron strip surface in a reaction chamber with an atmosphere with 0.01 to 1% oxygen content. In this case, an iron oxide layer is formed, which covers the previously formed alloy oxides. The treatment time should be 1 to 10 sec and the thickness of the oxide layer formed should be 300 nm;
- 3. annealing the strip steel under a reducing atmosphere with 2 to 8% hydrogen content up to a maximum of 900 ° C. The iron oxide layer is reduced again to pure iron, on which then adheres the coating metal well and safely.
Dabei befindet sich die Reaktionskammer, mit einer im Innern stark oxidierenden Atmosphäre, im Ofenraum eines Durchlaufofens mit einer wasserstoffhaltigen, reduzierenden Atmosphäre. Bandeinlauf und Bandauslauf in die Reaktionskammer müssen bestmöglich gegen Gasaustausch abgedichtet sein. Ein Gasübertritt vom Ofen in die Reaktionskammer bewirkt, dass der eindringende Wasserstoff den zur Oxidation benötigten Sauerstoff zumindest teilweise verbraucht und die Beschaffenheit der angestrebten Oxidschicht auf der Bandoberfläche beeinträchtigt. Dieses Problem verschärft sich, je geringer der Sauerstoffgehalt in der Reaktionskammer ist. Umgekehrt bewirkt ein Gasübertritt aus der Reaktionskammer in den Ofen einen höheren Wassergehalt (Taupunkt) im Ofen und dadurch ein erhöhtes Oxidationspotential. Dieses ist insbesondere für höchstfeste Stähle mit einem höheren Anteil an sauerstoffaffinen Legierungselementen nachteilig.Here, the reaction chamber, with a strongly oxidizing atmosphere in the interior, in the furnace chamber of a continuous furnace with a hydrogen-containing, reducing atmosphere. Bandeinlauf and belt outlet in the reaction chamber must be sealed as possible against gas exchange. A gas transfer from the furnace into the reaction chamber causes the penetrating hydrogen at least partially consumes the oxygen required for the oxidation and impairs the nature of the desired oxide layer on the strip surface. This problem is exacerbated by the lower the oxygen content in the reaction chamber. Conversely, a gas transfer from the reaction chamber into the furnace causes a higher water content (dew point) in the furnace and thus an increased oxidation potential. This is disadvantageous in particular for very high strength steels with a higher content of oxygen affinity alloying elements.
Versuche haben ergeben, dass zur Einstellung einer gewünschten Oxidschicht die Bandtemperatur der zur Prozessführung entscheidende Parameter ist. Diese liegt vorzugsweise zwischen 650 und 750°C. Solange dabei der Sauerstoffgehalt > 1% und die Behandlungszeit > 1 s sind, ist deren Einfluss auf die Dicke der gebildeten Oxidschicht vernachlässigbar klein. Bei Sauerstoffgehalten im Bereich 2 bis 5% kann von einem unempfindlichen Prozess ausgegangen werden.Experiments have shown that for setting a desired oxide layer, the strip temperature is the decisive parameter for process control. This is preferably between 650 and 750 ° C. As long as the oxygen content is> 1% and the treatment time> 1 s, their influence on the thickness of the oxide layer formed is negligibly small. With oxygen contents in the range of 2 to 5%, an insensitive process can be assumed.
Es ist daher Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zur Voroxidation von hochfestem Bandstahl in einer Reaktionskammer innerhalb eines Ofenraums während der rekristallisierenden Glühung vor einer Schmelztauchbeschichtung zur Verfügung zu stellen. It is therefore an object of the present invention to provide an improved process for the pre-oxidation of high strength steel strip in a reaction chamber within a furnace chamber during the recrystallizing annealing prior to a hot dip coating.
Nach der Lehre der Erfindung wird diese Aufgabe durch die im Anspruch 1 angegebenen Merkmale gelöst, insbesondere dadurch, dass die Reaktionskammer an einem Bandeintritt und einem Bandaustritt gegen Gasaustausch zwischen dem Ofenraum und der Reaktionskammer abgedichtet wird und ein Gas, das eine oxidierende Atmosphäre in der Reaktionskammer ausbildet, eingeleitet und das Gas innerhalb der Reaktionskammer in einem geschlossenen Kreislauf permanent umgewälzt wird, wobei dessen Zusammensetzung geregelt und Verluste durch Leckagen und Verbrauch ausgeglichen werden.According to the teachings of the invention, this object is achieved by the features specified in claim 1, in particular in that the reaction chamber is sealed at a belt inlet and a belt outlet against gas exchange between the furnace chamber and the reaction chamber and a gas, the oxidizing atmosphere in the reaction chamber is formed, introduced and the gas within the reaction chamber in a closed circuit is permanently circulated, the composition of which is regulated and losses due to leakage and consumption are compensated.
Auf diese Weise ist es möglich, eine besonders gleichmäßig ausgebildete Oxidschicht auf der Bandoberfläche zu erzeugen, sodass Fehlstellen bei der sich anschließenden Schmelztauchbeschichtung vermieden werden und so die Qualität des Endprodukts verbessert und Ausschuss verringert wird.In this way, it is possible to produce a particularly uniformly formed oxide layer on the strip surface, so that defects in the subsequent hot-dip coating are avoided, thus improving the quality of the final product and reducing rejects.
Die Reaktionskammer ist grundsätzlich zum Ofenraum hin und insbesondere am Bandeintritt und Bandaustritt gegen Gasaustausch abgedichtet.The reaction chamber is basically sealed towards the furnace chamber and in particular at the belt inlet and belt outlet against gas exchange.
Die Atmosphäre wird permanent umgewälzt. Das Gas wird dazu aus der Reaktionskammer abgesaugt, gekühlt, einem Ventilator zugeführt, mit frischer Luft angereichert und wieder in die Kammer eingespeist. Damit wird eine gute Homogenität der Atmosphäre erreicht.The atmosphere is constantly being circulated. The gas is sucked out of the reaction chamber, cooled, fed to a fan, enriched with fresh air and fed back into the chamber. This achieves good homogeneity of the atmosphere.
Ein weiterer gewünschter Effekt ist, dass über Düsensysteme (mindestens ein Düsensystem) kontrolliert und gleichmäßig Gas mit hoher kinetischer Energiedichte unter Zuhilfenahme von Stickstoff als Trägergas der Bandoberfläche zugeführt wird. Das ist notwendig, um laminare Grenzschichteffekte zu vermeiden.Another desired effect is that controlled by nozzle systems (at least one nozzle system) and evenly gas with high kinetic energy density with the aid of nitrogen as the carrier gas of the strip surface is supplied. This is necessary to avoid laminar boundary layer effects.
Um einen ausreichenden Puffer gegen eindringenden Wasserstoff zu erreichen, beträgt der Sauerstoffgehalt der Atmosphäre in der Reaktionskammer minimal 1,5 bis maximal 5 vol%.In order to achieve a sufficient buffer against penetrating hydrogen, the oxygen content of the atmosphere in the reaction chamber is a minimum of 1.5 to a maximum of 5 vol%.
Zum Ausgleich von Volumenänderungen besitzt die Reaktionskammer einen Abzug. Vorzugsweise wird dieser Abzug so geregelt, dass der Innendruck der Reaktionskammer dem Druck der umgebenden Ofenatmosphäre entspricht und so der Gasaustausch über die unvermeidlichen Undichtigkeiten minimal ist.To compensate for volume changes, the reaction chamber has a trigger. Preferably, this trigger is controlled so that the internal pressure of the reaction chamber corresponds to the pressure of the surrounding furnace atmosphere and so the gas exchange over the unavoidable leaks is minimal.
Durch diese Maßnahmen wird ein gutmütig beherrschbarer Oxidationsprozess erreicht und eine Beeinträchtigung der die Reaktionskammer umgebenden Ofenatmosphäre wird verhindert.As a result of these measures, a good-natured, controllable oxidation process is achieved and impairment of the furnace atmosphere surrounding the reaction chamber is prevented.
Der oxidationsempfindliche Stahl kann mindestens eine Auswahl folgender Legierungsbestandteile enthalten: Mn > 0,5%, Al > 0,2%, Si > 0,1%, Cr > 0,3%.The oxidation-sensitive steel may contain at least a selection of the following alloy constituents: Mn> 0.5%, Al> 0.2%, Si> 0.1%, Cr> 0.3%.
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 102004059566 [0004]DE 102004059566 [0004]
Claims (7)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES18807218T ES2942672T3 (en) | 2017-11-17 | 2018-11-06 | Procedure for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace space |
CN201880074366.XA CN111356775B (en) | 2017-11-17 | 2018-11-06 | Method for pre-oxidizing strip steel in a reaction chamber arranged in a furnace chamber |
PL18807218.5T PL3710605T3 (en) | 2017-11-17 | 2018-11-06 | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber |
EP18807218.5A EP3710605B1 (en) | 2017-11-17 | 2018-11-06 | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber |
FIEP18807218.5T FI3710605T3 (en) | 2017-11-17 | 2018-11-06 | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber |
US16/764,234 US20230193442A1 (en) | 2017-11-17 | 2018-11-06 | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber |
PCT/EP2018/080242 WO2019096616A1 (en) | 2017-11-17 | 2018-11-06 | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber |
KR1020207017134A KR102445685B1 (en) | 2017-11-17 | 2018-11-06 | Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017220583.0 | 2017-11-17 | ||
DE102017220583 | 2017-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102018107435A1 true DE102018107435A1 (en) | 2019-05-23 |
Family
ID=66336350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102018107435.2A Withdrawn DE102018107435A1 (en) | 2017-11-17 | 2018-03-28 | Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP3710605B1 (en) |
KR (1) | KR102445685B1 (en) |
CN (1) | CN111356775B (en) |
DE (1) | DE102018107435A1 (en) |
ES (1) | ES2942672T3 (en) |
FI (1) | FI3710605T3 (en) |
PL (1) | PL3710605T3 (en) |
WO (1) | WO2019096616A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3816319A1 (en) * | 2019-10-29 | 2021-05-05 | Salzgitter Flachstahl GmbH | Method for producing a high strength steel strip with improved adhesion of zinc-based hot dip coatings |
CN114855108A (en) * | 2022-05-24 | 2022-08-05 | 山东钢铁集团日照有限公司 | Control method for surface plating leakage and zinc ash defects of high-aluminum-silicon-manganese galvanized dual-phase steel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004059566B3 (en) | 2004-12-09 | 2006-08-03 | Thyssenkrupp Steel Ag | Process for hot dip coating a strip of high strength steel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2458022B2 (en) * | 2010-11-30 | 2024-01-17 | Tata Steel UK Limited | Method of galvanising a steel strip in a continuous hot dip galvanising line |
DE102011050243A1 (en) * | 2011-05-10 | 2012-11-15 | Thyssenkrupp Steel Europe Ag | Apparatus and method for the continuous treatment of a flat steel product |
DE102011051731B4 (en) * | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
EP3170913A1 (en) * | 2015-11-20 | 2017-05-24 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
WO2016169918A1 (en) * | 2015-04-22 | 2016-10-27 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3292224B1 (en) * | 2015-05-07 | 2019-12-25 | Cockerill Maintenance & Ingéniérie S.A. | Method and device for reaction control |
-
2018
- 2018-03-28 DE DE102018107435.2A patent/DE102018107435A1/en not_active Withdrawn
- 2018-11-06 KR KR1020207017134A patent/KR102445685B1/en active IP Right Grant
- 2018-11-06 PL PL18807218.5T patent/PL3710605T3/en unknown
- 2018-11-06 WO PCT/EP2018/080242 patent/WO2019096616A1/en unknown
- 2018-11-06 CN CN201880074366.XA patent/CN111356775B/en active Active
- 2018-11-06 FI FIEP18807218.5T patent/FI3710605T3/en active
- 2018-11-06 EP EP18807218.5A patent/EP3710605B1/en active Active
- 2018-11-06 ES ES18807218T patent/ES2942672T3/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004059566B3 (en) | 2004-12-09 | 2006-08-03 | Thyssenkrupp Steel Ag | Process for hot dip coating a strip of high strength steel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3816319A1 (en) * | 2019-10-29 | 2021-05-05 | Salzgitter Flachstahl GmbH | Method for producing a high strength steel strip with improved adhesion of zinc-based hot dip coatings |
CN114855108A (en) * | 2022-05-24 | 2022-08-05 | 山东钢铁集团日照有限公司 | Control method for surface plating leakage and zinc ash defects of high-aluminum-silicon-manganese galvanized dual-phase steel |
Also Published As
Publication number | Publication date |
---|---|
KR102445685B1 (en) | 2022-09-21 |
CN111356775A (en) | 2020-06-30 |
EP3710605B1 (en) | 2023-01-25 |
PL3710605T3 (en) | 2023-03-20 |
WO2019096616A1 (en) | 2019-05-23 |
EP3710605A1 (en) | 2020-09-23 |
CN111356775B (en) | 2022-04-26 |
FI3710605T3 (en) | 2023-04-12 |
ES2942672T3 (en) | 2023-06-05 |
KR20200087817A (en) | 2020-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2732062B1 (en) | Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating | |
DE69719046T2 (en) | Process for manufacturing case hardened stainless steel bearing components | |
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
DE102012101018B3 (en) | Process for hot dip coating a flat steel product | |
DE2522485C3 (en) | Process for hot-metallizing strips or sheets made of low-alloy steels | |
EP2432910B1 (en) | Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product | |
EP1658390B1 (en) | Method for producing a hardened steel part | |
EP1634975B9 (en) | Hot dip alloyed zinc coated steel sheet and method for production thereof | |
DE112009004363T5 (en) | STEEL PLASTER, SELF-COMPREHENSIVE DEVICE FOR PRODUCING REINFORCED STEEL PLATE AND SELF-INSERTING METHOD FOR PREPARING COATED STEEL PLATE | |
EP2235229B9 (en) | Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer | |
DE112016003935T5 (en) | Aluminum and zinc hot dip and painted steel sheet with a high elongation and a yield strength of 500MPa level and its manufacturing process | |
DE112016003925T5 (en) | Aluminum and zinc hot dipped and painted steel sheet with a high elongation and a yield strength of 600MPa level and its manufacturing process | |
EP3736348B1 (en) | Method for producing an stitched packaging steel | |
EP1819840B1 (en) | Method for hot dip coating a strip of heavy-duty steel | |
DE102013105378B3 (en) | Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine | |
AT520637B1 (en) | METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP | |
DE102010017354A9 (en) | Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product | |
EP3710605B1 (en) | Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber | |
DE2832836A1 (en) | PROCESS FOR THE PRODUCTION OF SURFACE COATINGS WITH IMPROVED CORROSION PROPERTIES ON OBJECTS MADE FROM IRON-CHROME ALLOYS | |
EP2195471A1 (en) | Anti-corrosion coating with improved adhesion | |
WO2019154680A1 (en) | Method for producing a steel strip with improved bonding of metallic hot-dip coatings | |
DE2537298A1 (en) | PROCESS FOR PRE-TREATMENT OF A NON-ALLOY STEEL STRIP AND PLATE MATERIAL BEFORE FLUX-FREE IMMERSION COATING | |
DE19736514C1 (en) | Combined oxidation and heat treatment of ferrous metal parts | |
DE102020106996A1 (en) | Batch furnace for blanks to be press-hardened or components to be hardened and processes for heat treatment of blanks to be hardened or components to be hardened | |
EP2959025A1 (en) | Method for producing a corrosion-resistant steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R120 | Application withdrawn or ip right abandoned |