DE102009025147B3 - Method for operating a spectrometer for gas analysis, and spectrometer itself - Google Patents
Method for operating a spectrometer for gas analysis, and spectrometer itself Download PDFInfo
- Publication number
- DE102009025147B3 DE102009025147B3 DE200910025147 DE102009025147A DE102009025147B3 DE 102009025147 B3 DE102009025147 B3 DE 102009025147B3 DE 200910025147 DE200910025147 DE 200910025147 DE 102009025147 A DE102009025147 A DE 102009025147A DE 102009025147 B3 DE102009025147 B3 DE 102009025147B3
- Authority
- DE
- Germany
- Prior art keywords
- detector
- cuvette
- spectrometer
- gas
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000004868 gas analysis Methods 0.000 title claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 6
- 230000005693 optoelectronics Effects 0.000 claims abstract description 5
- 230000005855 radiation Effects 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 7
- 230000001427 coherent effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 36
- 230000009102 absorption Effects 0.000 description 9
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001285 laser absorption spectroscopy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3129—Determining multicomponents by multiwavelength light
- G01N2021/3133—Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/317—Special constructive features
- G01N2021/3174—Filter wheel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
- G01N2021/396—Type of laser source
- G01N2021/399—Diode laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
- G01N21/3518—Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst, gemäß Oberbegriff der Patentansprüche 1 und 10. Um hierbei eine gleichzeitige, schnelle Spurenmessung mehrerer Gaskomponenten im Probengas zu ermöglichen ist erfindungsgemäß vorgeschlagen, dass zwei oder mehrere unterschiedliche oder gleiche optische Spektrometrieverfahren zeitgleich oder wechselweise betrieben werden, derart, dass diese mindestens ein optisches oder optoelektronisches Bauteil gemeinsam beaufschlagen.The present invention relates to a method for operating a spectrometer for gas analysis, as well as spectrometer itself, according to the preamble of claims 1 and 10. In order to allow simultaneous, rapid tracking of several gas components in the sample gas according to the invention proposed that two or more different or the same optical Spectrometry be operated simultaneously or alternately, such that they act on at least one optical or optoelectronic device together.
Description
Die vorliegende Erfindung betrifft Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst, gemäß Oberbegriff der Patentansprüche 1 und 15.The The present invention relates to methods of operating a spectrometer for gas analysis, and spectrometer itself, according to the preamble of claims 1 and 15th
Zur Gasanalyse werden vielfach und zuverlässig optische Verfahren eingesetzt, bei denen Licht einer Strahlungsquelle durch eine mit einem Gasgemisch mit Messgas durchströmte Küvette durchgeleitet wird. Entlang dieser Durchstrahlungsstrecke werden bestimmte spezifische gaskomponentenabhängige Absorptionen bewirkt. Diese wiederum werden mit einem Deteketor erfasst, so dass aus dem Maß der Absorption bestimmter Wellenlängen auf das spezifische Messgas und die Konzentration der jeweiligen Messgaskomponente geschlossen werden kann. Bekannte Verfahren hierzu sind die non-dispersive-ultraviolet-spectroscopy, kurz NDUV genannt, non-dispersive-infrared-spectroscopy, kurz NDIR genannt, sowie bspw auch die Laserabsorptionsspektroskopie (TDLAS = tunable diode laser absorption spectroscopy). Darüber hinaus gibt es weitere Verfahren.to Gas analysis are widely and reliably used optical methods, in which light from a radiation source through one with a gas mixture perfused with sample gas cuvette is passed through. Along this transmission line will be certain specific gas component dependent absorptions causes. These in turn are recorded with a detecetor, so that from the Measure of Absorption of certain wavelengths on the specific sample gas and the concentration of each Sample gas component can be closed. Known method for this are the non-dispersive ultraviolet spectroscopy, NDUV for short, non-dispersive-infrared-spectroscopy, NDIR for short, as well as, for example, laser absorption spectroscopy (TDLAS = tunable diode laser absorption spectroscopy). Furthermore there are more procedures.
Für bestimmte Spurenmessungen in Messgasen muss die Spektroskopieeinrichtung sensitiv sein, aber es besteht auch die Forderung, unterschiedliche Gaskomponenten zu messen. Ein Umschalten von einer Gaskomponente auf eine andere ist aufwändig, insbesondere wegen der entsprechenden jeweiligen bzw. jeweils neuen Kalibrierung.For certain Trace measurements in measuring gases, the spectroscopy device must be sensitive, but there is also a demand for different gas components to eat. A switch from one gas component to another is consuming, especially because of the respective respective respectively new ones Calibration.
Aus
der
Aus diesem Grund ist es notwendig entweder mehrere Gaskomponenten gleichzeitig zu messen oder sehr schnell zwischen diesen umschalten zu können.Out For this reason, it is necessary to either have multiple gas components simultaneously to measure or switch between them very quickly.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Einrichtung dahingehend zu verbessern, dass eine gleichzeitige, schnelle Spurenmessung mehrerer Gaskomponenten im Probengas erfolgen kann.It is therefore the object of the present invention, a method and to improve a device such that a simultaneous, fast Trace measurement of multiple gas components in the sample gas can be done.
Die gestellte Aufgabe ist im Hinblick auf ein Verfahren der gattungsgemäßen Art erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst.The Asked object is in view of a method of the generic type according to the invention the characterizing features of claim 1 solved.
Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen 2 bis 14 angegeben.Further advantageous embodiments are in the dependent claims 2 to 14 indicated.
Im Hinblick auf eine Einrichtung der gattungsgemäßen Art ist die gestellte Aufgabe erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 15 gelöst.in the With regard to a device of the generic type is the task according to the invention the characterizing features of claim 15 solved.
Vorteilhafte Ausgestaltungen der Einrichtung sind in den übrigen Ansprüchen angegeben.advantageous Embodiments of the device are specified in the remaining claims.
Kern der verfahrensgemäßen Erfindung ist es, dass zwei oder mehrere unterschiedliche oder gleiche optische Spektrometrieverfahren zeitgleich oder wechselweise betrieben werden, derart, dass diese mindestens ein optisches oder optoelektronisches Bauteil gemeinsam beaufschlagen.core the inventive method is it that two or more different or the same optical Spectrometry be operated simultaneously or alternately, such that these at least one optical or optoelectronic Apply component together.
Hiermit ist nun die gleichzeitige, schnelle Spurenmessung mehrerer Gaskomponenten, etwa HCl + SO2 + H2O oder NO + NO2 + NH3 möglich. Die nachfolgend noch beschriebenen, vorzugsweise kombinierten Verfahren erfüllen jedes für sich die gestellten Anforderungen an hohe Sensitivität, Selektivität, Stabilität und Messgeschwindigkeit, für bis zu zwei Gaskomponenten aus den genannten Dreiergruppen, jedoch nicht für alle drei Gaskomponenten. Der Grund hierfür liegt in der geringen Absorptionsstärke bestimmter Gasmoleküle in dem Spektralbereich der von der jeweiligen Lichtquelle (z. B. UV-VIS-Lampe bzw. NIR-Laserdiode) abgegebenen elektromagnetischen Strahlung. Um diese Gasmoleküle detektieren zu können, ist es erforderlich extrem lange Wege mit Licht zu durchstrahlen. Dieses gelingt nur durch die Integration von optischen Langwegzellen in den Gasanalysator, z. B. vom Typ „White”, „Herriott” oder „Integrated Cavity Output Spectroscopy (ICOS)”, was entsprechend aufwendig und kostspielig ist. Andere Gasmoleküle sind wegen fehlender Absorptionsübergänge in dem zur Verfügung stehenden Spektralbereich überhaupt nicht detektierbar.Herewith is now the simultaneous, fast trace measurement of several gas components, about HCl + SO2 + H2O or NO + NO2 + NH3 possible. The following described, preferably combined methods meet each for themselves the requirements for high sensitivity, selectivity, stability and measuring speed, for until to two gas components from the mentioned groups of three, but not for all three gas components. The reason for this lies in the low absorption strength of certain gas molecules in the spectral range from that of the respective light source (eg UV-VIS lamp or NIR laser diode) emitted electromagnetic radiation. To these gas molecules to be able to detect It is necessary to radiate extremely long distances with light. This succeeds only through the integration of long-range optical cells in the gas analyzer, z. B. "White", "Herriott" or "Integrated Cavity Output Spectroscopy (ICOS) " which is correspondingly expensive and expensive. Other gas molecules are because of lack of absorption transitions in the to disposal standing spectral range at all not detectable.
Bei TDLAS-Gasanalysatoren ist z. B. die Empfindlichkeit für die Gase NO und NO2 sehr gering. Nachweisgrenzen liegen für NO typischerweise bei 1000 ppb bei 1 m optischer Weglänge, für NO2 bei 340 ppb bei 1 m optischer Weglänge. SO2 ist im Spektralbereich von Laserdioden (NIR bis max. 3000 nm) sogar gar nicht nachweisbar. Andere Moleküle, wie z. B. NH3, HCl und H2O sind mit diesem Messverfahren dagegen besonders empfindlich messbar.at TDLAS gas analyzers is z. B. the sensitivity to the gases NO and NO2 very low. Detection limits are typically 1000 for NO ppb at 1 m optical path length, for NO2 at 340 ppb at 1 m optical path length. SO2 is in the spectral range of laser diodes (NIR up to 3000 nm) even undetectable. Other molecules, such as. NH3, HCl and H2O are particularly sensitive to this measurement method measurable.
Demgegenüber bietet die UV-VIS-GFC und -IFC-Fotometrie deutlich niedrigere Nachweisgrenzen für NO und NO2, nämlich ca. 20 ppb bei 1 m optischer Weglänge. Ebenso empfindlich ist SO2 messbar. NH3 ist dagegen wegen großer Querempfindlichkeitsprobleme im UV-Bereich nur eingeschränkt messbar. HCl und H2O zeigen im UV-VIS keine Absorptionen und sind daher dort nicht messbar.On the other hand offers the UV-VIS GFC and IFC photometry significantly lower detection limits for NO and NO2, namely about 20 ppb at 1 m optical path length. Equally sensitive SO2 measurable. NH3 is, however, because of large cross-sensitivity problems only limited measurable in the UV range. HCl and H2O show no absorption in the UV-VIS and are therefore there not measurable.
Somit ist die erfindungsgemäße verfahrensmäßige und einrichtungsmäßige Kombination optimal.Thus, the procedural and device combination according to the invention is opti times.
Hierbei ist vorteilhaft ausgestaltet, dass die Messverfahren mindestens ein optisches oder optoelektronisches Bauteil wie Lichtquelle, Linse, Spiegel, Strahlenteiler, Messküvette, Interferenzfilter, Gasfilter und Detektor einzeln oder in Kombination verwenden.in this connection is advantageously configured that the measuring method at least an optical or opto-electronic component such as light source, lens, Mirror, beam splitter, cuvette, Interference filter, gas filter and detector individually or in combination use.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass die beiden oder mehrere mit einer gemeinsamen Messküvettenanordnung arbeitenden Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer UV-Lichtquelle und einem UV-Lichtdetektor anderseits arbeiten. Auf diese Weise können sogar zwei sehr verschiedene Messmethoden gleichzeitig eingesetzt werden.In Another advantageous embodiment is indicated that the two or several measuring methods working with a common measuring cuvette arrangement with a laser light source and a corresponding laser light detector on the one hand, and a UV light source and a UV light detector on the other hand work. In this way, even two very different Measurement methods are used simultaneously.
Weiterhin ist ausgestaltet, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer Infrarot-Lichtquelle und einem Infrarot-Lichtdetektor andererseits arbeiten.Farther is designed that using two or more measurement methods a laser light source and a corresponding laser light detector on the one hand, and an infrared light source and an infrared light detector on the other hand work.
Auch kann vorgesehen werden, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einen Quantenkaskadenlaser und einem QCL-Detektor anderseits arbeiten.Also can be provided that the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a quantum cascade laser and a QCL detector on the other hand work.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass zumindest die Kalibration beider oder mehrerer Licht-/Signalstrecken über ein gemeinsames drehbares, mit verschiedenen Kalibrationsküvetten versehenes Kalibrationsrad erfolgt. So können die Kalibrierküvetten zweier völlig verschiedener Messaufbauten sogar in einem gemeinsamen Kalibrations- oder Küvettenrad angeordnet werden. Damit ist die Summe der benötigten Teile für die erfindungsgemäße Messanordnung kleiner als die Summe der benötigten Teile der beiden Messanordnungen. D. h. in erfindungsgemäßer Weise nutzen die parallel arrangierten Messanordnungen dieselbe Messküvette und dasselbe Kalibrationsrad. Dies ist neben der messtechnischen Funktionalität ein erheblicher konstruktiver Vorteil.In Another advantageous embodiment is specified that at least the calibration of both or several light / signal paths over one common rotatable, provided with different calibration cuvettes Calibration wheel is done. So can the calibration cells two completely different measurement setups even in a common calibration or cuvette wheel to be ordered. Thus, the sum of the required parts for the measuring arrangement according to the invention less than the sum of the needed Parts of the two measuring arrangements. Ie. in accordance with the invention the parallel arranged measuring arrangements use the same measuring cuvette and the same calibration wheel. This is in addition to the metrological functionality a considerable constructive advantage.
Weiterhin ist vorgeschlagen, dass in den Messverfahren mindestens ein oder mehrere Detektoren zur Aufnahme von Referenzsignalen der Lichtquellen angeordnet sind.Farther It is proposed that at least one or several detectors for receiving reference signals of the light sources are arranged.
In weiterer vorteilhafter Ausgestaltung ist daher angegeben, dass die Kalibrationsküvetten auf dem Kalibrationsrad derart verteilt angeordnet werden, dass die jeweiligen für den UV-Licht-Strahlengang und den Laserlicht-Strahlengang wirksame Küvetten jeweils diametral gegenüberliegend angeordnet sind.In further advantageous embodiment is therefore stated that the Kalibrationsküvetten be arranged distributed on the Kalibrationsrad such that the respective ones for the UV light beam path and the laser light beam path effective cuvettes diametrically opposite each other are arranged.
Ferner ist weiter ausgestaltet, dass die Auswertung beider Signale in einer gemeinsamen Auswerteeinrichtung für jeweils unterschiedliche Gaskomponenten erfolgt. Somit ist für zwei mehr unabhängige Messmethoden auch nur eine Auswerteinrichtung vorzusehen.Further is further configured that the evaluation of both signals in one common evaluation device for each different Gas components takes place. Thus, for two more independent measurement methods to provide only an evaluation device.
Alternativ kann aber auch vorgesehen werden, dass die Auswertung beider oder mehrerer Signale in einer gemeinsamen Auswerteeinrichtung für jeweils dieselbe Gaskomponente oder dieselben Gaskomponenten erfolgt. So kann dieselbe Gaskomponente mit zwei unabhängigen Methoden gemessen werden.alternative but it can also be provided that the evaluation of both or more Signals in a common evaluation for each the same gas component or components take place. So The same gas component can be measured with two independent methods.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass zumindest einer der beiden Strahlengänge in gefalteter Anordnung betrieben wird, derart, dass an der der Strahlungsquelle gegenüberliegenden Seite ein entsprechender Reflektor vorgesehen ist. So können effektive Signalwege durch das Messgas erhöht werden um einen optimalen Wirkungsquerschnitt für die Absorption zu erhalten. Dadurch wird die Messgenauigkeit deutlich erhöht.In Another advantageous embodiment is specified that at least one of the two beam paths is operated in a folded arrangement, such that at the Radiation source opposite Side a corresponding reflector is provided. So can be effective Signal paths increased by the sample gas to obtain an optimal absorption absorption cross section. As a result, the measurement accuracy is significantly increased.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass beide Strahlungsgänge in gefalteter Anordnung betrieben werden, derart, dass die Detektoren für beide Strahlengänge auf derselben Seite in Bezug auf die Messküvette platziert sind, wie die Strahlungsquellen. Dies führt zu einer erheblichen Kompaktheit.In Another advantageous embodiment is specified that both radiation paths in a folded arrangement be operated, such that the detectors for both beam paths on the same side with respect to the cuvette as the radiation sources. this leads to to a considerable compactness.
Eine vorteilhafte Ausgestaltung besteht darin, dass die beiden oder mehrere Strahlengänge die Messküvette in der Art durchlaufen, dass die Strahlenquellen und der Detektor oder die Detektoren an unterscheidlichen Seiten angeordnet sind.A advantageous embodiment is that the two or more beam paths the cuvette go through in the way that the radiation sources and the detector or the detectors are arranged on different sides.
Im Hinblick auf ein Spektrometer zur Gasanalyse besteht der Kern der Erfindung darin, dass zwei oder mehr optische Spektrometer mit einer gemeinsamen von Messgas durchströmten Messküvette kombiniert sind, derart dass zwei oder mehr Strahlungsquellen und ein oder mehrere Detektoren jeweils nebeneinander angeordnet sind und dass zwei oder mehrere optische Absorptionstrecken durch die eine gemeinsame, mit dem zu analysierenen Messgas durchströmte Küvette oder Küvettenanordnung verlaufen.in the With regard to a spectrometer for gas analysis is the core of Invention in that two or more optical spectrometers with a common flowed through by measuring gas cuvette are combined, such that two or more radiation sources and one or more detectors are each arranged side by side and that two or more optical absorption paths through the one common cuvette through which the gas to be analyzed flows or Cuvette arrangement run.
Hierzu ist vorteilhaft ausgestaltet, dass die beiden oder mehere Spektrometer in einer zusammenhängenden Messeinrichtung angeordnet sind und mit einer gemeinsamen elektronischen Auswerteeinrichtung versehen sind, die die Messwerte der Spektrometer auswertet.For this is advantageously designed that the two or more spectrometers in a coherent way Measuring device are arranged and with a common electronic Evaluation device are provided, which are the measured values of the spectrometer evaluates.
Weiterhin vorteilhaft ist es, dass für beide oder mehrere Spektrometer ein gemeinsames Kalibrationsrad vorgesehen ist, in welchem Kalibrierküvetten für sowohl den Strahlengang des einen Spektrometers, als auch für den Strahlengang des anderen Spektrometers integriert sind.It is also advantageous that for both or more spectrometers a common calib rationsrad is provided in which calibration cuvettes are integrated for both the beam path of a spectrometer, as well as for the beam path of the other spectrometer.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und nachfolgend näher erläutert.One embodiment The invention is illustrated in the drawing and explained in more detail below.
Es zeigt:It shows:
Da die TDLAS und die UV-VIS-GFC- und -IFC-Fotometrie unterschiedliche Vorteile bieten, ist hier erfindungsgemäß vorgeschlagen beide Messverfahren zu kombinieren. Aufgrund der geringen Größe der Laser- und Detektormodule des TDLAS-Analysators und dem Fehlen beweglicher Teile lässt sich dieser Analysator gut baulich mit dem durch die beweglichen Filterräder mechanisch aufwendigeren Fotometer verbinden.There the TDLAS and the UV-VIS GFC and IFC photometry different To offer advantages is proposed here according to the invention both measuring methods to combine. Due to the small size of the laser and detector modules TDLAS analyzer and the absence of moving parts This analyzer works well with the mechanical filter wheels connect more complex photometer.
Als weitere Besonderheit ist hier auch die gemeinsame Nutzung des „Kalibrierrads” mit eingebauten gasgefüllten Justierzellen durch den TDLAS und das UV-VIS-GFC- und -IFC-Fotometer zu nennen. Die Justierzellen dienen beim Fotometer zur Nachjustierung der Empfindlichkeit und beim TDLAS zur Nachjustierung der Emissionswellenlänge des Diodenlasers z. B. über die Betriebstemperatur der Diode.When Another special feature here is the common use of the "calibration wheel" with built-in gas-filled Calibration cells through the TDLAS and the UV-VIS GFC and IFC photometer to call. The adjustment cells are used for the photometer for readjustment the sensitivity and the TDLAS for readjustment of the emission wavelength of the Diode laser z. B. over the operating temperature of the diode.
Alternative Ausgestaltungen dieser Erfindung könnten durch folgende Varianten entstehen:
- • Einsatz eines Quantenkaskadenlasers an der Stelle des Diodenlasers in dem Laseranalysator und/oder
- • Nutzung des IR-Spektralbereichs an der Stelle des UV-VIS-Spektralbereichs im GFC-/IFC-Fotometer.
- Use of a quantum cascade laser at the location of the diode laser in the laser analyzer and / or
- • Use of the IR spectral range at the location of the UV-VIS spectral range in the GFC / IFC photometer.
Der
Lichtstrahl vor Eintritt in den Detektor
- 11
- Messküvettecuvette
- 22
- UV-StrahlungsquelleUV radiation source
- 33
- LaserlichtquelleLaser light source
- 44
- Filterradfilter wheel
- 55
- Strahlenteilerbeamsplitter
- 66
- Referenzdetektorreference detector
- 77
- Kalibrierradcalibration wheel
- 88th
- UV_DetektorUV_Detektor
- 99
- LaserlichtdetektorLaser light detector
- 1010
- Retroreflektorretroreflector
- 1111
- Umlenkspiegeldeflecting
- 1212
- NIR DetektorNIR detector
- 1313
- Kombinierter UV- und NIR-Detektorcombined UV and NIR detector
- 1414
- NIR StrahlungsquelleNIR radiation source
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910025147 DE102009025147B3 (en) | 2009-06-17 | 2009-06-17 | Method for operating a spectrometer for gas analysis, and spectrometer itself |
PCT/EP2010/003604 WO2010145809A1 (en) | 2009-06-17 | 2010-06-16 | Methods for operating a spectrometer for gas analysis, and said spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910025147 DE102009025147B3 (en) | 2009-06-17 | 2009-06-17 | Method for operating a spectrometer for gas analysis, and spectrometer itself |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102009025147B3 true DE102009025147B3 (en) | 2010-12-09 |
Family
ID=42782132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200910025147 Revoked DE102009025147B3 (en) | 2009-06-17 | 2009-06-17 | Method for operating a spectrometer for gas analysis, and spectrometer itself |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102009025147B3 (en) |
WO (1) | WO2010145809A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010056137A1 (en) * | 2010-12-23 | 2012-06-28 | Abb Ag | Optical gas analyzer device with means for calibrating the frequency spectrum |
DE102012000038A1 (en) | 2012-01-03 | 2013-07-04 | Humboldt-Universität Zu Berlin | laser device |
DE102014000651B3 (en) * | 2014-01-17 | 2015-05-13 | Gottfried Wilhelm Leibniz Universität Hannover | Device for determining a concentration of a chemical substance |
EP3163291A1 (en) * | 2016-12-02 | 2017-05-03 | Sick Ag | Measuring instrument for the determination of concentrations of several gas components |
WO2017076656A1 (en) * | 2015-11-05 | 2017-05-11 | Robert Bosch Gmbh | Exhaust gas sensor and method for operating an exhaust gas sensor for a vehicle |
EP3321658A1 (en) * | 2016-11-09 | 2018-05-16 | Sick Ag | Two-channel measuring device |
DE102018102059A1 (en) | 2018-01-30 | 2019-08-01 | Gottfried Wilhelm Leibniz Universität Hannover | Method and device for determining a concentration |
EP2944944B1 (en) * | 2014-05-12 | 2021-10-20 | General Electric Company | Gas detector and method of detection |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621063B (en) * | 2012-03-05 | 2013-11-13 | 哈尔滨工业大学 | Small-size oxygen measuring device based on porous material gas cell |
CN104237126B (en) * | 2014-09-09 | 2017-03-01 | 中国科学院电工研究所 | A kind of optoacoustic spectroscopy detection means of employing axial multilayer optical filter dish structure |
EP3561487B1 (en) | 2018-04-25 | 2023-01-18 | ABB Schweiz AG | Measuring device for analysis of a composition of a combustible gas with a filter chamber arranged in front of a detector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4798464A (en) * | 1985-02-21 | 1989-01-17 | The Perkin-Elmer Corporation | Scanning array spectrophotometer |
DE4115425C1 (en) * | 1991-05-10 | 1992-08-27 | Hartmann & Braun Ag, 6000 Frankfurt, De | |
DE102006056867A1 (en) * | 2006-12-01 | 2008-06-12 | Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) Institut für Textilchemie und Chemiefasern (ITCF) | Sensor for determining concentration of materials contained in fluid or gaseous medium, has measuring head comprises comprise of transmitter unit emitting transmission light beams and receiver unit has semiconductor receiver element |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3822946A1 (en) * | 1988-07-07 | 1990-01-11 | Bodenseewerk Geraetetech | MULTI-COMPONENTS - PHOTOMETER |
US6396056B1 (en) * | 1999-07-08 | 2002-05-28 | Air Instruments And Measurements, Inc. | Gas detectors and gas analyzers utilizing spectral absorption |
WO2003019160A2 (en) * | 2001-08-21 | 2003-03-06 | Spx Corporation | Open path emission sensing system |
DE10205525B4 (en) * | 2002-04-04 | 2009-06-25 | Gunther Prof. Dr.-Ing. Krieg | Carbon dioxide purity control method and apparatus for beverage industry applications |
-
2009
- 2009-06-17 DE DE200910025147 patent/DE102009025147B3/en not_active Revoked
-
2010
- 2010-06-16 WO PCT/EP2010/003604 patent/WO2010145809A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4798464A (en) * | 1985-02-21 | 1989-01-17 | The Perkin-Elmer Corporation | Scanning array spectrophotometer |
DE4115425C1 (en) * | 1991-05-10 | 1992-08-27 | Hartmann & Braun Ag, 6000 Frankfurt, De | |
DE102006056867A1 (en) * | 2006-12-01 | 2008-06-12 | Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) Institut für Textilchemie und Chemiefasern (ITCF) | Sensor for determining concentration of materials contained in fluid or gaseous medium, has measuring head comprises comprise of transmitter unit emitting transmission light beams and receiver unit has semiconductor receiver element |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130276509A1 (en) * | 2010-12-23 | 2013-10-24 | Abb Ag | Optical gas analyzer device having means for calibrating the frequency spectrum |
DE102010056137B4 (en) * | 2010-12-23 | 2014-03-27 | Abb Ag | Optical gas analyzer device with means for calibrating the frequency spectrum |
US9448215B2 (en) * | 2010-12-23 | 2016-09-20 | Abb Ag | Optical gas analyzer device having means for calibrating the frequency spectrum |
DE102010056137A1 (en) * | 2010-12-23 | 2012-06-28 | Abb Ag | Optical gas analyzer device with means for calibrating the frequency spectrum |
DE102012000038A1 (en) | 2012-01-03 | 2013-07-04 | Humboldt-Universität Zu Berlin | laser device |
WO2013102541A1 (en) | 2012-01-03 | 2013-07-11 | Humboldt-Universität Zu Berlin | Tunable semiconductor laser having an external grating and replaceable laser diode |
DE102014000651B3 (en) * | 2014-01-17 | 2015-05-13 | Gottfried Wilhelm Leibniz Universität Hannover | Device for determining a concentration of a chemical substance |
WO2015106969A1 (en) | 2014-01-17 | 2015-07-23 | Gottfried Wilhelm Leibniz Universität Hannover | Device for determining a concentration of a chemical substance |
US10247665B2 (en) | 2014-01-17 | 2019-04-02 | Gottfried Wilhelm Leibniz Universitaet Hannover | Device for determining a concentration of a chemical substance |
EP2944944B1 (en) * | 2014-05-12 | 2021-10-20 | General Electric Company | Gas detector and method of detection |
WO2017076656A1 (en) * | 2015-11-05 | 2017-05-11 | Robert Bosch Gmbh | Exhaust gas sensor and method for operating an exhaust gas sensor for a vehicle |
EP3321658A1 (en) * | 2016-11-09 | 2018-05-16 | Sick Ag | Two-channel measuring device |
EP3163291A1 (en) * | 2016-12-02 | 2017-05-03 | Sick Ag | Measuring instrument for the determination of concentrations of several gas components |
WO2019149776A1 (en) | 2018-01-30 | 2019-08-08 | Gottfried Wilhelm Leibniz Universität Hannover | Method and device for determining a concentration |
DE102018102059B4 (en) * | 2018-01-30 | 2020-10-22 | Gottfried Wilhelm Leibniz Universität Hannover | Method and device for determining a concentration |
DE102018102059A1 (en) | 2018-01-30 | 2019-08-01 | Gottfried Wilhelm Leibniz Universität Hannover | Method and device for determining a concentration |
Also Published As
Publication number | Publication date |
---|---|
WO2010145809A1 (en) | 2010-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009025147B3 (en) | Method for operating a spectrometer for gas analysis, and spectrometer itself | |
EP3077793B1 (en) | Analysis device (photometer) having a serial light guide | |
EP0145877B1 (en) | Photometer for continuous analysis of a medium (gas or liquid) | |
EP1736754A1 (en) | Optical analyser | |
DE102010056137B4 (en) | Optical gas analyzer device with means for calibrating the frequency spectrum | |
EP3270045B1 (en) | Assembly for the measurement of gas concentrations | |
DE112017008060T5 (en) | Accessory for an infrared spectrometer | |
EP0409061A2 (en) | Atomic absorption spectrometer for multielement analysis | |
WO2012051638A1 (en) | Spectrometer | |
EP2726830B1 (en) | Gas chromatograph with absorption spectrometer and method for analyzing a gas mixture per gas chromatography | |
WO2004048907A2 (en) | Resonator-amplified absorption spectrometer comprising an incoherent radiation source | |
DE102004031643A1 (en) | Non-dispersive infrared gas analyzer | |
DE4232371C2 (en) | Analyzer for the determination of gases or liquids | |
DE19732470A1 (en) | Non-dispersive infrared gas analyser | |
DE19811150C2 (en) | Thin-layer chromatography | |
EP3598103B1 (en) | Gas analyser and method of gas analysis | |
EP0087077A2 (en) | Measuring device for optical gas analysis | |
EP1847827A1 (en) | Non-dispersive infrared gas analyser | |
DE102010023453B3 (en) | Gas analyzer for measuring e.g. nitrogen oxide, concentration based on e.g. UV resonance absorption spectroscopy measurement principle, has light-proof measuring tube arranged at inner wall side of highly reflective transparent glass tubes | |
DE102010030549B4 (en) | Non-dispersive gas analyzer | |
DE4437188A1 (en) | Infrared type gas concentration analyser with twin-beam measurement | |
DE102021210443B4 (en) | Submersible probe with variable path length | |
DE19848120A1 (en) | Gas radiation absorption measuring device e.g. for gas mixture analysis, uses absorption cell with entry and exit windows provided by semi-transparent mirrors | |
DE19738138A1 (en) | Non=dispersive gas analyser | |
DE202016102106U1 (en) | Absorption spectrometer light source assembly and gas analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8363 | Opposition against the patent | ||
R026 | Opposition filed against patent |
Effective date: 20110303 |
|
R037 | Decision of examining division/fpc revoking patent now final |
Effective date: 20130615 |