[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE102009037565A1 - Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben - Google Patents

Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben Download PDF

Info

Publication number
DE102009037565A1
DE102009037565A1 DE102009037565A DE102009037565A DE102009037565A1 DE 102009037565 A1 DE102009037565 A1 DE 102009037565A1 DE 102009037565 A DE102009037565 A DE 102009037565A DE 102009037565 A DE102009037565 A DE 102009037565A DE 102009037565 A1 DE102009037565 A1 DE 102009037565A1
Authority
DE
Germany
Prior art keywords
microfiber web
coated
radiation protection
polyurethane
fluoropolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009037565A
Other languages
English (en)
Inventor
Barbara Ballsieper
Thomas Leucht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mavig GmbH
Original Assignee
Mavig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mavig GmbH filed Critical Mavig GmbH
Priority to DE102009037565A priority Critical patent/DE102009037565A1/de
Priority to US13/390,412 priority patent/US8803115B2/en
Priority to EP20100741954 priority patent/EP2464781B1/de
Priority to PCT/EP2010/061631 priority patent/WO2011018459A1/de
Priority to JP2012524219A priority patent/JP5668065B2/ja
Priority to CN201080035987.0A priority patent/CN102471992B/zh
Publication of DE102009037565A1 publication Critical patent/DE102009037565A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • D06M15/295Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/572Reaction products of isocyanates with polyesters or polyesteramides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/047Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with fluoropolymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/183Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • Y10T442/2107At least one coating or impregnation contains particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • Y10T442/2189Fluorocarbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2262Coating or impregnation is oil repellent but not oil or stain release
    • Y10T442/227Fluorocarbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • Y10T442/2598Radiation reflective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/635Synthetic polymeric strand or fiber material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Die vorliegende Erfindung betrifft eine beschichtete Mikrofaserbahn, ein Verfahren zur Herstellung derselben, deren Verwendung als Abdeckung eines Strahlenschutzmaterials sowie eine Strahlenschutzvorrichtung. Die beschichtete Mikrofaserbahn umfasst: (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist und (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist.

Description

  • Technisches Gebiet
  • Die vorliegende Erfindung betrifft eine beschichtete Mikrofaserbahn, ein Verfahren zur Herstellung derselben, deren Verwendung als Abdeckung eines Strahlenschutzmaterials sowie eine Strahlenschutzvorrichtung.
  • Technischen Hintergrund
  • US-Patent 4,923,741 offenbart eine flexible mehrschichtige Abdeckung, die als Schutz gegen die Gefahren im Weltall dient. Die Abdeckung umfasst unter anderem eine Schicht, die beispielsweise gegen Bremsstrahlung schützen soll.
  • GB 2 118 410 A beschreibt einen Strahlenschutzgegenstand, der mindestens eine flexible Schicht eines bleihaltigen Materials umfasst, das von einem Gestrick, Gewebe oder Vlies umhüllt ist bzw. zwischen zwei Lagen eines Gestricks, Gewebes oder Vlieses eingefasst ist, wobei das Gestrick, Gewebe oder Vlies eine Beschichtung aus flexiblem Polyurethan auf der äußeren Oberfläche aufweist. Die vorliegenden Erfinder haben jedoch gefunden, dass derartige Strahlenschutzgegenstände, die eine Polyurethanbeschichtung auf der Außenseite aufweisen, einen sehr starker Abrieb unterliegen, wenn sie beispielsweise in einem medizinischen Bereich verwendet werden.
  • Demgemäß war es eine Aufgabe der vorliegenden Erfindung eine Mikrofaserbahn bereitzustellen, welche eine verbesserte Abriebfestigkeit aufweist.
  • Zusammenfassung der Erfindung
  • In einer Ausführungsform betrifft die vorliegende Erfindung, eine beschichtete Mikrofaserbahn, umfassend:
    • (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
    • (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist.
  • In einer weiteren Ausführungsform bezieht sich die Erfindung auf ein Verfahren zur Herstellung einer beschichteten Mikrofaserbahn, welches die folgenden Schritte umfasst:
    • (a) Bereitstellen einer Mikrofaserbahn;
    • (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst;
    • (c) Trocknen der imprägnierten Mikrofaserbahn;
    • (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und
    • (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen beschichteten Mikrofaserbahn als Abdeckung eines Strahlenschutzmaterials, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  • In einer anderen Ausführungsform der Erfindung wird eine Strahlenschutzvorrichtung beansprucht, die
    • (α) ein Strahlenschutzmaterial; und
    • (β) eine erfindungsgemäße beschichtete Mikrofaserbahn umfasst, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  • Beschreibung der Figuren
  • 1 zeigt eine schematische Darstellung eines Querschnitts der erfindungsgemäßen beschichteten Mikrofaserbahn.
  • 2 zeigt eine schematische Darstellung eines Querschnitts der erfindungsgemäßen Strahlenschutzvorrichtung.
  • Beschichtete Mikrofaserbahn
  • Die vorliegende Erfindung betrifft eine beschichtete Mikrofaserbahn, umfassend:
    • (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
    • (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist.
  • Die Mikrofaserbahn ist nicht besonders beschränkt. Sie kann ein beliebiges flächiges Gebilde, wie Gewebe, Gewirk, Gestrick, Membran oder Vlies, sein, das Mikrofasern enthält. Bevorzugt sind Gewebe.
  • Mikrofasern sind Fasern, die bevorzugt eine Faserstärke von etwa 0,5 dtex bis etwa 1,5 dtex, stärker bevorzugt etwa 0,3 dtex bis etwa 1,0 dtex aufweisen. Die Art der Mikrofasern ist vom geplanten Einsatzzweck abhängig. Beispiele für geeignete Mikrofasertypen umfassen Mikrofasern auf der Basis von Polyester, Polyamid, Cellulose (z. B. Acetat oder Viskose) und Polytetrafluorethylen sowie Gemisch davon. Mikrofasern auf der Basis von Polyester und/oder Polyamid besonders geeignet.
  • Die Mikrofaserbahn kann elektrisch leitende Fasern enthalten, um elektrostatische Aufladungen zu vermindern. Die elektrisch leitenden Fasern sind nicht besonders beschränkt. Beispiele hierfür sind Fasern aus Kohlenstoff, Metall oder Fasern auf Polymerbasis, beispielsweise Polymerfasern, die Kohlenstoff- oder Metallteilchen enthalten. In einer bevorzugten Ausführungsform werden Polymerfasern, die Kohlenstoffteilchen enthalten, verwendet. Die elektrisch leitenden Fasern haben beispielsweise eine Faserstärke im Bereich von etwa 1 dtex bis etwa 3 dtex, bevorzugt etwa 1,2 dtex bis etwa 2 dtex. Wenn der Durchmesser der elektrisch leitenden Fasern größer (bevorzugt etwa 1,2- bis etwa 3-fach größer, stärker bevorzugt etwa 1,2- bis etwa 2-fach größer) als der Durchmesser der Mikrofasern ist, ragen die elektrisch leitenden Fasern aus der Gewebeoberfläche hervor. Der Fachmann kann die Menge der elektrisch leitenden Fasern auf Grund seines Fachwissens geeignet wählen. Es werden üblicherweise etwa 0,1 Gew.-% bis etwa 10 Gew.-%, bevorzugt etwa 0,5 Gew.-% bis etwa 3 Gew.-% elektrisch leitende Fasern in der Mikrofaserbahn enthalten sein, wobei sich die Gewichtsprozent auf das Gesamtgewicht der Fasern in der unbeschichteten Mikrofaserbahn beziehen. In einer bevorzugten Ausführungsform soll die fertige Mikrofaserbahn einen elektrostatischen Oberflächenwiderstand von etwa 105 Ohm bis etwa 108 Ohm (gemessen nach DIN 100015-1 bei 25% rel. Luftfeuchtigkeit und 23°C) aufweisen.
  • Mikrofasern und die gegebenenfalls vorhandenen elektrisch leitenden Fasern werden gemäß bekannten Verfahren zu einer Mikrofaserbahn verarbeitet. Die elektrisch leitenden Fasern können statistisch oder in einer regelmäßigen Anordnung in die Mikrofaserbahn eingearbeitet sein. Die Art der Einarbeitung wird von den Anforderungen an die Ableitung von elektrischen Aufladungen sowie von dem Verfahren, mit dem die Mikrofaserbahn hergestellt wird, abhängen. In einer bevorzugten Ausführungsform werden die elektrisch leitenden Fasern in einer regelmäßigen Anordnung eingearbeitet. Sie können beispielsweise in einer gitterförmigen Anordnung eingearbeitet sein, da diese Anordnung mögliche elektrostatische Aufladungen besonders günstig ableitet. Die Abstände zwischen den Gitterlinien liegen bevorzugt im Bereich von etwa 3 mm bis etwa 100 mm, bevorzugt etwa 5 mm bis etwa 75 mm, wobei die Seitenlängen der Gitterrechtecke voneinander verschieden sein können.
  • Die Luftdurchlässigkeit der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, wird vom Fachmann je nach Verwendungszweck geeignet gewählt. In einer Ausführungsform beträgt die Luftdurchlässigkeit 0 bis etwa 100 l/min pro dm2, bevorzugt 5 bis etwa 50 l/min pro dm2, wobei die Luftdurchlässigkeit nach DIN EN ISO 9237 gemessen wird.
  • Das Flächengewicht der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, wird ebenfalls im Hinblick auf den Verwendungszweck geeignet gewählt. Das Flächengewicht wird üblicherweise im Bereich von etwa 50 g/m2 bis etwa 200 g/m2, bevorzugt etwa 60 g/m2 bis etwa 150 g/m2, liegen.
  • Die Dicke der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, ist nicht besonders beschränkt. Sie wird üblicherweise im Hinblick auf den Verwendungszweck gewählt werden. In einer Ausführungsform wird die Mikrofaserbahn eine Dicke im Bereich von etwa 0,05 mm bis etwa 0,20 mm, bevorzugt etwa 0,10 mm bis etwa 0,15 mm, aufweisen.
  • Die Mikrofaserbahn ist mit Fluorpolymer imprägniert. Das Fluorpolymer kann ein teil- oder perfluoriertes Polymer sein. Es sind sowohl Homo- als auch Copolymere geeignet. Fluoralkylacrylathomopolymere und Fluoralkylacrylatcopolymere sind besonders geeignet.
  • Bevorzugte Fluorpolymere weisen perfluoralkylhaltige Seitengruppen auf. Diese Seitengruppen können beispielsweise durch Polymerisieren von perfluoralkylhaltigen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    Perfluoralkyleinheit – optionaler Spacer – polymerisierbare Gruppe
  • Die Perfluoralkyleinheit weist bevorzugt etwa 4 bis etwa 12 Kohlenstoffatomen auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Perfluoralkyleinheit ist. Er weist bevorzugt etwa 2 bis etwa 10 Atome, stärker bevorzugt etwa 2 bis etwa 8 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen. Beispiele für perfluoralkylhaltige Monomere sind perfluoralkylhaltige Acrylate der Formel H2C=CR-C(O)-O-(CH2)n-CmF2m+1 wobei
    R H oder CH3 bedeutet;
    n 0 bis etwa 8, bevorzugt 0 bis etwa 6, betragt; und
    m etwa 4 bis etwa 12 beträgt.
  • Die Fluorpolymere können weitere Seitengruppen aufweisen, wobei insbesondere alkylhaltige Seitengruppen und/oder funktionelle Seitengruppen geeignet sind. In einer Ausführungsform kann das Fluorpolymer alkylhaltige Seitengruppen aufweisen.
  • Diese Seitengruppen können beispielsweise durch Polymerisieren von alkylhaltigen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    Alkyleinheit – optionaler Spacer – polymeriserbare Grupp
  • Die Alkyleinheit weist bevorzugt etwa 1 bis etwa 12 Kohlenstoffatomen auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Alkyleinheit ist. Er weist bevorzugt etwa 0 bis etwa 20 Atome, stärker bevorzugt etwa 0 bis etwa 10 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen.
  • Beispiele für alkylhaltige Monomere sind alkylhaltige Acrylate der Formel H2C=CR-C(O)-O-CpH2p+1 wobei
    R H oder CH3 bedeutet; und
    p etwa 1 bis etwa 12 beträgt.
  • In einer Ausführungsform kann das Fluorpolymer funktionelle Seitengruppen aufweisen.
  • Diese Seitengruppen können beispielsweise durch Polymerisieren von funktionellen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    funktionelle Einheit – optionaler Spacer – polymerisierbare Gruppe
  • Die funktionelle Einheit ist nicht besonders beschränkt und kann jede funktionelle Gruppe enthalten. Beispiele für funktionelle Gruppen sind OH, SH, NH2, N-Methylolsulfonamide usw. Die funktionelle Einheit weist bevorzugt 0 bis etwa 20 Kohlenstoffatomen, bevorzugt 0 bis etwa 12 Kohlenstoffatomen, auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Alkyleinheit ist. Er weist bevorzugt etwa 0 bis etwa 20 Atome, stärker bevorzugt 0 bis etwa 10 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen.
  • Beispiele für funktionelle Monomere sind Acrylate der Formel H2C=CR-C(O)-O-CpH2pX wobei
    R H oder CH; bedeutet;
    p etwa 1 bis etwa 12 beträgt; und
    X eine funktionelle Gruppe ausgewählt aus OH, SH, NH2, und N-Methylolsulfonamide
    bedeutet.
  • Beispiele von kommerziell erhältlichen Fluorpolymeren umfassen Evoral®, Oleophobol, Scotchguard, Tubiguard, Repellan, Ruco-Guard, Unidyne, Quecophob und Nuva, sind aber nicht darauf beschränkt.
  • Die imprägnierte Mikrofaserbahn enthält bevorzugt etwa 0,2 g bis etwa 5 g, stärker bevorzugt etwa 0,2 g bis etwa 1,2 g, Fluorpolymer bezogen auf 100 g Mikrofaserbahn, die als Ausgangsmaterial verwendet wird. Wenn eine entsprechende Menge an Fluorpolymer eingesetzt wird, weist die beschichtete Mikrofaserbahn langfristig eine gute Wasser- und Ölabweisung, Haftung zum Substrat und guten Griff auf.
  • Die Imprägnierungszusammensetzung kann des Weiteren, falls erforderlich, Hilfsstoffe, wie Silikone, Wachse und Salze (beispielsweise Zirkoniumsalze), enthalten.
  • Auf einer Seite der Mikrofaserbahn ist eine Schicht, die Polyurethan umfasst, aufgebracht. Durch die Schicht, die Polyurethan umfasst, ist die beschichtete Mikrofaserbahn leicht zu Reinigen. Des Weiteren gewährleistet diese Schicht Dichtheit gegen Wasser und Penetration durch Mikroorganismen, wie Bakterien. Die Schicht, die Polyurethan umfasst, ist bevorzugt in Form einer kontinuierlichen Schicht auf einer Oberfläche der Mikrofaserbahn aufgebracht. Die Schicht sollte eine einheitliche Dicke aufweisen. Die Dicke der Schicht liegt bevorzugt im Bereich von etwa 3 g/m2 bis etwa 50 g/m2, stärker bevorzugt im Bereich von etwa 8 g/m2 bis etwa 20 g/m2.
  • Als Polyurethane kommen alle Polyurethanhomo- und -copolymere in Frage. Unter anderem kommen Polyurethanblockcopolymere wie Polyester-Polyurethane und Polyetherpolyol-Polyurethane in Frage. Die Polyester und Poletherpolyole haben üblicherweise ein Molelulargewicht von etwa 4000 bis etwa 6000. Ein Beispiel eines kommerziell erhältlichen Produktes ist Impranil®.
  • Die Schicht, die Polyurethan umfasst, kann neben Polyurethan auch weitere Bestandteile enthalten. Ein möglicher Bestandteil ist ein Fluorharz. Das Fluorharz kann mit dem Fluorpolymer identisch sein oder von diesem verschieden sein. Das Fluorharz ist bevorzugt mit dem Fluorpolymer identisch, so dass die vorstehenden Ausführungen zum Fluorpolymer gelten.
  • Das Fluorharz ist bevorzugt in einer Menge von 0 bis etwa 10 Gewichtsteilen, stärker bevorzugt etwa 0,5 Gewichtsteilen bis etwa 3 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Die Schicht, die Polyurethan umfasst, kann weitere Hilfsstoffe umfassen. Ein optionaler Hilfsstoff ist Siliciumdioxid. Die Sterilisierbarkeit mit Gasen wie Ethylenoxid wird durch den Zusatz von Siliciumdioxid verbessert. Siliciumdioxid wird bevorzugt in Form von Kieselsäure in der Schicht eingesetzt. Die Größe der Siliciumdioxidteilchen liegt üblicherweise im Bereich von etwa 0,2 μm bis etwa 10 μm, bevorzugt etwa 0,2 μm bis etwa 5 μm. Siliciumdioxid ist bevorzugt in einer Menge von 0 bis etwa 10 Gewichtsteilen, stärker bevorzugt von etwa 1 Gewichtsteil bis etwa 5 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Die Schicht, die Polyurethan umfasst, kann außerdem Titandioxid umfassen. Titandioxid dient als Mattierungsmittel. Die Größe der Titandioxidteilchen liegt üblicherweise im Bereich von etwa 0,2 μm bis etwa 10 μm, bevorzugt von etwa 0,2 μm bis etwa 5 μm. Titandioxid ist bevorzugt in einer Menge von 0 bis etwa 5 Gewichtsteilen, stärker bevorzugt etwa 0,2 Gewichtsteilen bis etwa 2 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Des Weiteren kann die Schicht, die Polyurethan umfasst, weitere Additive wie Entlüfter, Fungizide, Additive zur Erhöhung der Kratzfestigkeit, Hydrophobierungsmittel, Verdicker, Rheologiehilfsmittel, Verlaufshilfsmittel, usw. enthalten. Diese Additive sind entweder Additive für die Herstellung der Schicht oder verbessern die Eigenschaften der fertigen Schicht. Der Fachmann kann sie auf Grund seines Fachwissens geeignet wählen. Die Additive sind bevorzugt in einer Menge von 0 bis etwa 20 Gewichtsteile, stärker bevorzugt etwa 0,5 Gewichtsteile bis etwa 10 Gewichtsteile, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Verfahren zur Herstellung der beschichteten Mikrofaserbahn
  • Die erfindungsgemäße beschichtete Mikrofaserbahn kann nach verschiedenen Verfahren hergestellt werden. Ein bevorzugtes Verfahren wird im Folgenden beschrieben.
  • (a) Bereitstellen einer Mikrofaserbahn
  • Zunächst wird eine Mikrofaserbahn bereitgestellt. Die Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, ist vorstehend eingehend beschrieben worden.
  • Die Mikrofaserbahn kann als solches in dem erfindungsgemäßen Verfahren eingesetzt werden. Sie kann jedoch, falls gewünscht, einer Vorbehandlung beispielsweise zur Erhöhung der Hydrophilie unterzogen werden. Die Vorbehandlung beispielsweise zur Erhöhung der Hydrophilie kann nach auf dem Fachgebiet bekannten Verfahren durchgeführt werden. Als Mittel zur Erhöhung der Hydrophilie können nichtionische Tenside, Fettsäurekondensate, Silicone und Gemische davon verwendet werden.
  • Die Mittel zur Erhöhung der Hydrophilie werden auf die Mikrofaserbahn aufgebracht. Das Aufbringungsverfahren ist nicht besonders beschränkt. In einer Ausführungsform wird die Mikrofaserbahn (beispielsweise durch Sprühen, Eintauchen, usw.) mit einer Lösung oder Dispersion der Mittel zur Erhöhung der Hydrophilie in Kontakt gebracht.
  • Nach dem Aufbringen der Mittel zur Erhöhung der Hydrophilie wird die erhaltene Mikrofaserbahn bevorzugt getrocknet. Die genauen Trocknungsbedingungen hängen von dem verwendeten Mittel zur Erhöhung der Hydrophilie ab. Üblicherweise wird eine Trocknungstemperatur von etwa 40°C bis etwa 80°C, bevorzugt von etwa 50°C bis etwa 60°C, gewählt werden. Die Trocknungsdauer liegt üblicherweise bei etwa 30 s bis etwa 240 s, bevorzugt bei etwa 60 s bis etwa 120 s.
  • Es ist wünschenswert, wenn die Mikrofaserbahn vor dem Imprägnierschritt eine Flottenaufnahme für das Fluorpolymer von etwa 65 Gew.-% bis etwa 85 Gew.-%, stärker bevorzugt von etwa 65 Gew.-% bis etwa 70 Gew.-%, bezogen auf das Trockengewicht der ggf. vorbehandelten Mikrofaserbahn aufweist.
  • (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst
  • Die Mikrofaserbahn wird mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst, imprägniert. Geeignete Fluorpolymere sind vorstehend beschrieben.
  • Die Mikrofaserbahn wird nach bekannten Verfahren imprägniert. Diese Verfahren umfassen Sprühen, Eintauchen, Ausziehverfahren, Pflatschen, und Schaumimprägnierung. Eine Tauchimprägnierung ist bevorzugt, da dies eine vollständige Imprägnierung der Mikrofaserbahn ermöglicht.
  • Bei der Imprägnierung der Mikrofaserbahn wird das Fluorpolymer üblicherweise in Form einer Lösung oder Dispersion eingesetzt. Die Konzentration der Lösung oder Dispersion ist nicht besonders beschränkt und liegt bevorzugt im Bereich von etwa 5 g/l bis etwa 70 g/l, stärker bevorzugt im Bereich von etwa 5 g/l bis etwa 50 g/l.
  • (c) Trocknen der imprägnierten Mikrofaserbahn
  • Nach der Imprägnierung wird die imprägnierte Mikrofaserbahn getrocknet.
  • Die vorliegenden Erfinder haben gefunden, dass die Eigenschaften von Imprägnierungen mit Fluorpolymeren durch eine geeignete Abfolge von Trocknung und thermischer Behandlung beeinflusst werden können. Ohne an eine bestimmte Theorie gebunden sein zu wollen, glauben sie, dass die Moleküle des Fluorpolymers sich zunächst statistisch auf einem Substrat (wie die vorliegende Mikrofaserbahn) ablagern, wem das Lösungsmittel entfernt wird. Durch die statistische (d. h. ungeordnete) Anordnung sind die hydrophoben Fluoratome zunächst ebenfalls statistisch verteilt. Wenn das Fluorpolymer einer höheren Temperatur ausgesetzt wird, kommt es zu einer Umorientierung der Moleküle des Fluorpolymers, wobei die hydrophoben Fluoratome sich bevorzugt auf der Oberfläche der Schicht anordnen.
  • Man kann mit Hilfe der Saugfähigkeit bestimmen, ob eine bestimmte Temperatur für ein bestimmtes Fluorpolymer als Trocknungstemperatur (Schritt (c)) oder als Temperatur für die thermische Behandlung (Schritt (e)) anzusehen ist.
  • Ein Testgewebe aus Baumwolle EMPA 210, Leinwandbindung, gebleicht, ohne optische Aufheller (Bezugsquelle EMPA Testmaterialien AG, St. Gallen, Schweiz) wird mittels Foulardierung mit 0,5 g Fluorpolymer pro 100 g Baumwollgewebe imprägniert und bei Raumtemperatur getrocknet. Das Gewebe wird anschließend in gleichgroße Stücke geschnitten. Die Stücke werden anschließend bei unterschiedlichen Temperaturen 120 s erwärmt (bspw. 40°C, 50°C, ..., 140°C, 150°C), wobei die Temperaturdifferenz zwischen den einzelnen Schritten 10°C beträgt. Die genaue Minimal- und Maximaltemperatur hängt vom Fluorpolymer ab und kann anhand des gemessenen Kurvenverlaufs bestimmt werden. Es wird das Gewicht des jeweiligen Gewebestücks, das bei der Temperatur Ti erwärmt wurde mtrocken(Ti), gemessen.
  • Nach dem Abkühlen werden die Gewebestücke mit einer wässrigen Flotte bei 2 bar Druck und 1,5 m/min Walzengeschwindigkeit foulardiert. Es wird das Gewicht des jeweiligen Gewebestücks, das bei der Temperatur Ti erwärmt wurde mnass(Ti), gemessen.
  • Die Flottenaufnahme für das Gewebestück, das bei der Temperatur Ti erwärmt wurde, wird anhand der folgenden Formel berechnet:
    Figure 00120001
  • Bei niedrigen Temperaturen Ti ist die Flottenaufnahme relativ konstant. Sie sinkt bei einer bestimmten Temperatur Ti jedoch plötzlich auf deutlich niedrigere Werte ab. Nach dem Anstieg werden dann trotz steigender Temperatur Ti wieder relativ konstante Werte für die Flottenaufnahme ermittelt. Beim Schritt (c) sollte die Trocknungstemperatur so gewählt werden, dass man im Bereich liegt, bei dem die relativ konstante hohe Flottenaufnahme erhalten wird. Beim Schritt (e) sollte die Temperatur der thermischen Behandlung so gewählt werden, dass man im Bereich liegt, bei dem die relativ konstante niedrige Flottenaufnahme erhalten wird. Der Übergangsbereich zwischen beiden Zonen ist weniger geeignet. In der Regel wird die Flottenaufnahme, wenn man sich im Bereich der Trocknung befindet, mindestens 20% betragen. In der Regel wird die Flottenaufnahme, wenn man sich im Bereich der thermischen Behanldung befindet, höchstens 10% betragen. Diese Zahlen sind jedoch nur Anhaltspunkte und können je nach Fluorpolymer variieren.
  • Die vorliegende Erfindung macht von dieser Erkenntnis Gebrauch. In Schritt (c) wird die imprägnierte Mikrofaserbahn getrocknet. Dabei lagern sich die Moleküle des Fluorpolymers statistisch auf der Mikrofaserbahn ab. Die Trocknungsbedingungen werden dabei so gewählt, dass es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Die genauen Trocknungsbedingungen hängen von dem verwendeten Fluorpolymer ab. Üblicherweise wird eine Trocknungstemperatur von etwa 40°C bis etwa 110°C, bevorzugt von etwa 50°C bis etwa 80°C, gewählt. Die Trocknungsdauer liegt üblicherweise bei etwa 10 s bis etwa 240 s, bevorzugt bei etwa 30 s bis etwa 120 s.
  • Durch die Imprägnierung mit dem Fluorpolymer wird die Saugfähigkeit der Mikrofaserbahn eingestellt. Dadurch dass das Fluorpolymer lediglich getrocknet wird, ist es einfacher zu gewährleisten, dass die Polyurethanbeschichtungszusammensetzung nicht die gesamte Mikrofaserbahn durchdringt. Wenn die Fluorpolymer bereits vor dem Aufbringen der Polvurethanbeschichtungszusammensetzung thermisch behandelt werden würde, so dass die Moleküle des Fluorpolymers sich orientieren würden, würde die abweisende Oberfläche eine nachträgliche Beschichtung mit der Beschichtungszusammensetzung erschweren.
  • Es ist wünschenswert, wenn die Mikrofaserbahn nach dem Trocknungsschritt eine Flottenaufnahme für die Beschichtungszusammensetzung von etwa 30 Gew.-% bis etwa 60 Gew.-%, stärker bevorzugt von etwa 30 Gew.-% bis etwa 50 Gew.-%, bezogen auf Trockengewicht der imprägnierten Mikrofaserbahn aufweist.
  • (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn
  • Nach dem Trocknungsschritt wird die Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn aufgebracht. Die Bestandteile der Schicht, die Polyurethan umfasst, sind vorstehend ausführlich beschrieben worden.
  • Die Beschichtungszusammensetzung wird bevorzugt in Form einer Lösung oder Dispersion der gewünschten Bestandteile eingesetzt. Die Konzentration des Polyurethans in der Lösung oder Dispersion ist bevorzugt im Bereich von etwa 50 Gew.-% bis etwa 80 Gew.-%, stärker bevorzugt von etwa 60 Gew.-% bis etwa 80 Gew.-%. Durch die Wahl einer viskosen Beschichtungszusammensetzung ist es einfacher sicherzustellen, dass die Schicht, die Polyurethan umfasst, nur auf einer Seite der fertigen Mikrofaserbahn vorhanden ist.
  • Die Beschichtungszusammensetzung wird nach bekannten Verfahren auf die getrocknete, imprägnierte Mikrofaserbahn aufgebracht. Zu diesen Verfahren gehören Walzenbeschichten, Rakeln, Streichbeschichten, Schaumbeschichten, Transferbeschichten, und Filmziehen, bevorzugt wird Rakeln verwendet.
  • Die Beschichtungszusammensetzung wird so aufgebracht, dass die Schicht, die Polyurethan umfasst, nur auf einer Seite der fertigen Mikrofaserbahn vorhanden ist. 1 zeigt eine schematische Darstellung des Querschnitts einer fertigen erfindungsgemäßen beschichteten Mikrofaserbahn, wobei die Mikrofaserschicht der Einfachheit halber als Monoschicht dargestellt ist.
  • In der gezeigten Ausführungsform umfasst die Mikrofaserbahn (1) Mikrofasern (2) und elektrisch leitende Fasern (3), wobei in dieser Ausführungsform der Durchmesser der elektrisch leitenden Fasern (3) größer als der Durchmesser der Mikrofasern (2) ist. Die Fluorpolymerimprägnierung ist in dieser Abbildung nicht gezeigt. Die Schicht (4), die Polyurethan umfasst, ist nur auf einer Seite der fertigen Mikrofaserbahn vorhanden.
  • Es ist selbstverständlich, dass die Beschichtungszusammensetzung beim Aufbringen auf die getrocknete, imprägnierte Mikrofaserbahn zu einem gewissen Grad in die Mikrofaserbahn eindringt. Im Rahmen der Erfindung darf die Schicht, die Polyurethan umfasst. jedoch nicht die Mikrofasern auf der Seite der Mikrofaserbahn, die der Seite, von der sie aufgebracht wurde, gegenüberliegt, abdecken. Der Durchdringungsgrad beträgt bevorzugt höchstens etwa 60%, stärker bevorzugt höchstens etwa 40%. Der Durchdringungsgrad beträgt bevorzugt mindestens etwa 20%, stärker bevorzugt mindestens etwa 30%. Im Rahmen der Erfindung wird der Durchdringungsgrad wie folgt definiert:
    Figure 00150001
    d1 Dicke des Teils der Mikrofaserschicht, der mit der Schicht, die Polyurethan umfasst, in Kontakt ist
    d2 Dicke der gesamten Mikrofaserschicht
  • Die Dicken kann man durch optische Verfahren wie beispielsweise Mikroskopie messen. Ein Beispiel für ein mögliches Meßverfahren ist die Untersuchung eines Querschnitts mittels Rasterelektronenmikroskopie.
  • Der Durchdringungsgrad ist in 1 bildlich durch die rechte geschweifte Klammer und die Angabe ”x%” angedeutet. In 1 beträgt sie ca. 50%, da die Mikrofasern (weiße Kugeln) zu ca. 50% in die Schicht, die Polyurethan umfasst, eingebettet sind.
  • Die Beschichtungszusammensetzung kann nach dem Aufbringen in Schritt (d) getrocknet werden. Alternativ kann auf die Trocknung verzichtet werden und die Beschichtungszusammensetzung im Rahmen der thermischen Behandlung in Schritt (e) getrocknet werden.
  • Falls ein getrennter Trocknungsschritt durchgeführt wird, werden die Bedingungen in Abhängigkeit von der gewählten Beschichtungszusammensetzung gewählt. Sie sollten jedoch so gewählt werden, dass es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Üblicherweise wird eine Trocknungstemperatur von etwa 40°C bis etwa 110°C, bevorzugt von etwa 80°C bis etwa 100°C, gewählt werden. Die Trocknungsdauer liegt üblicherweise bei etwa 10 s bis etwa 240 s, bevorzugt bei etwa 10 s bis etwa 120 s.
  • (e) Thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn
  • In Schritt (e) wird die (gegebenenfalls getrocknete) beschichtete Mikrofaserbahn, die in Schritt (d) erhalten wird, thermisch behandelt. Bei diesem Schritt werden die Bedingungen so gewählt, dass es zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Bei der thermischen Behandlung wird üblicherweise eine Temperatur von etwa 120°C bis etwa 190°C, bevorzugt von etwa 140°C bis etwa 180°C, gewählt. Es ist selbstverständlich möglich die thermische Behandlung in mehreren Stufen mit unterschiedlicher Temperatur durchzuführen. Die Dauer der thermischen Behandlung liegt üblicherweise bei etwa 10 s bis etwa 240 s, bevorzugt bei etwa 30 s bis etwa 120 s.
  • Strahlenschutzvorrichtung
  • Die erfindungsgemäße beschichtete Mikrofaserbahn kann als Abdeckung eines Strahlenschutzmaterials in einer Strahlenschutzvorrichtung verwendet werden, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  • 2 zeigt eine schematische Darstellung eines Querschnitts der erfindungsgemäßen Strahlenschutzvorrichtung (6). In der gezeigten Ausführungsform umfasst die Mikrofaserbahn (1) Mikrofasern (2) und elektrisch leitende Fasern (3), wobei in dieser Ausführungsform der Durchmesser der elektrisch leitenden Fasern (3) größer als der Durchmesser der Mikrofasern (2) ist. Die Fluorpolymerimprägnierung ist in dieser Abbildung nicht gezeigt. Die Schicht (4), die Polyurethan umfasst, ist nur auf einer Seite der fertigen Mikrofaserbahn (1) vorhanden.
  • Die erfindungsgemäße Mikrofaserbahn (1) ist in der gezeigten Ausführungsform auf beide Seiten des Strahlenschutzmaterials (5) aufgebracht, wobei die Schicht (4), die Polyurethan umfasst, jeweils dem Strahlenschutzmaterial (5) benachbart ist.
  • Als Strahlenschutzvorrichtungen können alle Vorrichtungen genannt werden, die Personen oder Gegenstände vor schädlicher Strahlung, insbesondere Röntgenstrahlung, UV-Strahlung, Infrarot-Strahlung, und radioaktiver Strahlung, besonders bevorzugt Röntgenstrahlung, schützen. Beispiele umfassen Schürzen, Handschuhe, Schirme, Vorhänge, Mäntel, Abdecktücher, Abdeckmaterialien, Augenschutzprodukte und Überzieher, sind aber nicht darauf beschränkt. Durch ihre Flexibilität und ihren angenehmen haptischen Eigenschaften eignet sich die erfindungsgemäße beschichtete Mikrofaserbahn besonders für flexible Strahlenschutzvorrichtungen und/oder Strahlenschutzvorrichtungen, die von Personen getragen werden.
  • Im Rahmen der Erfindung können alle Arten von Strahlenschutzmaterial verwendet werden. Die Art des Strahlenschutzmaterials wird von der abzuschirmenden Strahlung abhängen und ist nicht besonders beschränkt. Beispielhaft kann Strahlenschutzmaterial auf der Basis von Blei oder Bleioxid erwähnt werden. Bleifreies Strahlenschutzmaterial kann ebenfalls verwendet werden. Bleifreies Strahlenschutzmaterial ist beispielsweise in DE 10 2004 001 328 A , WO 2005/024846 A , WO 2005/023116 A , DE 10 2006 028 958 A , WO 2004/017332 A und DE 10 2005 034 384 offenbart. Kombinationen von Strahlenschutzmaterial sind auch möglich. Das Strahlenschutzmaterial kann eine oder mehrere Lagen umfassen.
  • Bei der Herstellung einer Strahlenschutzvorrichtung wird die erfindungsgemäße beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht. Üblicherweise wird das Strahlenschutzmaterial von der erfindungsgemäßen beschichteten Mikrofaserbahn umhüllt. Die Mikrofaserbahn und das Strahlenschutzmaterial können auf bekannte Weise, beispielsweise durch Nähen, Kleben, Tapen, Kaschieren oder Laminieren, miteinander verbunden werden. Wenn die Mikrofaserbahn und das Strahlenschutzmaterial, beispielsweise durch Kaschieren oder Laminieren, zu einem Verbundmaterial verarbeitet werden, können sie auch anschließend durch konfektionstechnische Verfahren, wie Schneiden, Stanzen, Wasserstrahlschneiden, Formen oder Laserstrahlschneiden zu den Endprodukten verarbeitet werden.
  • Die erfindungsgemäße Mikrofaserbahn schützt das Strahlenschutzmaterial. Insbesondere wird das Strahlenschutzmaterial geschützt vor:
    • • mechanischer Einwirkung;
    • • Penetration durch Keimen (wie Bakterien-, Viren- und Pilzen);
    • • chemischer Einwirkung beispielsweise durch Reinigungs- und Desinfektionsmittel;
    • • Lichteinwirkung; und/oder
    • • Eindringen von Körperflüssigkeiten, wie Blut, Urin oder Schweiß.
  • Die beschichtete Mikrofaserbahn verleiht durch ihren textilen Charakter zudem den Strahlenschutzvorrichtungen ein angenehmes Oberflächengefühl, was vor allem Kleidungsstücken ein angenehmes Tragegefühl verleiht.
  • Im Gegensatz zu konventionellen Strahlenschutzvorrichtungen, bei denen eine mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial abgewandt ist, wird die erfindungsgemäße beschichtete Mikrofaserbahn so angeordnet, dass die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist. Bei der konventionellen Anordnung ist die mit Polyurethan beschichtete Seite folglich nach außen gewandt und somit starken physischen Belastungen ausgesetzt. Dadurch kommt es zu verstärktem Verschließ und Abrieb. Durch die erfindungsgemäße Anordnung, bei der die mit Polyurethan beschichtete Seite nach innen gewandt ist, ist die physische Belastung deutlich geringer. Überraschenderweise weist die beschichtete Mikrofaserbahn bei der erfindungsgemäßen Anordnung eine hohe Schnitt- und Reißfestigkeit auf, so dass ihre Gebrauchseigenschaften denen von konventionellen Materialien deutlich überlegen sind.
  • Die Erfindung wird anhand des folgenden Beispiels erläutert. Die Erfindung ist jedoch nicht auf diese Ausführungsform beschränkt.
  • BEISPIEL
  • Die Mikrofaserbahn wurde aus Polyester-Mikrofasern mit einer Faserstärke von 1 dtex und kohlenstoffhaltigen Fasern (Belltron B31, erhältlich von Kanebo Gohsen Ltd., Japan) hergestellt. Die Fasern wurden zu einem Leinwand mit ca. 70 Kettfäden/cm und ca. 37 Schussfäden/cm mit einem Flächengewicht von 100 g/m2 verarbeitet. Die kohlenstoffhaltigen elektrisch leitenden Fasern wurden in Form eines Gitter mit den Maßen 5 × 5 mm eingearbeitet.
  • Die Mikrofaserbahn hatte eine Luftdurchlässigkeit von ca. 15 l/min pro dm2 und einen elektrostatischen Oberflächenwiderstand von ca. 1 × 108 Ohm (nach DIN 100015-1 bei 25% rel. Luftfeuchte und 23°C). Die Reißfestigkeiten betrugen ca. 850 N in Kette und ca. 650 N im Schuss.
  • Für das Beispiel wurde die Mikrofaserbahn über einen Spanrrahmen geführt.
  • 20 g/l Silastol WK (erhältlich von der Fa. Schill + Seilacher, DE) wurden zunächst durch Foulardapplikation auf die Mikrofaserbahn aufgebracht, um die Hydrophilie anzupassen. Nach der Foulardapplikation wurde die Mikrofaserbahn bei 80°C getrocknet.
  • Anschließend wurde die Mikrofaserbahn durch Foulardierung mit 10 g/l Evoral O 35 (Fluorpolymer; erhältlich von der Fa. Schill + Seilacher, DE) imprägniert. Die Mikrofaserhahn wurde 90 s bei 60°C getrocknet. Es kam nicht zu einer Orientierung der Moleküle des Fluorpolymers. Die aufgebrachte Menge an Evoral betrug ca. 0,7 g/10 g Mikrofaserbahn.
  • Nach der Trocknung wurde eine polyurethanhaltige Beschichtung auf die Mikrofaserbahn aufgerakelt. Die Beschichtungszusammensetzung wies die folgende Zusammensetzung auf:
    50 Teile Impranil DLP-R, Bayer (Polymerdispersion)
    0,2 Teile Agitan 218, Münzing Chemie (Entlüfter)
    0,4 Teile Afrotin FG, Schill + Seilacher (Fungizid)
    0,4 Teile Byk 333, Byk Chemie (Additiv zur Erhöhung der Kratzbeständigkeit)
    0,8 Teile Tegophobe 1650, Degussa (Hydophobierungsmittel)
    1,2 Teile kolloidale Kieselsäure
    41,7 Teile Wasser
    0,3 Teile Rheolate 255, Elementis (Verdicker)
    4,2 Teile Evoral, Schill + Seilacher (Fluorpolymer)
    0,8 Teile Hombitec RM 400, Sachtleben Chemie (Mattierungsmittel)
  • Die Anmischung erfolgte unter Zugabe in der obengenannten Reihenfolge mit Hilfe eines Dissolvers. Die Rührzeit betrug 35 Minuten. Die hergestellte Paste wurde mittels einer Luftrakel flächig als geschlossener Film auf die Mikrofaserbahn aufgebracht.
  • Die beschichtete Mikrofaserbahn wurde in einem Spannrahmen in fünf Feldern mit je 3 m Länge und einer Gesamtzeit von 2 min stufenweise getrocknet.
    Trocknung Feld 1: 80°C
    Trocknung Feld 2: 120°C
    Trocknung Felder 3 bis 5: 160°C
  • Die erhaltene Mikrofaserbahn wurde nach DIN EN 13795-2 untersucht, um ihre Eignung als Abdeckung von Röntgenschutzmaterial im OP Bereich zu klären. (KbE = Koloniebildende Einheiten). Barriereeigenschaften:
    Bakterienpenetration trocken: log10KbE: 0
    Flüssigkeitsdurchtritt: > 200 cm
    Reinheit:
    mikrobiologisch: log10(KbE/dm2): < 0,3
    Partikuläres Material: Index Partikuläres Material < 3,3
    Partikelfreisetzung: log10-Partikel (2–25 μm) < 3,7
    Festigkeit:
    Berstfestigkeit trocken: > 750 kPa
    Berstfestigkeit nass: > 750 kPa
    Reißfestigkeit: trocken: > 750 N/5 cm
    Reißfestigkeit: nass: > 680 N/5 cm
  • Die Messwerte zeigen, dass das erfindungsgemäße Material hervorragend als Textil im OP-Bereich eingesetzt werden kann.
  • Das in Beispiel 1 von WO 2005/024846 hergestellte bleifreie Strahlenschutzmaterial wurde in Form einer Strahlenschutzschürze geschnitten. Die vorstehend hergestellte beschichtete Mikrofaserbahn wurde entsprechend zugeschnitten und beidseitig auf das Strahlenschutzmaterial gelegt, wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial zugewandt war. Die Mikrofaserbahnen und das Strahlenschutzmaterial wurden miteinander vernäht, so dass eine Strahlenschutzschürze erhalten wurde. Die Strahlenschutzschürze vermittelte durch die Verwendung der beschriebenen Mikrofaserbahn ein angenehmes Tragegefühl. Hautreizungen wurden vermieden. Außerdem dient die beschriebene Mikrofaserbahn als Schutzbarriere für das sensible Strahlenschutz-Inlay. Die Strahlenschutzschürze wies eine hervorragende Dichtheit gegen Blut, Urin und Mikroorganismen auf. Sie konnte außerdem ohne Beschädigung durch Ethylenoxid sterilisiert werden. Folglich ist die Strahlenschutzschürze sehr gut für den Einsatz im medizinischen Bereich geeignet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 4923741 [0002]
    • - GB 2118410 A [0003]
    • - DE 102004001328 A [0077]
    • - WO 2005/024846 A [0077]
    • - WO 2005/023116 A [0077]
    • - DE 102006028958 A [0077]
    • - WO 2004/017332 A [0077]
    • - DE 102005034384 [0077]
    • - WO 2005/024846 [0093]
  • Zitierte Nicht-Patentliteratur
    • - DIN 100015-1 [0014]
    • - DIN EN ISO 9237 [0016]
    • - DIN 100015-1 [0084]
    • - DIN EN 13795-2 [0091]

Claims (17)

  1. Beschichtete Mikrofaserbahn, umfassend: (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist.
  2. Beschichtete Mikrofaserbahn gemäß Anspruch 1, wobei das Fluorpolymer in einer Menge von etwa 0,2 g bis etwa 5 g, bezogen auf 100 g der unbeschichteten Mikrofaserbahn, vorhanden ist.
  3. Beschichtete Mikrofaserbahn gemäß Anspruch 1 oder 2, wobei die Dicke der Schicht, die Polyurethan umfasst, etwa 3 g/m2 bis etwa 50 g/m2 beträgt.
  4. Beschichtete Mikrofaserbahn gemäß einem der Ansprüche 1 bis 3, wobei die Schicht, die Polyurethan umfasst, des Weiteren Fluorharz in einer Menge von etwa 3 Gewichtsteilen bis etwa 30 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  5. Beschichtete Mikrofaserbahn gemäß einem der Ansprüche 1 bis 4, wobei die Schicht, die Polyurethan umfasst, des Weiteren Siliciumdioxid in einer Menge von etwa 1 Gewichtsteil bis etwa 10 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  6. Beschichtete Mikrofaserbahn gemäß einem der Ansprüche 1 bis 5, wobei das Fluorpolymer durch Polymerisation von perfluoralkylhaltigen Acrylaten der Formel H2C=CR-C(O)-O-(CH2)n-CmF2m+1 wobei R H oder CH3 bedeutet; n 0 bis etwa 8 beträgt; und m etwa 4 bis etwa 12 beträgt; erhältlich ist.
  7. Beschichtete Mikrofaserbahn gemäß Anspruch 6, wobei das Fluorpolymer ein Copolymer ist, das durch Copolymerisation von perfluoralkylhaltigen Acrylaten mit (i) mindestens einem alkylhaltigen Acrylat der Formel H2C=CR-C(O)-O-CpH2p+1 wobei R H oder CH3 bedeutet; und p etwa 1 bis etwa 12 beträgt; und/oder (ii) mindestens einem funktionellen Monomer der Formel H2C=CR-C(O)-O-CpH2pX wobei R H oder CH3 bedeutet; p etwa 1 bis etwa 12 beträgt; und X eine funktionelle Gruppe ausgewählt aus OH, SH, NH2, und N-Methylolsulfonamide bedeutet; erhältlich ist.
  8. Verfahren zur Herstellung einer beschichteten Mikrofaserbahn, welches die folgenden Schritte umfasst: (a) Bereitstellen einer Mikrofaserbahn; (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst; (c) Trocknen der imprägnierten Mikrofaserbahn; (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn.
  9. Verfahren gemäß Anspruch 8, wobei die Trocknung in Schritt (c) bei einer Temperatur im Bereich von etwa 40°C bis etwa 110°C für eine Dauer von etwa 10 s bis etwa 240 s durchgeführt wird.
  10. Verfahren gemäß Anspruch 8 oder 9, wobei die thermische Behandlung in Schritt (e) bei einer Temperatur im Bereich von etwa 120°C bis etwa 190°C für eine Dauer von etwa 10 s bis etwa 240 s durchgeführt wird.
  11. Verfahren gemäß Anspruch 8, wobei das Trocknen der imprägnierten Mikrofaserbahn in Schritt (c) so durchgeführt wird, dass sich die Moleküle des Fluorpolymers statistisch auf der Mikrofaserbahn ablagern und es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  12. Verfahren gemäß Anspruch 8 oder 11, wobei die thermische Behandlung in Schritt (e) so durchgeführt wird, dass es zu einer Umorientierung der Moleküle des Fluorpolymers kommt, wobei die hydrophoben Fluoratome sich bevorzugt auf der Oberfläche der Schicht anordnen.
  13. Verwendung der beschichteten Mikrofaserbahn nach einem der Ansprüche 1 bis 7 oder der beschichteten Mikrofaserbahn, die gemäß dem Verfahren nach einem der Ansprüche 8 bis 12 erhältlich ist, als Abdeckung eines Strahlenschutzmaterials; wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  14. Strahlenschutzvorrichtung umfassend: (α) ein Strahlenschutzmaterial; und (β) die beschichtete Mikrofaserbahn nach einem der Ansprüche 1 bis 7 oder die beschichtete Mikrofaserbahn, die gemäß dem Verfahren nach einem der Ansprüche 8 bis 12 erhältlich ist, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  15. Strahlenschutzvorrichtung gemäß Anspruch 14, wobei das Strahlenschutzmaterial zur Abschirmung von Röntgenstrahlung geeignet ist.
  16. Strahlenschutzvorrichtung gemäß Anspruch 14 oder 15, wobei das Strahlenschutzmaterial kein Blei enthält.
  17. Strahlenschutzvorrichtung gemäß einem der Ansprüche 14 bis 16, wobei die beschichtete Mikrofaserbahn auf beiden Seiten des Strahlenschutzmaterials aufgebracht ist und wobei jeweils die mit Polyurethan beschichteten Seiten dem Strahlenschutzmaterial benachbart sind.
DE102009037565A 2009-08-14 2009-08-14 Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben Withdrawn DE102009037565A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102009037565A DE102009037565A1 (de) 2009-08-14 2009-08-14 Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben
US13/390,412 US8803115B2 (en) 2009-08-14 2010-08-10 Coated microfibrous web and method for producing the same
EP20100741954 EP2464781B1 (de) 2009-08-14 2010-08-10 Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials
PCT/EP2010/061631 WO2011018459A1 (de) 2009-08-14 2010-08-10 Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
JP2012524219A JP5668065B2 (ja) 2009-08-14 2010-08-10 被覆マイクロファイバー・ウェブおよびその製造方法
CN201080035987.0A CN102471992B (zh) 2009-08-14 2010-08-10 具有涂层的微纤维网及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009037565A DE102009037565A1 (de) 2009-08-14 2009-08-14 Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben

Publications (1)

Publication Number Publication Date
DE102009037565A1 true DE102009037565A1 (de) 2011-02-24

Family

ID=43495330

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009037565A Withdrawn DE102009037565A1 (de) 2009-08-14 2009-08-14 Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben

Country Status (6)

Country Link
US (1) US8803115B2 (de)
EP (1) EP2464781B1 (de)
JP (1) JP5668065B2 (de)
CN (1) CN102471992B (de)
DE (1) DE102009037565A1 (de)
WO (1) WO2011018459A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203812A1 (de) 2013-03-06 2014-09-11 Mavig Gmbh Fahrbare Strahlenschutzanordnung
US10026513B2 (en) 2014-06-02 2018-07-17 Turner Innovations, Llc. Radiation shielding and processes for producing and using the same
DE102016208345B4 (de) 2016-05-13 2022-02-24 Raymaster Holding Ag Verfahren zum Herstellen eines Dekors auf einem Substrat

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
DE102011051902A1 (de) * 2011-07-18 2013-01-24 Haomin Ding Filter, insbesondere Atemluftfilter
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US8731452B2 (en) * 2012-04-13 2014-05-20 Xerox Corporation Bionanocomposite fuser topcoats comprising nanosized cellulosic particles
US9754690B2 (en) 2012-10-31 2017-09-05 Lite-Tech, Inc. Flexible highly filled composition, resulting protective garment, and methods of making the same
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
DE102017009989A1 (de) * 2017-10-26 2019-05-02 Carl Freudenberg Kg Biokompatibles Verbundmaterial zum Einbringen in einen menschlichen Körper
CN108614303B (zh) 2018-07-12 2024-10-01 同方威视技术股份有限公司 安全检查通道
CN110284331A (zh) * 2019-05-30 2019-09-27 福建辅布司纺织有限公司 一种耐磨抗污网布及其生产工艺
WO2021032486A1 (de) * 2019-08-16 2021-02-25 Mavig Gmbh Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
US11890699B1 (en) 2019-09-19 2024-02-06 Dustin Hawkins Method of manufacturing a waterproof strapped accessory
CN114730643A (zh) * 2019-11-19 2022-07-08 株式会社艾德格 放射线屏蔽材料
CN113957705B (zh) * 2021-09-26 2023-07-04 浙江理工大学 一种导电织物的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118410A (en) 1982-03-10 1983-10-26 Wardray Products Protective articles
US4923741A (en) 1988-06-30 1990-05-08 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Hazards protection for space suits and spacecraft
JPH11302980A (ja) * 1998-04-27 1999-11-02 Unitika Ltd 制電撥水性ポリエステルマイクロファイバー布帛
WO2004017332A1 (de) 2002-07-26 2004-02-26 Mavig Gmbh Blei-ersatzmaterial für strahlenschutzzwecke
WO2005023116A1 (de) 2003-09-03 2005-03-17 Mavig Gmbh Leichtes strahlenschutzmaterial für einen grossen energieanwendungsbereich
DE102004001328A1 (de) 2003-09-03 2005-04-07 Mavig Gmbh Leichtes Strahlenschutzmaterial für einen großen Energieanwendungsbereich
DE102005034384A1 (de) 2005-07-22 2007-02-01 Mavig Gmbh Strahlenschutzmaterial, Verfahren zu dessen Herstellung und dessen Verwendung
DE102006028958A1 (de) 2006-06-23 2007-12-27 Mavig Gmbh Geschichtetes Bleifrei-Röntgenschutzmaterial

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112175A (en) * 1974-06-20 1978-09-05 Toray Industries, Inc. Sound insulating sheet containing lead fibers
JPS584873A (ja) * 1981-06-30 1983-01-12 カネボウ株式会社 繊維構造物の加工方法
JPS5866099A (ja) * 1981-10-16 1983-04-20 株式会社薬理学中央研究所 放射線遮蔽法
WO1986006737A1 (en) * 1985-05-08 1986-11-20 Bgb-Gesellschaft Reinmar John, Rainer-Leo Meyer & Coating material for flexible substrates, its use and process for producing a protective coating
JPS6212897A (ja) * 1985-07-10 1987-01-21 三菱電線工業株式会社 放射線遮蔽材
JP2514200B2 (ja) * 1987-03-31 1996-07-10 帝人株式会社 人工皮革の製造方法
JPH01277800A (ja) * 1988-04-30 1989-11-08 Mitsui Toatsu Chem Inc 防護シート
JPH06293116A (ja) * 1992-05-07 1994-10-21 Asahi Chem Ind Co Ltd 複合材料及びその製造方法
WO1995012706A1 (fr) 1993-11-05 1995-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Materiau composite et procede de production
JPH08291473A (ja) * 1995-04-20 1996-11-05 Asahi Chem Ind Co Ltd 複合材料とその製造方法及びそれからなる透湿防水布
JPH09228252A (ja) * 1996-02-20 1997-09-02 Asahi Chem Ind Co Ltd 複合布帛
US7476889B2 (en) * 1998-12-07 2009-01-13 Meridian Research And Development Radiation detectable and protective articles
CN2745739Y (zh) 2004-11-02 2005-12-14 鲁倩 有导电屏蔽作用的软体织物
CN101157822B (zh) 2007-09-20 2010-06-16 华明扬 外罩织物吸波涂层胶的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118410A (en) 1982-03-10 1983-10-26 Wardray Products Protective articles
US4923741A (en) 1988-06-30 1990-05-08 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Hazards protection for space suits and spacecraft
JPH11302980A (ja) * 1998-04-27 1999-11-02 Unitika Ltd 制電撥水性ポリエステルマイクロファイバー布帛
WO2004017332A1 (de) 2002-07-26 2004-02-26 Mavig Gmbh Blei-ersatzmaterial für strahlenschutzzwecke
WO2005023116A1 (de) 2003-09-03 2005-03-17 Mavig Gmbh Leichtes strahlenschutzmaterial für einen grossen energieanwendungsbereich
WO2005024846A1 (de) 2003-09-03 2005-03-17 Mavig Gmbh Bleifreies strahlenschutzmaterial mit zumindest zwei schichten unterschiedlicher abschirmeigenschaft
DE102004001328A1 (de) 2003-09-03 2005-04-07 Mavig Gmbh Leichtes Strahlenschutzmaterial für einen großen Energieanwendungsbereich
DE102005034384A1 (de) 2005-07-22 2007-02-01 Mavig Gmbh Strahlenschutzmaterial, Verfahren zu dessen Herstellung und dessen Verwendung
DE102006028958A1 (de) 2006-06-23 2007-12-27 Mavig Gmbh Geschichtetes Bleifrei-Röntgenschutzmaterial

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIN 100015-1
DIN EN 13795-2
DIN EN ISO 9237
JP 11302980 A, Abstracts und englische Übersetzung *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203812A1 (de) 2013-03-06 2014-09-11 Mavig Gmbh Fahrbare Strahlenschutzanordnung
WO2014135582A1 (de) 2013-03-06 2014-09-12 Mavig Gmbh Fahrbare strahlenschutzanordnung
US9538965B2 (en) 2013-03-06 2017-01-10 Mavig Gmbh Movable radiation protection arrangement
EP3225169A1 (de) 2013-03-06 2017-10-04 MAVIG GmbH Fahrbare strahlenschutzanordnung
US10026513B2 (en) 2014-06-02 2018-07-17 Turner Innovations, Llc. Radiation shielding and processes for producing and using the same
DE102016208345B4 (de) 2016-05-13 2022-02-24 Raymaster Holding Ag Verfahren zum Herstellen eines Dekors auf einem Substrat

Also Published As

Publication number Publication date
US20120181458A1 (en) 2012-07-19
JP2013501859A (ja) 2013-01-17
JP5668065B2 (ja) 2015-02-12
EP2464781A1 (de) 2012-06-20
WO2011018459A1 (de) 2011-02-17
CN102471992B (zh) 2014-01-08
EP2464781B1 (de) 2013-10-30
US8803115B2 (en) 2014-08-12
CN102471992A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
EP2464781B1 (de) Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials
EP0084616B1 (de) Wasser- und luftdichtes, feuchtigkeitsleitendes Textilmaterial
DE3852699T2 (de) Sanitärgewebe.
DE60128004T2 (de) Nicht haftende spandex-garne mit antimikrobiellen mitteln darin und diese enthaltende textilstoffe
DE202010018597U1 (de) Textiler Verbundartikel
DE60225803T2 (de) Poröse folie, faserverbundfolie und verfahren zu deren herstellung
DE69917329T2 (de) Poröse kompositmembran und ein verfahren zur behandlung einer membran
DE3210070C2 (de) Schutzmaterial
DE202004009287U1 (de) Adsorptionsfiltermaterial
DE68922458T2 (de) Textilmaterial mit wasserabsorbierenden Eigenschaften und Verfahren zu seiner Herstellung.
DE2948892C2 (de)
DE60018343T2 (de) In wasser dispergierbare wasser- und ölabweisende zusammensetzung
DE2308729A1 (de) Verfahren zum verdichten poroeser textilfabrikate
DE2758496A1 (de) Gleitsicheres fenestrationsmaterial
DE2951827C2 (de) Schutzmaterial gegen chemische Schadstoffe und kurzzeitige Hitzeeinwirkung sowie Verfahren zu seiner Herstellung
CH699118A1 (de) Multifunktionelle, responsive Funktionsschichten auf festen Oberflächen und Verfahren zur Herstellung dazu.
DE69211594T2 (de) Medizinische Barrierestoffe und Methode zur Herstellung
DE3750848T2 (de) Mikrosporöse beschichtungen.
DE10239004B4 (de) Textiles Flächengebilde aus Synthesefasern, Verfahren zu seiner Herstellung und seine Verwendung
EP1931824B1 (de) Pferdedecke zum schutz von tieren vor insekten
DE102014014387A1 (de) Bi-elastische Einlage
EP2043425A1 (de) Vorrichtung zum schutz von tieren vor insekten
DE10240548B4 (de) Adsorptionsmaterial, Verfahren zu seiner Herstellung und seine Verwendung
EP3847308B1 (de) Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
DE102007041259A1 (de) Verfahren zur dauerhaften hydrophilen Ausrüstung von textilen Flächengebilden mittels strahlenhärtender Siloxane

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140301