[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE102018107435A1 - Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber - Google Patents

Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber Download PDF

Info

Publication number
DE102018107435A1
DE102018107435A1 DE102018107435.2A DE102018107435A DE102018107435A1 DE 102018107435 A1 DE102018107435 A1 DE 102018107435A1 DE 102018107435 A DE102018107435 A DE 102018107435A DE 102018107435 A1 DE102018107435 A1 DE 102018107435A1
Authority
DE
Germany
Prior art keywords
reaction chamber
oxidation
gas
chamber
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102018107435.2A
Other languages
German (de)
Inventor
Frank Maschler
Lutz Kümmel
Jean-Pierre Crutzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Priority to ES18807218T priority Critical patent/ES2942672T3/en
Priority to CN201880074366.XA priority patent/CN111356775B/en
Priority to PL18807218.5T priority patent/PL3710605T3/en
Priority to EP18807218.5A priority patent/EP3710605B1/en
Priority to FIEP18807218.5T priority patent/FI3710605T3/en
Priority to US16/764,234 priority patent/US20230193442A1/en
Priority to PCT/EP2018/080242 priority patent/WO2019096616A1/en
Priority to KR1020207017134A priority patent/KR102445685B1/en
Publication of DE102018107435A1 publication Critical patent/DE102018107435A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Die Erfindung betrifft ein verbessertes Verfahren zur Voroxidation von hochfestem Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer.
Die Reaktionskammer wird an einem Bandeintritt und einem Bandaustritt gegen Gasaustausch zwischen dem Ofenraum und der Reaktionskammer abgedichtet und ein Gas, das eine oxidierende Atmosphäre in der Reaktionskammer ausbildet, wird eingeleitet und das Gas wird dabei innerhalb der Reaktionskammer permanent umgewälzt.
The invention relates to an improved process for the pre-oxidation of high-strength strip steel in a reaction chamber arranged in a furnace chamber.
The reaction chamber is sealed at a belt inlet and a belt outlet against gas exchange between the furnace chamber and the reaction chamber, and a gas forming an oxidizing atmosphere in the reaction chamber is introduced and the gas is thereby continuously circulated within the reaction chamber.

Description

Die Erfindung betrifft ein verbessertes Verfahren zur Voroxidation von oxidationsempfindlichem Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer, um hierdurch für eine sich unmittelbar daran anschließende Schmelztauchbeschichtung geeignete Oberflächeneigenschaften des zu beschichtenden Bandstahls einzustellen.The invention relates to an improved process for the preoxidation of oxidation-sensitive steel strip in a reaction chamber arranged in a furnace chamber, in order to thereby set suitable surface properties of the strip steel to be coated for a directly following hot dip coating.

Übliche hochfeste Bandstähle enthalten als Legierungselemente Mangan, Silicium und /oder Aluminium. Während der möglichen rekristallisierenden Glühung vor der Schmelztauchbeschichtung diffundieren diese Legierungselemente zur Bandoberfläche hin. Da diese Legierungselemente sehr sauerstoffaffin sind, werden sie, soweit sie sich an der Bandoberfläche bzw. in geringer Tiefe im Band befinden, nahezu unvermeidlich oxidiert. Das Grundmaterial Eisen wird dabei allerdings nicht oxidiert. Dieses Phänomen ist auch als selektive Oxidation bekannt. Die an der Oberfläche durch die selektive Oxidation gebildeten Mangan-, Silicium-, und/oder Aluminiumoxide beeinträchtigen jedoch die Benetzbarkeit der Bandoberfläche mit einem schmelzflüssigen Überzugsmetall (beispielsweise Zink), mit der Folge von Fehlstellen (sog. bare spots) bzw. einer schlechten Haftung des Überzugs mit der Bandoberfläche. Wobei für die Beschichtungsprobleme am hochfesten Stahl die Legierungszusammensetzung maßgeblich ist, vor allem die Neigung zur Bildung nicht reduzierbarer Oxide an der Oberfläche.Conventional high-strength strip steels contain manganese, silicon and / or aluminum as alloying elements. During the possible recrystallizing annealing prior to the hot dip coating, these alloying elements diffuse towards the strip surface. Since these alloying elements are very oxygen-affine, they are almost inevitably oxidized as far as they are at the strip surface or at a shallow depth in the strip. However, the basic material iron is not oxidized. This phenomenon is also known as selective oxidation. However, the surface, by the selective oxidation formed manganese, silicon, and / or aluminum oxides affect the wettability of the strip surface with a molten coating metal (for example zinc), with the result of defects (so-called bare spots) or a poor adhesion the coating with the tape surface. The alloy composition is decisive for the coating problems on high-strength steel, in particular the tendency to form non-reducible oxides at the surface.

Das betrifft beispielsweise folgende Stahlqualitäten : Gruppe C max [%] Si max [%] Mn max [%] Cr+Mo max [%] DP 0,14 - 0,23 0,5 - 1,0 1,8 - 2,9 1,0 - 1,4 CP 0,18 - 0,23 1,0 2,5 - 2,9 1,0 TRIP 0,23 - 0,25 1,8 - 2,2 2,1 - 2,5 0,2 Q&P 0,10 - 0,30 1,0 - 2,0 1,5 - 3,0 This applies, for example, to the following steel grades: group C max [%] Si max [%] Mn max [%] Cr + Mo max [%] DP 0.14-0.23 0.5 - 1.0 1.8 - 2.9 1.0 - 1.4 CP 0.18 - 0.23 1.0 2.5 - 2.9 1.0 TRIP 0.23-0.25 1.8 - 2.2 2.1 - 2.5 0.2 Q & P 0.10 - 0.30 1.0 - 2.0 1.5 - 3.0

Um die Haftung des Überzugs an der Bandoberfläche zu verbessern, ist in der DE 102 004 059 566 ein Verfahren beschrieben, bei dem das Band voroxidiert wird. Das in dieser Druckschrift beschriebene Verfahren kann wie folgt zusammengefasst werden:

  1. 1. Erwärmen des Bandes unter reduzierender Atmosphäre, mit 2 bis 3 % Wasserstoffanteil, bis auf 650 bis 750°C;
  2. 2. Oxidieren der weitgehend aus Reineisen bestehenden Bandoberfläche in einer Reaktionskammer mit einer Atmosphäre mit 0,01 bis 1 % Sauerstoffanteil. Dabei wird eine Eisenoxidschicht gebildet, welche die vorher gebildeten Legierungsoxide abdeckt. Die Behandlungsdauer soll 1 bis 10 sec und die Dicke der gebildeten Oxidschicht soll 300 nm betragen;
  3. 3. Glühen des Bandstahls unter reduzierender Atmosphäre mit 2 bis 8% Wasserstoffanteil bis auf maximal 900°C. Dabei wird die Eisenoxidschicht wieder zu Reineisen reduziert, auf der dann das Überzugsmetall gut und sicher haftet.
In order to improve the adhesion of the coating to the strip surface, is in the DE 102 004 059 566 a method is described in which the strip is pre-oxidized. The method described in this document can be summarized as follows:
  1. 1. heating the ribbon under reducing atmosphere, with 2 to 3% hydrogen content, up to 650 to 750 ° C;
  2. 2. Oxidizing the existing largely pure iron strip surface in a reaction chamber with an atmosphere with 0.01 to 1% oxygen content. In this case, an iron oxide layer is formed, which covers the previously formed alloy oxides. The treatment time should be 1 to 10 sec and the thickness of the oxide layer formed should be 300 nm;
  3. 3. annealing the strip steel under a reducing atmosphere with 2 to 8% hydrogen content up to a maximum of 900 ° C. The iron oxide layer is reduced again to pure iron, on which then adheres the coating metal well and safely.

Dabei befindet sich die Reaktionskammer, mit einer im Innern stark oxidierenden Atmosphäre, im Ofenraum eines Durchlaufofens mit einer wasserstoffhaltigen, reduzierenden Atmosphäre. Bandeinlauf und Bandauslauf in die Reaktionskammer müssen bestmöglich gegen Gasaustausch abgedichtet sein. Ein Gasübertritt vom Ofen in die Reaktionskammer bewirkt, dass der eindringende Wasserstoff den zur Oxidation benötigten Sauerstoff zumindest teilweise verbraucht und die Beschaffenheit der angestrebten Oxidschicht auf der Bandoberfläche beeinträchtigt. Dieses Problem verschärft sich, je geringer der Sauerstoffgehalt in der Reaktionskammer ist. Umgekehrt bewirkt ein Gasübertritt aus der Reaktionskammer in den Ofen einen höheren Wassergehalt (Taupunkt) im Ofen und dadurch ein erhöhtes Oxidationspotential. Dieses ist insbesondere für höchstfeste Stähle mit einem höheren Anteil an sauerstoffaffinen Legierungselementen nachteilig.Here, the reaction chamber, with a strongly oxidizing atmosphere in the interior, in the furnace chamber of a continuous furnace with a hydrogen-containing, reducing atmosphere. Bandeinlauf and belt outlet in the reaction chamber must be sealed as possible against gas exchange. A gas transfer from the furnace into the reaction chamber causes the penetrating hydrogen at least partially consumes the oxygen required for the oxidation and impairs the nature of the desired oxide layer on the strip surface. This problem is exacerbated by the lower the oxygen content in the reaction chamber. Conversely, a gas transfer from the reaction chamber into the furnace causes a higher water content (dew point) in the furnace and thus an increased oxidation potential. This is disadvantageous in particular for very high strength steels with a higher content of oxygen affinity alloying elements.

Versuche haben ergeben, dass zur Einstellung einer gewünschten Oxidschicht die Bandtemperatur der zur Prozessführung entscheidende Parameter ist. Diese liegt vorzugsweise zwischen 650 und 750°C. Solange dabei der Sauerstoffgehalt > 1% und die Behandlungszeit > 1 s sind, ist deren Einfluss auf die Dicke der gebildeten Oxidschicht vernachlässigbar klein. Bei Sauerstoffgehalten im Bereich 2 bis 5% kann von einem unempfindlichen Prozess ausgegangen werden.Experiments have shown that for setting a desired oxide layer, the strip temperature is the decisive parameter for process control. This is preferably between 650 and 750 ° C. As long as the oxygen content is> 1% and the treatment time> 1 s, their influence on the thickness of the oxide layer formed is negligibly small. With oxygen contents in the range of 2 to 5%, an insensitive process can be assumed.

Es ist daher Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zur Voroxidation von hochfestem Bandstahl in einer Reaktionskammer innerhalb eines Ofenraums während der rekristallisierenden Glühung vor einer Schmelztauchbeschichtung zur Verfügung zu stellen. It is therefore an object of the present invention to provide an improved process for the pre-oxidation of high strength steel strip in a reaction chamber within a furnace chamber during the recrystallizing annealing prior to a hot dip coating.

Nach der Lehre der Erfindung wird diese Aufgabe durch die im Anspruch 1 angegebenen Merkmale gelöst, insbesondere dadurch, dass die Reaktionskammer an einem Bandeintritt und einem Bandaustritt gegen Gasaustausch zwischen dem Ofenraum und der Reaktionskammer abgedichtet wird und ein Gas, das eine oxidierende Atmosphäre in der Reaktionskammer ausbildet, eingeleitet und das Gas innerhalb der Reaktionskammer in einem geschlossenen Kreislauf permanent umgewälzt wird, wobei dessen Zusammensetzung geregelt und Verluste durch Leckagen und Verbrauch ausgeglichen werden.According to the teachings of the invention, this object is achieved by the features specified in claim 1, in particular in that the reaction chamber is sealed at a belt inlet and a belt outlet against gas exchange between the furnace chamber and the reaction chamber and a gas, the oxidizing atmosphere in the reaction chamber is formed, introduced and the gas within the reaction chamber in a closed circuit is permanently circulated, the composition of which is regulated and losses due to leakage and consumption are compensated.

Auf diese Weise ist es möglich, eine besonders gleichmäßig ausgebildete Oxidschicht auf der Bandoberfläche zu erzeugen, sodass Fehlstellen bei der sich anschließenden Schmelztauchbeschichtung vermieden werden und so die Qualität des Endprodukts verbessert und Ausschuss verringert wird.In this way, it is possible to produce a particularly uniformly formed oxide layer on the strip surface, so that defects in the subsequent hot-dip coating are avoided, thus improving the quality of the final product and reducing rejects.

Die Reaktionskammer ist grundsätzlich zum Ofenraum hin und insbesondere am Bandeintritt und Bandaustritt gegen Gasaustausch abgedichtet.The reaction chamber is basically sealed towards the furnace chamber and in particular at the belt inlet and belt outlet against gas exchange.

Die Atmosphäre wird permanent umgewälzt. Das Gas wird dazu aus der Reaktionskammer abgesaugt, gekühlt, einem Ventilator zugeführt, mit frischer Luft angereichert und wieder in die Kammer eingespeist. Damit wird eine gute Homogenität der Atmosphäre erreicht.The atmosphere is constantly being circulated. The gas is sucked out of the reaction chamber, cooled, fed to a fan, enriched with fresh air and fed back into the chamber. This achieves good homogeneity of the atmosphere.

Ein weiterer gewünschter Effekt ist, dass über Düsensysteme (mindestens ein Düsensystem) kontrolliert und gleichmäßig Gas mit hoher kinetischer Energiedichte unter Zuhilfenahme von Stickstoff als Trägergas der Bandoberfläche zugeführt wird. Das ist notwendig, um laminare Grenzschichteffekte zu vermeiden.Another desired effect is that controlled by nozzle systems (at least one nozzle system) and evenly gas with high kinetic energy density with the aid of nitrogen as the carrier gas of the strip surface is supplied. This is necessary to avoid laminar boundary layer effects.

Um einen ausreichenden Puffer gegen eindringenden Wasserstoff zu erreichen, beträgt der Sauerstoffgehalt der Atmosphäre in der Reaktionskammer minimal 1,5 bis maximal 5 vol%.In order to achieve a sufficient buffer against penetrating hydrogen, the oxygen content of the atmosphere in the reaction chamber is a minimum of 1.5 to a maximum of 5 vol%.

Zum Ausgleich von Volumenänderungen besitzt die Reaktionskammer einen Abzug. Vorzugsweise wird dieser Abzug so geregelt, dass der Innendruck der Reaktionskammer dem Druck der umgebenden Ofenatmosphäre entspricht und so der Gasaustausch über die unvermeidlichen Undichtigkeiten minimal ist.To compensate for volume changes, the reaction chamber has a trigger. Preferably, this trigger is controlled so that the internal pressure of the reaction chamber corresponds to the pressure of the surrounding furnace atmosphere and so the gas exchange over the unavoidable leaks is minimal.

Durch diese Maßnahmen wird ein gutmütig beherrschbarer Oxidationsprozess erreicht und eine Beeinträchtigung der die Reaktionskammer umgebenden Ofenatmosphäre wird verhindert.As a result of these measures, a good-natured, controllable oxidation process is achieved and impairment of the furnace atmosphere surrounding the reaction chamber is prevented.

Der oxidationsempfindliche Stahl kann mindestens eine Auswahl folgender Legierungsbestandteile enthalten: Mn > 0,5%, Al > 0,2%, Si > 0,1%, Cr > 0,3%.The oxidation-sensitive steel may contain at least a selection of the following alloy constituents: Mn> 0.5%, Al> 0.2%, Si> 0.1%, Cr> 0.3%.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 102004059566 [0004]DE 102004059566 [0004]

Claims (7)

Verfahren zur Voroxidation von oxidationsempfindlichem Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer, gekennzeichnet dadurch, dass die Reaktionskammer an einem Bandeintritt und einem Bandaustritt gegen Gasaustausch zwischen dem Ofenraum und der Reaktionskammer abgedichtet wird und ein Gas, das eine oxidierende Atmosphäre in der Reaktionskammer ausbildet, eingeleitet und das Gas innerhalb der Reaktionskammer in einem geschlossenen Kreislauf permanent umgewälzt wird, wobei dessen Zusammensetzung geregelt und Verluste durch Leckagen und Verbrauch ausgeglichen werden.A method of pre-oxidation of oxidation-sensitive steel strip in a reaction chamber located in a furnace chamber, characterized in that the reaction chamber is sealed at a belt inlet and a belt outlet against gas exchange between the furnace chamber and the reaction chamber and a gas, which forms an oxidizing atmosphere in the reaction chamber, initiated and the gas within the reaction chamber is continuously circulated in a closed circuit, the composition of which is regulated and losses due to leakage and consumption are compensated. Verfahren zur Voroxidation nach Anspruch 1, dadurch gekennzeichnet, dass das oxidierende Gas aus der Reaktionskammer abgesaugt, gekühlt, einem Ventilator zugeführt, mit Luft angereichert und wieder in die Reaktionskammer eingespeist wird, um eine gute Homogenität der Atmosphäre zu erreichen.Method for pre-oxidation after Claim 1 , characterized in that the oxidizing gas is sucked from the reaction chamber, cooled, fed to a fan, enriched with air and fed back into the reaction chamber in order to achieve a good homogeneity of the atmosphere. Verfahren zur Voroxidation nach Anspruch 2, dadurch gekennzeichnet, dass über mindestens ein der Reaktionskammer zugeordnetes Düsensystem kontrolliert und gleichmäßig das Gas mit hoher kinetischer Energiedichte unter Zuhilfenahme von Stickstoff als Trägergas der Oberfläche des Bandstahls zugeführt wird, um laminare Grenzschichteffekte an der Bandoberfläche zu vermeiden.Method for pre-oxidation after Claim 2 , characterized in that controlled by at least one of the reaction chamber associated nozzle system and evenly the gas with high kinetic energy density is supplied with the aid of nitrogen as a carrier gas to the surface of the strip to avoid laminar boundary layer effects on the strip surface. Verfahren zur Voroxidation nach Anspruch 3, dadurch gekennzeichnet, dass der Sauerstoffgehalt der Atmosphäre in der Reaktionskammer bei minimal 1,5 bis maximal 5 vol% gehalten wird, um hierdurch einen ausreichend großen Puffer gegen aus dem Ofenraum in die Reaktionskammer eindringen Wasserstoff zu erreichen.Method for pre-oxidation after Claim 3 , characterized in that the oxygen content of the atmosphere in the reaction chamber is kept at a minimum of 1.5 to a maximum of 5 vol%, thereby to achieve a sufficiently large buffer against penetrating from the furnace chamber into the reaction chamber hydrogen. Verfahren zur Voroxidation nach einen oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Reaktionskammer zum Ausgleich von Volumenänderungen ein Abzug zugeordnet wird.Method for pre-oxidation according to one or more of Claims 1 to 4 , characterized in that the reaction chamber to compensate for volume changes a deduction is assigned. Verfahren zur Voroxidation nach Anspruch 5, dadurch gekennzeichnet, dass der Abzug vorzugsweise so geregelt wird, dass der Innendruck der Reaktionskammer dem Druck der umgebenden Ofenatmosphäre entspricht und so der Gasaustausch über unvermeidliche Undichtigkeiten minimal gehalten wird.Method for pre-oxidation after Claim 5 , characterized in that the withdrawal is preferably controlled so that the internal pressure of the reaction chamber corresponds to the pressure of the surrounding furnace atmosphere and so the gas exchange is kept minimal via unavoidable leaks. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der oxidationsempfindliche Stahl mindestens eine Auswahl folgender Legierungsbestandteile enthält: Mn > 0,5%, Al > 0,2%, Si > 0,1%, Cr > 0,3%.Method according to one or more of Claims 1 to 6 , characterized in that the oxidation-sensitive steel contains at least a selection of the following alloy constituents: Mn> 0.5%, Al> 0.2%, Si> 0.1%, Cr> 0.3%.
DE102018107435.2A 2017-11-17 2018-03-28 Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber Withdrawn DE102018107435A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES18807218T ES2942672T3 (en) 2017-11-17 2018-11-06 Procedure for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace space
CN201880074366.XA CN111356775B (en) 2017-11-17 2018-11-06 Method for pre-oxidizing strip steel in a reaction chamber arranged in a furnace chamber
PL18807218.5T PL3710605T3 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
EP18807218.5A EP3710605B1 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
FIEP18807218.5T FI3710605T3 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
US16/764,234 US20230193442A1 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
PCT/EP2018/080242 WO2019096616A1 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
KR1020207017134A KR102445685B1 (en) 2017-11-17 2018-11-06 Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017220583.0 2017-11-17
DE102017220583 2017-11-17

Publications (1)

Publication Number Publication Date
DE102018107435A1 true DE102018107435A1 (en) 2019-05-23

Family

ID=66336350

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018107435.2A Withdrawn DE102018107435A1 (en) 2017-11-17 2018-03-28 Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber

Country Status (8)

Country Link
EP (1) EP3710605B1 (en)
KR (1) KR102445685B1 (en)
CN (1) CN111356775B (en)
DE (1) DE102018107435A1 (en)
ES (1) ES2942672T3 (en)
FI (1) FI3710605T3 (en)
PL (1) PL3710605T3 (en)
WO (1) WO2019096616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816319A1 (en) * 2019-10-29 2021-05-05 Salzgitter Flachstahl GmbH Method for producing a high strength steel strip with improved adhesion of zinc-based hot dip coatings
CN114855108A (en) * 2022-05-24 2022-08-05 山东钢铁集团日照有限公司 Control method for surface plating leakage and zinc ash defects of high-aluminum-silicon-manganese galvanized dual-phase steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458022B2 (en) * 2010-11-30 2024-01-17 Tata Steel UK Limited Method of galvanising a steel strip in a continuous hot dip galvanising line
DE102011050243A1 (en) * 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Apparatus and method for the continuous treatment of a flat steel product
DE102011051731B4 (en) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
EP3170913A1 (en) * 2015-11-20 2017-05-24 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
WO2016169918A1 (en) * 2015-04-22 2016-10-27 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3292224B1 (en) * 2015-05-07 2019-12-25 Cockerill Maintenance & Ingéniérie S.A. Method and device for reaction control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816319A1 (en) * 2019-10-29 2021-05-05 Salzgitter Flachstahl GmbH Method for producing a high strength steel strip with improved adhesion of zinc-based hot dip coatings
CN114855108A (en) * 2022-05-24 2022-08-05 山东钢铁集团日照有限公司 Control method for surface plating leakage and zinc ash defects of high-aluminum-silicon-manganese galvanized dual-phase steel

Also Published As

Publication number Publication date
KR102445685B1 (en) 2022-09-21
CN111356775A (en) 2020-06-30
EP3710605B1 (en) 2023-01-25
PL3710605T3 (en) 2023-03-20
WO2019096616A1 (en) 2019-05-23
EP3710605A1 (en) 2020-09-23
CN111356775B (en) 2022-04-26
FI3710605T3 (en) 2023-04-12
ES2942672T3 (en) 2023-06-05
KR20200087817A (en) 2020-07-21

Similar Documents

Publication Publication Date Title
EP2732062B1 (en) Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
DE69719046T2 (en) Process for manufacturing case hardened stainless steel bearing components
EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
DE102012101018B3 (en) Process for hot dip coating a flat steel product
DE2522485C3 (en) Process for hot-metallizing strips or sheets made of low-alloy steels
EP2432910B1 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP1658390B1 (en) Method for producing a hardened steel part
EP1634975B9 (en) Hot dip alloyed zinc coated steel sheet and method for production thereof
DE112009004363T5 (en) STEEL PLASTER, SELF-COMPREHENSIVE DEVICE FOR PRODUCING REINFORCED STEEL PLATE AND SELF-INSERTING METHOD FOR PREPARING COATED STEEL PLATE
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
DE112016003935T5 (en) Aluminum and zinc hot dip and painted steel sheet with a high elongation and a yield strength of 500MPa level and its manufacturing process
DE112016003925T5 (en) Aluminum and zinc hot dipped and painted steel sheet with a high elongation and a yield strength of 600MPa level and its manufacturing process
EP3736348B1 (en) Method for producing an stitched packaging steel
EP1819840B1 (en) Method for hot dip coating a strip of heavy-duty steel
DE102013105378B3 (en) Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine
AT520637B1 (en) METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP
DE102010017354A9 (en) Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
EP3710605B1 (en) Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
DE2832836A1 (en) PROCESS FOR THE PRODUCTION OF SURFACE COATINGS WITH IMPROVED CORROSION PROPERTIES ON OBJECTS MADE FROM IRON-CHROME ALLOYS
EP2195471A1 (en) Anti-corrosion coating with improved adhesion
WO2019154680A1 (en) Method for producing a steel strip with improved bonding of metallic hot-dip coatings
DE2537298A1 (en) PROCESS FOR PRE-TREATMENT OF A NON-ALLOY STEEL STRIP AND PLATE MATERIAL BEFORE FLUX-FREE IMMERSION COATING
DE19736514C1 (en) Combined oxidation and heat treatment of ferrous metal parts
DE102020106996A1 (en) Batch furnace for blanks to be press-hardened or components to be hardened and processes for heat treatment of blanks to be hardened or components to be hardened
EP2959025A1 (en) Method for producing a corrosion-resistant steel sheet

Legal Events

Date Code Title Description
R120 Application withdrawn or ip right abandoned