DE102017211506A1 - Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit - Google Patents
Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit Download PDFInfo
- Publication number
- DE102017211506A1 DE102017211506A1 DE102017211506.8A DE102017211506A DE102017211506A1 DE 102017211506 A1 DE102017211506 A1 DE 102017211506A1 DE 102017211506 A DE102017211506 A DE 102017211506A DE 102017211506 A1 DE102017211506 A1 DE 102017211506A1
- Authority
- DE
- Germany
- Prior art keywords
- storage unit
- energy storage
- electrical energy
- state
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000013178 mathematical model Methods 0.000 claims abstract description 41
- 230000032683 aging Effects 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 10
- 238000007726 management method Methods 0.000 claims description 5
- 238000013500 data storage Methods 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
Description
- Die vorliegende Erfindung geht aus von einem Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, einer zur Durchführung des Verfahrens eingerichteten Vorrichtung und einer elektrischen Energiespeichereinheit umfassend die Vorrichtung.
- Stand der Technik
- Elektrische Energiespeichereinheiten, insbesondere basierend auf der Lithiumionentechnologie, finden gerade im Automobilbereich zunehmende Verbreitung als wichtige Komponente im Antriebsstrang. Dabei sind die Elektroden einer elektrischen Energiespeichereinheit aufgrund der Einspeicherungs- und Ausspeicherungsvorgänge der Lithiumionen volumetrischen Änderungen unterworfen. Abhängig von einem Ladezustand, aber auch einer Alterung der Elektroden, ändert sich die entsprechende Ausdehnung der Elektroden, insbesondere orthogonal zu einer Lagenanordnung der Elektroden. Diese mechanischen Änderungen können demzufolge zusätzlich zu den bereits bisher verwendeten Messgrößen Temperatur, elektrische Spannung einer elektrischen Energiespeichereinheit oder einem elektrischen Strom verwendet werden, um die Bestimmungsgenauigkeit der Alterung oder des Ladezustandes einer Elektrode zu erhöhen beziehungsweise um Ungenauigkeiten, welche auf der alleinigen Erfassung von elektrischen Größen beruhen, zu minimieren.
- In der Druckschrift
DE 10 2012 209 271 A1 wird ein Batteriemanagementsystem einer Batterie beschrieben, wobei innerhalb einer Batteriezelle auf einem Elektrodenwickel ein drucksensitiver Foliensensor angebracht ist, dessen Messwerte von einer Batteriezustandserkennung ausgewertet und zur Batteriezustandserkennung verwendet werden. - In der Druckschrift
US 2015/0188198 A1 - In dem Artikel „A phenomenological Model of Bulk Force in a Li-lon Battery Pack and its Application to State of Charge Estimation" von Shankar Mohan et al., Journal of the Electrochemical Society, 161 (14) A2222-A2231 (2014), wird die Kraft, welche eine Lithiumionenzelle während des Ladens beziehungsweise Entladens entwickelt, mittels eines mathematischen Modells beschrieben. Dabei wird ein Versuchsaufbau beschrieben, der Kraftmesseinheiten außerhalb einer Batteriezelle vorsieht.
- Offenbarung der Erfindung
- Vorteile der Erfindung
- Offenbart wird ein Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, eine zur Durchführung des Verfahrens eingerichteten Vorrichtung und eine elektrische Energiespeichereinheit umfassend die Vorrichtung mit den Merkmalen der unabhängigen Patentansprüche.
- Dabei weist die elektrische Energiespeichereinheit mindestens zwei Polanschlüsse und mindestens eine Elektrodenbaugruppe auf.
- Innerhalb des Verfahrens wird eine Ausdehnung der Elektrodenbaugruppe und/oder eine von der Elektrodenbaugruppe ausgeübte Kraft erfasst.
- Weiterhin wird eine erste Zustandsgröße, die einen ersten Zustand der elektrischen Energiespeichereinheit repräsentiert, ermittelt, wobei dazu die erfasste Ausdehnung der Elektrodenbaugruppe und/oder die von der Elektrodenbaugruppe ausgeübte Kraft sowie ein in einem Datenspeicher abgelegtes erstes mathematisches Modell verwendet werden. Insbesondere kann die erste Zustandsgröße einen Ladezustand oder einen Alterungszustand der elektrischen Energiespeichereinheit repräsentieren. Der Alterungszustand kann beispielsweise ein dimensionsloser Wert sein, der mit ansteigender von der Elektrodenbaugruppe ausgeübter Kraft beziehungsweise zunehmender Ausdehnung abnimmt. Das erste mathematische Modell kann beispielsweise in einem Speicherbaustein eines Batteriemanagementsteuergerätes hinterlegt sein. Ein mathematisches Modell kann beispielsweise Differentialgleichungen oder algebraische Gleichungen umfassen. Weiterhin kann auch ein datenbasiertes Kennfeld Bestandteil des mathematischen Modells sein. Dazu können beispielsweise mehrere Ausdehnungs- beziehungsweise Kraftwerte mit den entsprechenden Ladezustandswerten verknüpft und in dem Speicherbaustein hinterlegt sein. Auch ein Modell in der Form Ladezustand = a* I ist denkbar, wobei a eine Modellkonstante und I die Ausdehnung ist.
- Weiterhin wird mindestens eine elektrische Größe der elektrischen Energiespeichereinheit erfasst, wobei die elektrische Größe insbesondere ein in der elektrischen Energiespeichereinheit fließender Strom und/oder eine zwischen den Polanschlüssen herrschende elektrische Spannung darstellen kann.
- Weiterhin wird eine zweite Zustandsgröße, welche ebenfalls den ersten Zustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten mindestens einen elektrischen Größe der elektrischen Energiespeichereinheit sowie eines ebenfalls in einem Datenspeicher abgelegten zweiten mathematischen Modells ermittelt. Somit wird der erste Zustand mittels zweier unterschiedlicher Zustandsgrößen ermittelt.
- Anschließend wird ein erster Vergleich der ersten Zustandsgröße mit der zweiten Zustandsgröße durchgeführt.
- Danach erfolgt gegebenenfalls eine Änderung des ersten mathematischen Modells und/oder von mittels des ersten mathematischen Modells ermittelten Größen in Abhängigkeit des ersten Vergleichs. Alternativ oder zusätzlich erfolgt eine Änderung des zweiten mathematischen Modells und/oder von mittels des zweiten mathematischen Modells ermittelten Größen in Abhängigkeit des ersten Vergleichs.
- Somit wird in vorteilhafter Weise die Tatsache genutzt, dass ein erster Zustand mittels zweier unterschiedlicher Zustandsgrößen ermittelt wurde. Dadurch können Abweichungen zwischen den Ermittlungsmethoden festgestellt werden und gleichzeitig die entsprechenden verwendeten mathematischen Modelle beziehungsweise die damit ermittelten Größen angepasst werden. Dies erhöht die Genauigkeit der Zustandsbestimmung und sorgt somit für eine verbesserte Nutzung des Energieinhalts der elektrischen Energiespeichereinheit. Weiterhin können beispielsweise Lebensdauerprognosen der elektrischen Energiespeichereinheit genauer erfolgen und somit unnötige Ausfälle der elektrischen Energiespeichereinheit verhindert werden. Auch ein die Lebensdauer der elektrischen Energiespeichereinheit verlängernder Betrieb der elektrischen Energiespeichereinheit ist möglich, da beispielsweise durch die genauere Zustandsbestimmung Grenzwert für Spannungen und/oder Ströme besser eingehalten werden.
- Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung sind Gegenstand der Unteransprüche.
- Zweckmäßigerweise wird ein Korrekturfaktor zur Änderung des ersten mathematischen Modells und/oder des zweiten mathematischen Modells und/oder der mittels des ersten mathematischen Modells ermittelten Größen und/oder der mittels des zweiten mathematischen Modells ermittelten Größen ermittelt. Somit kann in vorteilhafter Weise eine Korrektur der entsprechenden Größen beziehungsweise Modelle erfolgen, wobei beispielsweise zusätzlich eine Temperatur der elektrischen Energiespeichereinheit mittels des Korrekturfaktors berücksichtigt werden kann.
- Zweckmäßigerweise wird ein zweiter Vergleich der erfassten Ausdehnung der Elektrodenbaugruppe mit einem vordefinierten Ausdehnungsschwellenwert und/oder der von der Elektrodenbaugruppe ausgeübten Kraft mit einem vordefinierten Kraftschwellenwert durchgeführt. Anschließend wird in Abhängigkeit des zweiten Vergleichs ein erstes Signal zur Anzeige des Vergleichsergebnisses erzeugt. Das erste Signal kann beispielsweise ein Leuchtmittel einschalten, welches einem Benutzer ein Überschreiten des entsprechenden Schwellenwertes anzeigt. Dies ist vorteilhaft, da dadurch dem Benutzer eine möglicherweise gefährliche Situation mitgeteilt wird und er somit gegebenenfalls unmittelbar handeln kann, was das Risiko für Leib und Leben senkt.
- Zweckmäßigerweise wird ein Differenzwert zwischen der ersten Zustandsgröße und der zweiten Zustandsgröße ermittelt und anschließend der Korrekturfaktor in Abhängigkeit des Differenzwertes ermittelt. Dies hat den Vorteil, dass bekannte regelungstechnische Strukturen, beispielsweise ein Kalmanfilter, welche den Differenzwert nutzen, eingesetzt werden können, um den ersten Zustand mathematisch zu schätzen.
- Zweckmäßigerweise erfolgt die Erfassung der Ausdehnung und/oder der ausgeübten Kraft auf einander gegenüberliegenden Seiten der elektrischen Energiespeichereinheit und/oder der Elektrodenbaugruppe. Dadurch wird die Sensitivität des Verfahrens erhöht, da die entsprechende Ausdehnung beziehungsweise die entsprechende Kraft bei prismatischen beziehungsweise zylinderförmigen beziehungsweise allgemein eine Symmetrie aufweisenden Formen von elektrischen Energiespeichereinheiten, insbesondere Batteriezellen, auf beide Seiten wirkt. Vorteilhafterweise erfolgt die Erfassung der Ausdehnung und/oder der ausgeübten Kraft an der gleichen Stelle auf den gegenüberliegenden Seiten der elektrischen Energiespeichereinheit, um möglichst gleiche Messbedingungen zu gewährleisten und vergleichbare Messergebnisse zu liefern.
- Zweckmäßigerweise erfolgt die Erfassung der Ausdehnung und/oder der ausgeübten Kraft innerhalb der elektrischen Energiespeichereinheit. Somit werden die entsprechenden Messwerte nicht durch äußere Einflüsse verfälscht, was die Genauigkeit des Verfahrens erhöht.
- Zweckmäßigerweise erfolgt die Erfassung der Ausdehnung der Elektrodenbaugruppe mittels mindestens eines Dehnungsmessstreifens. Alternativ oder zusätzlich wird die von der Elektrodenbaugruppe ausgeübte Kraft mittels mindestens eines Piezoelements und/oder mittels mindestens einer Induktionsspule erfasst. Dies hat den Vorteil, dass bewährte und in der Praxis erprobte Kraft- beziehungsweise Dehnungsmessverfahren eingesetzt werden, was die einfache Umsetzbarkeit gewährleistet.
- Weiterhin ist Gegenstand der Offenbarung eine Vorrichtung, welche mindestens ein Mittel umfasst, das eingerichtet ist, das oben genannte Verfahren auszuführen. Somit können die oben genannten Vorteile realisiert werden. Das mindestens eine Mittel kann beispielsweise ein Batteriemanagementsteuergerät sowie gegebenenfalls Stromsensoren und/oder Spannungssensoren und/oder Temperatursensoren umfassen. Auch eine elektronische Steuereinheit, insbesondere in der Ausprägung als Batteriemanagementsteuergerät, kann solch ein Mittel sein. Unter einer elektronischen Steuereinheit kann insbesondere ein elektronisches Steuergerät, welches beispielsweise einen Mikrocontroller und/oder einen applikationsspezifischen Hardwarebaustein, z.B. einen ASIC, umfasst, verstanden werden, aber ebenso kann darunter ein Personalcomputer oder eine speicherprogrammierbare Steuerung fallen.
- Weiterhin ist Gegenstand der Offenbarung eine elektrische Energiespeichereinheit, welche mindestens 2 Polanschlüsse und eine Elektrodenbaugruppe sowie die vorgenannte Vorrichtung umfasst. Somit können die vorgenannten Vorteile realisiert werden.
- Unter einer elektrischen Energiespeichereinheit kann insbesondere eine elektrochemische Batteriezelle und/oder ein Batteriemodul mit mindestens einer elektrochemischen Batteriezelle und/oder ein Batteriepack mit mindestens einem Batteriemodul verstanden werden. Zum Beispiel kann die elektrische Energiespeichereinheit eine lithiumbasierte Batteriezelle oder ein lithiumbasiertes Batteriemodul oder ein lithiumbasiertes Batteriepack sein. Insbesondere kann die elektrische Energiespeichereinheit eine Lithium-Ionen-Batteriezelle oder ein Lithium-Ionen-Batteriemodul oder ein Lithium-Ionen-Batteriepack sein. Weiterhin kann die Batteriezelle vom Typ Lithium-Polymer-Akkumulator, Nickel-Metallhydrid-Akkumulator, Blei-Säure-Akkumulator, Lithium-Luft-Akkumulator oder Lithium-Schwefel-Akkumulator beziehungsweise ganz allgemein ein Akkumulator beliebiger elektrochemischer Zusammensetzung sein. Auch ein Kondensator ist als elektrische Energiespeichereinheit möglich.
- Zweckmäßigerweise umfasst die elektrische Energiespeichereinheit mindestens zwei Mittel zur Erfassung einer Ausdehnung der Elektrodenbaugruppe und/oder einer von der Elektrodenbaugruppe ausgeübten Kraft, welche sich auf gegenüberliegenden Seiten der elektrischen Energiespeichereinheit oder der Elektrodenbaugruppe befinden.
- Figurenliste
- Vorteilhafte Ausführungsformen der Erfindung sind in den Figuren dargestellt und in der nachfolgenden Beschreibung näher ausgeführt.
- Es zeigen:
-
1 ein Flussdiagramm des offenbarten Verfahrens gemäß einer ersten Ausführungsform; -
2 ein Flussdiagramm des offenbarten Verfahrens gemäß einer zweiten Ausführungsform; -
3 ein Flussdiagramm des offenbarten Verfahrens gemäß einer dritten Ausführungsform; -
4 ein Flussdiagramm des offenbarten Verfahrens gemäß einer vierten Ausführungsform; -
5 eine schematische Darstellung der Vorrichtung, welche eingerichtet ist, das offenbarte Verfahren auszuführen. - Ausführungsformen der Erfindung
- Gleiche Bezugszeichen bezeichnen in allen Figuren gleiche Vorrichtungskomponenten oder gleiche Verfahrensschritte.
-
1 zeigt ein Flussdiagramm des offenbarten Verfahrens zur Zustandsbestimmung einer elektrischen Energiespeichereinheit gemäß einer ersten Ausführungsform. Dabei umfasst die elektrische Energiespeichereinheit, deren Zustand bestimmt wird, mindestens zwei Polanschlüsse und eine Elektrodenbaugruppe. In einem ersten SchrittS11 wird eine Ausdehnung der Elektrodenbaugruppe erfasst. Anschließend wird in einem zweiten SchrittS12 die zwischen den zwei Polanschlüssen der elektrischen Energiespeichereinheit herrschende elektrische Spannung erfasst. Anschließend wird in einem dritten SchrittS13 eine erste Ladezustandsgröße, die den Ladezustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten Ausdehnung der Elektrodenbaugruppe und eines in einem Datenspeicher abgelegten ersten mathematischen Modells ermittelt. Weiterhin wird in einem vierten SchrittS14 eine zweite Ladezustandsgröße, die ebenso wie die erste Ladezustandsgröße den Ladezustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten elektrischen Spannung sowie eines in einem Datenspeicher abgelegten zweiten mathematischen Modells ermittelt. Dies kann beispielsweise mittels eines elektrischen Ersatzschaltbildmodells der elektrischen Energiespeichereinheit und einer regelungstechnischen Struktur, beispielsweise einem Kalmanfilter, erfolgen. Danach wird in einem fünften SchrittS15 ein erster Vergleich der ersten Ladezustandsgröße mit der zweiten Ladezustandsgröße durchgeführt. Unter der Annahme, dass sich die erste Ladezustandsgröße und die zweite Ladezustandsgröße um mehr als einen vordefinierten Betrag unterscheiden, wird in einem sechsten SchrittS16 die zweite Ladezustandsgröße in Abhängigkeit des Vergleichsergebnisses geändert und in einem siebten SchrittS17 während eines Betriebes der elektrischen Energiespeichereinheit verwendet, um durch die genauere Zustandsbestimmung die Lebensdauer der elektrischen Energiespeichereinheit zu erhöhen. Sollten sich die erste Ladezustandsgröße und die zweite Ladezustandsgröße nicht um mehr als den vordefinierten Betrag unterscheiden, ist keine Änderung notwendig. Dann kann beispielsweise wieder bei dem ersten SchrittS11 eingesetzt werden und das Verfahren beginnt erneut. -
2 zeigt ein Flussdiagramm des offenbarten Verfahrens zur Zustandsbestimmung einer elektrischen Energiespeichereinheit gemäß einer zweiten Ausführungsform. Dabei umfasst die elektrische Energiespeichereinheit, deren Zustand bestimmt wird, mindestens2 Polanschlüsse und eine Elektrodenbaugruppe. In einem ersten SchrittS21 wird eine von der Elektrodenbaugruppe ausgeübte Kraft erfasst. In einem zweiten SchrittS22 wird eine erste Alterungszustandsgröße unter Verwendung der erfassten ausgeübten Kraft sowie eines in einem Datenspeicher abgelegten ersten mathematischen Modells ermittelt. Die erste Alterungszustandsgröße kann beispielsweise ein dimensionsloser Wert sein, der mit ansteigender von der Elektrodenbaugruppe ausgeübter Kraft abnimmt. Beispielhafte Zahlenwerte bewegen sich zwischen 0 und 1 beziehungsweise zwischen 0 % und 100 % und können beispielsweise aus einem Kennfeld ausgelesen werden, in dem einzelnen Ausdehnungswerten jeweils ein Wert der ersten Alterungszustandsgröße zugeordnet ist. Diese Relationen können beispielsweise aus Versuchen gewonnen werden. Anschließend wird in einem dritten SchrittS23 der in der elektrischen Energiespeichereinheit fließende Strom und die zwischen den Polanschlüssen herrschende elektrische Spannung erfasst. In einem vierten SchrittS24 wird dann eine zweite Alterungszustandsgröße unter Verwendung des erfassten elektrischen Stromes und der erfassten elektrischen Spannung sowie eines in einem Datenspeicher abgelegten zweiten mathematischen Modells ermittelt. Dabei repräsentiert die zweite Alterungszustandsgröße ebenso wie die erste Alterungszustandsgröße den Alterungszustand der elektrischen Energiespeichereinheit. Dabei kann die zweite Alterungszustandsgröße beispielsweise ein dimensionsloser Wert sein, der mit abnehmender elektrischer Speicherkapazität der elektrischen Energiespeichereinheit ebenfalls abnimmt. Anschließend wird in einem fünften SchrittS25 die erste Alterungszustandsgröße mit der zweiten Alterungszustandsgröße verglichen. Anschließend wird in einem sechsten SchrittS26 ein Korrekturfaktor zum Ändern der zweiten Alterungszustandsgröße ermittelt, welcher beispielsweise auf der Differenz der ersten Zustandsgröße und der zweiten Zustandsgröße basiert. Eine beispielhafte Definition des Korrekturfaktors lautet: Korrekturfaktor = C * (Wert der ersten Zustandsgröße - Wert der zweiten Zustandsgröße), wobei C eine entsprechende Konstante ist. Anschließend wird in einem siebten SchrittS27 in Abhängigkeit des ersten Vergleichs und unter Nutzung des Korrekturfaktors die zweite Alterungszustandsgröße geändert. -
3 zeigt ein Flussdiagramm des offenbarten Verfahrens zur Zustandsbestimmung einer elektrischen Energiespeichereinheit gemäß einer dritten Ausführungsform. In einem ersten SchrittS31 wird eine Ausdehnung der Elektrodenbaugruppe erfasst. Anschließend wird in einem zweiten SchrittS32 die zwischen den 2 Polanschlüssen der elektrischen Energiespeichereinheit herrschende elektrische Spannung erfasst. Anschließend wird in einem dritten SchrittS33 eine erste Ladezustandsgröße, die den Ladezustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten Ausdehnung der Elektrodenbaugruppe und eines in einem Datenspeicher abgelegten ersten mathematischen Modells ermittelt. Weiterhin wird in einem vierten SchrittS34 eine zweite Ladezustandsgröße, die ebenso wie die erste Ladezustandsgröße den Ladezustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten elektrischen Spannung sowie eines in einem Datenspeicher abgelegten zweiten mathematischen Modells ermittelt. Anschließend wird in einem fünften SchrittS35 ein erster Vergleich der erfassten Ausdehnung der Elektrodenbaugruppe mit einem vordefinierten Ausdehnungsschwellenwert durchgeführt. Weiterhin wird in einem sechsten SchrittS36 die erste Zustandsgröße mit der zweiten Zustandsgröße verglichen. Unter der Annahme, dass der Ausdehnungsschwellenwert überschritten wird, wird in einem siebten SchrittS37 ein erstes Signal zur Anzeige des ersten Vergleichsergebnisses erzeugt. In einem achten SchrittS38 wird anschließend das zweite mathematische Modell in Abhängigkeit des Vergleichs der ersten Zustandsgröße mit der zweiten Zustandsgröße geändert, indem beispielsweise die Parameterwerte des zweiten mathematischen Modells geändert werden. Weiterhin wird die zweite Zustandsgröße in Abhängigkeit des Vergleichs der ersten Zustandsgröße mit der zweiten Zustandsgröße geändert, indem beispielsweise ein Wert der zweiten Zustandsgröße in Abhängigkeit des Vergleichs erhöht oder verringert wird, und zur Prognose der Lebensdauer der elektrischen Energiespeichereinheit eingesetzt. -
4 zeigt ein Flussdiagramm des offenbarten Verfahrens zur Zustandsbestimmung einer elektrischen Energiespeichereinheit gemäß einer vierten Ausführungsform. Dabei umfasst die elektrische Energiespeichereinheit, deren Zustand bestimmt wird, mindestens 2 Polanschlüsse und eine Elektrodenbaugruppe. In einem ersten SchrittS41 wird eine von der Elektrodenbaugruppe ausgeübte Kraft erfasst. Anschließend wird in einem zweiten SchrittS42 eine erste Ladezustandsgröße unter Verwendung der erfassten ausgeübten Kraft sowie eines in einem Datenspeicher abgelegten ersten mathematischen Modells ermittelt. Anschließend wird in einem dritten SchrittS43 der in der elektrischen Energiespeichereinheit fließende Strom und die zwischen den Polanschlüssen herrschende elektrische Spannung erfasst. In einem vierten SchrittS44 wird eine zweite Ladezustandsgröße unter Verwendung des erfassten elektrischen Stromes und der erfassten elektrischen Spannung sowie eines in einem Datenspeicher abgelegten zweiten mathematischen Modells ermittelt. Anschließend wird in einem fünften SchrittS45 ein erster Vergleich der ersten Zustandsgröße mit der zweiten Zustandsgröße durchgeführt. Anschließend wird in einem sechsten SchrittS46 ein Differenzwert zwischen der ersten Zustandsgröße und der zweiten Zustandsgröße ermittelt. Daraufhin wird in einem siebten SchrittS47 ein Korrekturfaktor in Abhängigkeit des ermittelten Differenzwertes bestimmt. In einem achten SchrittS48 wird das erste mathematische Modell in Abhängigkeit des ersten Vergleichs und des ermittelten Korrekturfaktors geändert. Anschließend kann das geänderte mathematische Modell beispielsweise im Rahmen einer genaueren Ermittlung der verbleibenden Lebensdauer der elektrischen Energiespeichereinheit eingesetzt werden. -
5 zeigt eine schematische Darstellung der offenbarten Vorrichtung70 , die eingerichtet ist, das offenbarte Verfahren auszuführen. Dabei werden mittels geeigneter Sensoren71 , beispielsweise mittels eines Dehnungsmessstreifens und/oder eines Piezoelements und eines Strom- beziehungsweise Spannungssensors, eine Ausdehnung einer Elektrodenbaugruppe und/oder eine von der Elektrodenbaugruppe ausgeübte Kraft sowie ein elektrischer Strom und eine elektrische Spannung einer elektrischen Energiespeichereinheit erfasst. Die erfassten Werte werden in einem elektronischen Steuergerät72 entsprechend den oben beschriebenen Verfahrensschritten verarbeitet und die entsprechenden beschriebenen Größen ermittelt. Weiterhin können entsprechende Steuergrößen, beispielsweise Strom- und Spannungssollwerte, berechnet werden und an eine Leistungselektronik73 ausgegeben werden, um beispielsweise die Lebensdauer der elektrischen Energiespeichereinheit zu verlängern beziehungsweise einen schonenderen Betrieb der elektrischen Energiespeichereinheit zu ermöglichen. - ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- DE 102012209271 A1 [0003]
- US 2015/0188198 A1 [0004]
- Zitierte Nicht-Patentliteratur
-
- „A phenomenological Model of Bulk Force in a Li-lon Battery Pack and its Application to State of Charge Estimation" von Shankar Mohan et al., Journal of the Electrochemical Society, 161 (14) A2222-A2231 (2014) [0005]
Claims (10)
- Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, wobei die elektrische Energiespeichereinheit mindestens zwei Polanschlüsse und mindestens eine Elektrodenbaugruppe aufweist, umfassend die Schritte: a) Erfassen (S11, S21, S31, S41) einer Ausdehnung der Elektrodenbaugruppe und/oder einer von der Elektrodenbaugruppe ausgeübten Kraft; b) Ermitteln (S13, S22, S32, S42) einer ersten Zustandsgröße, die einen ersten Zustand der elektrischen Energiespeichereinheit repräsentiert, insbesondere einen Ladezustand oder einen Alterungszustand, unter Verwendung der erfassten Ausdehnung der Elektrodenbaugruppe und/oder der von der Elektrodenbaugruppe ausgeübten Kraft sowie eines in einem Datenspeicher abgelegten ersten mathematischen Modells; c) Erfassen (S12, S23, S33, S43) mindestens einer elektrischen Größe der elektrischen Energiespeichereinheit, insbesondere eines in der elektrischen Energiespeichereinheit fließenden Stromes und/oder einer zwischen den Polanschlüssen herrschenden elektrischen Spannung; d) Ermitteln (S14, S24, S34, S44) einer zweiten Zustandsgröße, die den ersten Zustand der elektrischen Energiespeichereinheit repräsentiert, unter Verwendung der erfassten mindestens einen elektrischen Größe der elektrischen Energiespeichereinheit sowie eines in einem Datenspeicher abgelegten zweiten mathematischen Modells; e) Durchführen (S15, S25, S36, S45) eines ersten Vergleichs der ersten Zustandsgröße mit der zweiten Zustandsgröße; f) Ändern (S16, S27, S38, S48) des ersten mathematischen Modells und/oder von mittels des ersten mathematischen Modells ermittelten Größen in Abhängigkeit des ersten Vergleichs und/oder Ändern des zweiten mathematischen Modells und/oder von mittels des zweiten mathematischen Modells ermittelten Größen in Abhängigkeit des ersten Vergleichs.
- Verfahren gemäß
Anspruch 1 , weiterhin umfassend: g) Ermitteln (S26) eines Korrekturfaktors zum Ändern des ersten und/oder des zweiten mathematischen Modells und/oder der mittels des ersten und/oder des zweiten mathematischen Modells ermittelten Größen; - Verfahren gemäß einem der vorhergehenden Ansprüche, weiterhin umfassend: h) Durchführen (S35) eines zweiten Vergleichs der erfassten Ausdehnung der Elektrodenbaugruppe mit einem vordefinierten Ausdehnungsschwellenwert und/oder der von der Elektrodenbaugruppe ausgeübten Kraft mit einem vordefinierten Kraftschwellenwert; i) In Abhängigkeit des zweiten Vergleichs Erzeugen (S37) eines ersten Signals zur Anzeige des Vergleichsergebnisses.
- Verfahren gemäß einem der
Ansprüche 2 oder3 , weiterhin umfassend: j) Ermitteln (S46) eines Differenzwertes zwischen der ersten Zustandsgröße und der zweiten Zustandsgröße; k) Ermitteln (S47) des Korrekturfaktors in Abhängigkeit des Differenzwertes. - Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Erfassung der Ausdehnung und/oder der ausgeübten Kraft in Schritt a) auf einander gegenüberliegenden Seiten der elektrischen Energiespeichereinheit und/oder der Elektrodenbaugruppe erfolgt.
- Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Erfassung der Ausdehnung und/oder der ausgeübten Kraft in Schritt a) innerhalb der elektrischen Energiespeichereinheit erfolgt.
- Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Erfassung der Ausdehnung der Elektrodenbaugruppe mittels mindestens eines Dehnungsmessstreifens erfolgt und/oder die von der Elektrodenbaugruppe ausgeübte Kraft mittels mindestens eines Piezoelements und/oder mittels mindestens einer Induktionsspule erfasst wird.
- Vorrichtung (70), umfassend mindestens ein Mittel (72), insbesondere ein elektronisches Batteriemanagementsteuergerät, welches eingerichtet ist, die Schritte des Verfahrens nach einem der
Ansprüche 1 bis7 auszuführen. - Elektrische Energiespeichereinheit, umfassend mindestens zwei Polanschlüsse und eine Elektrodenbaugruppe sowie eine Vorrichtung (70) nach
Anspruch 8 . - Elektrische Energiespeichereinheit gemäß
Anspruch 9 , weiterhin umfassend mindestens zwei Mittel (71) zur Erfassung einer Ausdehnung der Elektrodenbaugruppe und/oder einer von der Elektrodenbaugruppe ausgeübten Kraft, welche sich auf gegenüberliegenden Seiten der elektrischen Energiespeichereinheit und/oder der Elektrodenbaugruppe befinden.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017211506.8A DE102017211506A1 (de) | 2017-07-06 | 2017-07-06 | Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit |
CN201880057318.XA CN111066197B (zh) | 2017-07-06 | 2018-06-29 | 确定电能存储单元的状态的方法、执行该方法的相应设备以及相应的电能存储单元 |
PCT/EP2018/067647 WO2019007848A1 (de) | 2017-07-06 | 2018-06-29 | Verfahren zur zustandsbestimmung einer elektrischen energiespeichereinheit, entsprechende vorrichtung zur durchführung des verfahrens sowie entsprechende elektrische energiespeichereinheit |
US16/628,477 US11515583B2 (en) | 2017-07-06 | 2018-06-29 | Method for determining the state of an electrical energy storage unit, corresponding device for carrying out the method and corresponding electrical energy storage unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017211506.8A DE102017211506A1 (de) | 2017-07-06 | 2017-07-06 | Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102017211506A1 true DE102017211506A1 (de) | 2019-01-10 |
Family
ID=62873313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102017211506.8A Pending DE102017211506A1 (de) | 2017-07-06 | 2017-07-06 | Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit |
Country Status (4)
Country | Link |
---|---|
US (1) | US11515583B2 (de) |
CN (1) | CN111066197B (de) |
DE (1) | DE102017211506A1 (de) |
WO (1) | WO2019007848A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023285058A3 (de) * | 2021-07-13 | 2023-04-20 | Audi Ag | Verfahren zum bestimmen von alterungsprozessen einer batterieanordnung sowie computerprogrammprodukt und computerlesbarer datenträger |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116840699B (zh) * | 2023-08-30 | 2023-11-17 | 上海泰矽微电子有限公司 | 一种电池健康状态估算方法、装置、电子设备和介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2226332A1 (de) * | 1972-05-30 | 1973-12-13 | John C Bogue | Energieversorgungsanlage mit elektrochemischen batterien |
DE102009028986A1 (de) * | 2009-08-28 | 2011-03-03 | SB LiMotive Company Ltd., Suwon | Verfahren und Einrichtung zum Aufbringen eines Druckes auf eine Batterie |
DE102012209271A1 (de) | 2012-06-01 | 2013-12-05 | Robert Bosch Gmbh | Batteriemanagementsystem für eine Batteriezelle mit drucksensitivem Foliensensor |
EP2848952A1 (de) * | 2012-05-11 | 2015-03-18 | Calsonic Kansei Corporation | Vorrichtung zur einschätzung des ladezustands einer batterie |
US20150188198A1 (en) | 2014-01-02 | 2015-07-02 | Johnson Controls Technology Company | Battery with life estimation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8773827B2 (en) | 2008-02-19 | 2014-07-08 | Simply Automated Incorporated | Intelligent circuit breaker apparatus and methods |
US9091735B2 (en) * | 2010-10-26 | 2015-07-28 | GM Global Technology Operations LLC | Method for determining a state of a rechargeable battery device in real time |
DE102012208509A1 (de) * | 2012-05-22 | 2013-11-28 | Robert Bosch Gmbh | Vorrichtung zum Ermitteln einer Zustandsgröße einer Zelle zur Umwandlung von chemischer Energie in elektrische Energie, Zelle, Zellenmodul und Verfahren zum Ermitteln einer Zustandsgröße einer Zelle |
US9660299B2 (en) * | 2013-12-10 | 2017-05-23 | Southwest Research Institute | Strain measurement based battery testing |
US9583796B2 (en) * | 2014-04-01 | 2017-02-28 | Palo Alto Research Center Incorporated | Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes |
US10074996B2 (en) * | 2014-08-29 | 2018-09-11 | The Regents Of The University Of Michigan | Bulk force in a battery pack and its application to state of charge estimation |
DE102015002080A1 (de) * | 2015-02-18 | 2016-08-18 | Audi Ag | Batteriezelle für eine Batterie eines Kraftfahrzeugs, Batterie sowie Kraftfahrzeug |
JP6736375B2 (ja) * | 2016-06-21 | 2020-08-05 | 住友化学株式会社 | 積層体 |
-
2017
- 2017-07-06 DE DE102017211506.8A patent/DE102017211506A1/de active Pending
-
2018
- 2018-06-29 WO PCT/EP2018/067647 patent/WO2019007848A1/de active Application Filing
- 2018-06-29 CN CN201880057318.XA patent/CN111066197B/zh active Active
- 2018-06-29 US US16/628,477 patent/US11515583B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2226332A1 (de) * | 1972-05-30 | 1973-12-13 | John C Bogue | Energieversorgungsanlage mit elektrochemischen batterien |
DE102009028986A1 (de) * | 2009-08-28 | 2011-03-03 | SB LiMotive Company Ltd., Suwon | Verfahren und Einrichtung zum Aufbringen eines Druckes auf eine Batterie |
EP2848952A1 (de) * | 2012-05-11 | 2015-03-18 | Calsonic Kansei Corporation | Vorrichtung zur einschätzung des ladezustands einer batterie |
DE102012209271A1 (de) | 2012-06-01 | 2013-12-05 | Robert Bosch Gmbh | Batteriemanagementsystem für eine Batteriezelle mit drucksensitivem Foliensensor |
US20150188198A1 (en) | 2014-01-02 | 2015-07-02 | Johnson Controls Technology Company | Battery with life estimation |
Non-Patent Citations (2)
Title |
---|
„A phenomenological Model of Bulk Force in a Li-lon Battery Pack and its Application to State of Charge Estimation" von Shankar Mohan et al., Journal of the Electrochemical Society, 161 (14) A2222-A2231 (2014) |
MOHAN, Shankar [u.a.]: A phenomenological model of bulk force in a li-ion battery pack and its application to state of charge estimation. In: Journal of The Electrochemical Society. 2014, Bd. 161, H. 14, S. A2222-A2231. ISSN 1945-7111 (E); 0013-4651; 0096-4743 (P). DOI: 10.1149/2.0841414jes. URL: http://jes.ecsdl.org/content/161/14/A2222.full.pdf [abgerufen am 2017-11-23] * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023285058A3 (de) * | 2021-07-13 | 2023-04-20 | Audi Ag | Verfahren zum bestimmen von alterungsprozessen einer batterieanordnung sowie computerprogrammprodukt und computerlesbarer datenträger |
Also Published As
Publication number | Publication date |
---|---|
CN111066197B (zh) | 2023-08-01 |
WO2019007848A1 (de) | 2019-01-10 |
US20200185791A1 (en) | 2020-06-11 |
US11515583B2 (en) | 2022-11-29 |
CN111066197A (zh) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007009041B4 (de) | Gerät zum Berechnen einer Größe, welche den Ladezustand einer Fahrzeugbatterie anzeigt | |
EP1417503B1 (de) | Verfahren zur ermittlung des ladezustands und/oder der leistungsfähigkeit eines ladungsspeichers | |
EP1394561A1 (de) | Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie | |
EP2223132B1 (de) | Ermittlung der kapazität elektrischer energiespeicher | |
DE102013007011A1 (de) | Verfahren zum Laden einer Lithium-lonen-Batterie sowie System mit einer Lithium-lonen-Batterie und einem Batteriemanagementsystem | |
DE102012200414A1 (de) | Verfahren und Vorrichtung zu einer Bestimmung eines Ladezustands eines elektrischen Energiespeichers | |
DE102012206893A1 (de) | Verfahren und Vorrichtung zum Bestimmen eines Ladezustands einer Batterie und Batterie | |
DE102019211913A1 (de) | Verfahren zur Bestimmung eines Alterungszustandes einer Batterie sowie Steuergerät und Fahrzeug | |
DE112019003484T5 (de) | Sekundärbatterieparameter-Schätzungsvorrichtung, Sekundärbatterieparameter-Schätzungsverfahren und Programm | |
EP2318853B1 (de) | Verfahren zur berechnung des ladezustandes einer batterie | |
DE102015211598A1 (de) | Verfahren zum Betreiben eines Batteriemanagementsystems | |
DE102014220913A1 (de) | Verfahren und Vorrichtung zur Bestimmung einer Widerstandsänderung einer Energiespeichereinrichtung und Fahrzeug | |
DE102014220914B4 (de) | Verfahren und Vorrichtung zur Bestimmung eines betriebspunktabhängigen Widerstandsänderungsfaktors und Fahrzeug | |
DE102013206189A1 (de) | Bestimmen eines Ladezustands eines Akkumulators | |
DE102005062148B4 (de) | Verfahren zum Ermitteln des Betriebszustands eines Energiespeichers für elektrische Energie | |
WO2019007848A1 (de) | Verfahren zur zustandsbestimmung einer elektrischen energiespeichereinheit, entsprechende vorrichtung zur durchführung des verfahrens sowie entsprechende elektrische energiespeichereinheit | |
DE102014219807A1 (de) | Verfahren und Vorrichtung zur Prüfung einer Funktionsfähigkeit eines Stromsensors und Fahrzeug | |
DE102017200548B4 (de) | Verfahren zur Ermittlung einer aktuellen Kennlinie für einen ein Kraftfahrzeug versorgenden elektrochemischen Energiespeicher, Kraftfahrzeug und Server | |
DE102013214292B4 (de) | Ladezustandserkennung elektrochemischer Speicher | |
WO2007003460A1 (de) | VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS | |
DE102013203809B4 (de) | Verfahren und Vorrichtung zum Bestimmen einer elektrischen Kapazität einer Energiespeichereinheit | |
DE102009054547B4 (de) | Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie | |
DE102010031050A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Energiespeichers | |
WO2019052945A1 (de) | Verfahren zum betrieb einer elektrischen energiespeichereinheit | |
DE102018200145A1 (de) | Verfahren zur Erkennung eines internen Kurzschlusses in einer ersten elektrischen Energiespeichereinheit eines elektrischen Energiespeichers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R081 | Change of applicant/patentee |
Owner name: ROBERT BOSCH GMBH, DE Free format text: FORMER OWNERS: LITHIUM ENERGY AND POWER GMBH & CO. KG, 70469 STUTTGART, DE; ROBERT BOSCH GMBH, 70469 STUTTGART, DE Owner name: GS YUASA INTERNATIONAL LTD., KYOTO-SHI, JP Free format text: FORMER OWNERS: LITHIUM ENERGY AND POWER GMBH & CO. KG, 70469 STUTTGART, DE; ROBERT BOSCH GMBH, 70469 STUTTGART, DE |
|
R082 | Change of representative |
Representative=s name: ISARPATENT - PATENT- UND RECHTSANWAELTE BARTH , DE |
|
R081 | Change of applicant/patentee |
Owner name: GS YUASA INTERNATIONAL LTD., KYOTO-SHI, JP Free format text: FORMER OWNERS: GS YUASA INTERNATIONAL LTD., KYOTO-SHI, KYOTO, JP; ROBERT BOSCH GMBH, 70469 STUTTGART, DE |
|
R012 | Request for examination validly filed |