DE102008005334A1 - Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity - Google Patents
Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity Download PDFInfo
- Publication number
- DE102008005334A1 DE102008005334A1 DE102008005334A DE102008005334A DE102008005334A1 DE 102008005334 A1 DE102008005334 A1 DE 102008005334A1 DE 102008005334 A DE102008005334 A DE 102008005334A DE 102008005334 A DE102008005334 A DE 102008005334A DE 102008005334 A1 DE102008005334 A1 DE 102008005334A1
- Authority
- DE
- Germany
- Prior art keywords
- thermoelectric
- thermoelectric generator
- generator according
- exhaust gas
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007789 gas Substances 0.000 title abstract description 17
- 239000002912 waste gas Substances 0.000 title abstract 3
- 230000005611 electricity Effects 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 239000002826 coolant Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000000930 thermomechanical effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000446313 Lamella Species 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
- F01N5/025—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Die Erfindung betrifft einen thermoelektrischen Generator für einen Abgasstrom, der an einem Abgaskanal angeschlossen ist, wobei zumindest ein thermoelektrisches Wandlerelement angeordnet ist, welches thermische Energie in elektrische Energie umwandelt und ein Wärmetauscherelement, welches zumindest teilweise an einer Oberfläche des thermoelektrischen Wandlerelements und zumindest teilweise im Abgaskanal angeordnet ist.The The invention relates to a thermoelectric generator for an exhaust gas stream connected to an exhaust passage, wherein at least one thermoelectric transducer element is arranged, which converts thermal energy into electrical energy and a heat exchanger element, which at least partially on a surface of the thermoelectric Transducer element and at least partially disposed in the exhaust passage is.
Aus
der
Derartige thermoelektrische Generatoren sind hinsichtlich ihres Wirkungsgrades noch nicht optimal ausgebildet. Eine Schwachstelle bei den bekannten thermoelektrischen Generatoren ist die noch nicht optimale Ausnutzung der Wärme des Abgasstromes. Außerdem beeinflussen Elemente des Wärmetauschers im Abgasstrom diesen negativ.such Thermoelectric generators are in terms of their efficiency not yet optimally trained. A weak point in the known thermoelectric generators is not yet optimal utilization the heat of the exhaust stream. In addition, influence Elements of the heat exchanger in the exhaust stream this negative.
Der Erfinder hat sich daher die Aufgabe gestellt, einen thermoelektrischen Generator für einen Abgasstrom zur Verfügung zu stellen, der einen besseren Wirkungsgrad aufweist und den Abgasstrom weniger beeinflusst.Of the The inventor has therefore set itself the task of a thermoelectric Generator for an exhaust flow available too provide better efficiency and the exhaust gas flow less affected.
Diese Aufgabe wird durch einen thermoelektrischen Generator für einen Abgasstrom gemäß dem Anspruch 1 gelöst.These Task is by a thermoelectric generator for an exhaust gas stream according to claim 1 solved.
Der Erfinder hat erkannt, dass es möglich ist, den thermischen Wirkungsgrad eines thermoelektrischen Generators zu verbessern, wenn die Wärmeübertragung aus dem Abgas zum thermoelektrischen Wandlerelement mit Hilfe von Heatpipes erfolgt. Ein Heatpipe ermöglicht eine höhere Wärmeübertragung, wobei die Wärmeübertragung nicht nur durch Wärmeleitung sondern zusätzlich auch durch Wärmekonvektion (Verdampfung und Kondensation) zustande kommt.Of the Inventor has recognized that it is possible to use the thermal To improve the efficiency of a thermoelectric generator, when the heat transfer from the exhaust gas to the thermoelectric conversion element done with the help of heatpipes. A heatpipe allows a higher heat transfer, the Heat transfer not only by heat conduction but also by heat convection (Evaporation and condensation) comes about.
Aus den gewonnenen Erkenntnissen heraus schlägt der Erfinder vor, einen thermoelektrischen Generator für einen Abgasstrom, der an einem Abgaskanal angeschlossen ist, wobei zumindest ein thermoelektrisches Wandlerelement angeordnet ist, welches thermische Energie in elektrische Energie umwandelt und ein Wärmetauscherelement, welches zumindest teilweise an einer Oberfläche des thermoelektrischen Wandlerelements und zumindest teilweise im Abgaskanal angeordnet ist, dahingehend zu verbessern, dass zumindest ein Heatpipe im Abgaskanal angeordnet ist, welches die thermische Energie des Abgasstromes zur Oberfläche des thermoelektrischen Wandlerelements leitet.Out the discoveries won out beats the inventor before, a thermoelectric generator for an exhaust gas flow, which is connected to an exhaust passage, wherein at least one thermoelectric Transducer element is arranged, which thermal energy into electrical Energy converts and a heat exchanger element, which at least partially on a surface of the thermoelectric conversion element and at least partially disposed in the exhaust passage, to that effect to improve that at least one heat pipe arranged in the exhaust duct is which the thermal energy of the exhaust stream to the surface of the thermoelectric conversion element passes.
Der neue thermoelektrische Generator eignet sich zur Energieerzeugung aus der Abwärme einer Brennkraftmaschine, insbesondere eines Gasmotors zur Verbrennung von Biogas. Hierbei ergeben sich Anwendungen bei Abgastemperaturen von circa 150°C bis 600°C. Der neue thermoelektrische Generator kann beispielsweise nach einem Abgasturbolader in den Abgasstrom geschaltet werden. Die Verwendung eines Heatpipes ermöglicht einen hohen Wärmetransport aus dem Abgas, wobei die Wärmeübertragung nicht nur durch Wärmeleitung, sondern zusätzlich auch durch Wärmekonvektion zustande kommt. Dies ermöglicht eine kompakte Bauweise, welche das Gewicht für die Wärmetauschereinheit um bis zu 80% reduzieren kann. Als Wärme abgebendes Medium eignen sich sowohl flüssige als auch gasförmige Stoffe, wie Wasser, Glykol, Thermoöl oder Heiß- bzw. Abgas. Als Wärme aufnehmendes Medium auf der Seite des thermoelektrischen Wandlerelements eignen sich ebenfalls sowohl flüssige als auch gasförmige Stoffe. Der thermoelektrische Generator kann aus mehreren Modulen aufgebaut sein, welche aus einer Vielzahl von thermoelektrischen Elementen bestehen. Die Module können elektrisch entweder in Serie oder parallel verschaltet werden. Im Abgaskanal können mehrere Module sowohl parallel als auch hintereinander in Reihe angeordnet werden.Of the new thermoelectric generator is suitable for power generation from the waste heat of an internal combustion engine, in particular a gas engine for burning biogas. This results Applications at exhaust gas temperatures of about 150 ° C to 600 ° C. The new thermoelectric generator can, for example, after a Exhaust gas turbocharger to be switched into the exhaust stream. The usage a heatpipe allows a high heat transfer from the exhaust, where the heat transfer is not only by heat conduction, but in addition also by heat convection. this makes possible a compact design, which is the weight for the heat exchanger unit can reduce up to 80%. As a heat-releasing medium Both liquid and gaseous are suitable Substances such as water, glycol, thermal oil or hot or exhaust gas. As a heat absorbing medium on the side the thermoelectric conversion element are also suitable both liquid as well as gaseous substances. The thermoelectric Generator can be composed of several modules, which consists of a Variety of thermoelectric elements exist. The modules can electrically connected either in series or in parallel. in the Exhaust duct allows multiple modules both in parallel as well be arranged in series one behind the other.
Mit einem Heatpipe kann Wärme sehr effizient von einem Ort zum anderen transportiert werden. Es kann eine um circa 100 bis 1000 mal höhere Wärmemenge transportieren als ein Bauteil gleicher Abmessungen aus massivem Kupfer. Die Heatpipe nutzt den physikalischen Effekt, dass beim Verdampfen und Kondensieren einer Flüssigkeit enorm hohe Energiemengen bei minimalen Temperaturgradienten umgesetzt werden. In der Heatpipe herrscht ein Unterdruck von circa 10–5 bar, so dass das Arbeitsmittel bereits bei niedrigen Temperaturen verdampft. Die Heatpipes können als Stäbe mit einem runden Querschnitt oder auch abgeflacht ausgeführt werden.With a heat pipe heat can be transported very efficiently from one place to another. It can transport around 100 to 1000 times more heat than a solid copper component of the same size. The heat pipe utilizes the physical effect that when vaporizing and condensing a liquid enormous amounts of energy with minimal temperature gradients are implemented. In the heat pipe there is a negative pressure of about 10 -5 bar, so that the working fluid evaporates already at low temperatures. The heatpipes can be designed as rods with a round cross section or even flattened.
Einfach ausgedrückt sind Heatpipes versiegelte Röhrchen mit einer Arbeitsflüssigkeit und dessen Dampf. Die Innenseite des Heatpipes ist mit einer Kapillarstruktur versehen, wobei die Struktur der Innenseite entweder gesintert oder mit vielschichtigem Metallgewebe gebildet sein kann. Führt man der Heatpipe von außen Wärme zu, so verdampft die Flüssigkeit im Inneren der Heatpipe. Der Dampf strömt in Richtung des Temperaturgefälles und kondensiert an den kühleren Stellen der Heatpipe (Kontaktkörper) unter Abgabe der Energie. Das Kondensat wird durch die Kapillarkräfte der inneren Struktur an den Ort der Verdampfung zurücktransportiert.Put simply, heatpipes are sealed tubes with a working fluid and the steam. The inside of the heat pipe is provided with a capillary structure, wherein the structure of the inside can be either sintered or formed with multi-layered metal fabric. If heat is supplied to the heat pipe from outside, the liquid evaporates inside the heat pipe. The steam flows in the direction of the temperature gradient and condenses at the cooler parts of the heat pipe (contact body) with the release of energy. The condensate is transported back to the point of evaporation by the capillary forces of the internal structure.
Je feiner die Struktur desto größer sind die Kapillarkräfte. Es ist von Vorteil, Kapillarstrukturen mit kleinen Radien zu nutzen, also kleine Maschenweite oder geringe Korngröße bei Sintermetall. Die Heatpipes können eine reine Kupferoberfläche aufweisen, legiert mit Zinn, Nickel, Messing, Silber, Chrom oder Gold. Alternativ können die Heatpipes auch aus rostfreiem Stahl sein.ever the finer the structure, the greater the capillary forces. It is advantageous to use capillary structures with small radii, So small mesh size or small grain size in sintered metal. The heatpipes can be a pure copper surface alloyed with tin, nickel, brass, silver, chrome or Gold. Alternatively, the heatpipes can also be made of stainless steel Be steel.
Das Arbeitsmedium im Heatpipe wird je nach Einsatztemperatur gewählt, vorzugsweise Wasser, wegen der höchsten Wärmetransferleistung bei Temperaturen von circa 2 bis 300°C. Bei höheren Temperaturen von circa 120 bis 550°C Quecksilber, bei noch höheren Temperaturen Cäsium, Kalium, Natrium, Lithium und Silber. Bei tieferen Temperaturen kommen eventuell ein Gemisch mit Wasser, Alkohol, Ammoniak und Acetyl zum Einsatz.The Working medium in the heat pipe is selected depending on the operating temperature, preferably water, because of the highest heat transfer performance at temperatures of about 2 to 300 ° C. At higher Temperatures of about 120 to 550 ° C mercury, while still higher temperatures cesium, potassium, sodium, Lithium and silver. At lower temperatures may arrive Mixture with water, alcohol, ammonia and acetyl used.
Das Arbeitsmedium sollte folgende Eigenschaften aufweisen: hohe Oberflächenspannung, niedrige Viskosität, gute Wärmeleitfähigkeit, große Verdampfungsenthalpie, weder extrem niedrige noch extrem hohe Dampfdrücke, gute Benetzungsfähigkeit.The Working medium should have the following properties: high surface tension, low Viscosity, good thermal conductivity, high evaporation enthalpy, neither extremely low nor extreme high vapor pressures, good wetting ability.
Aufgrund des zusätzlichen Gravitationseinflusses auf das Arbeitsmedium im Heatpipe erfolgt der Einbau vorzugsweise senkrecht mit der Kondensationsseite (Wärmesenke) nach oben. Alternativ können die Heatpipes auch waagerecht oder kombiniert, zum Beispiel schräg oder gebogen, eingebaut werden. Ungünstiger wirkt sich der Einbau mit der Kondensationsseite (Wärmesenke) nach unten aus da die hier die Kapillarkraft gegen die Gravitation arbeiten muss.by virtue of the additional gravitational influence on the working medium In the heat pipe, the installation is preferably carried out vertically with the condensation side (Heat sink) upwards. Alternatively, the Heatpipes also horizontal or combined, for example oblique or bent, to be installed. Unfavorable affects the installation with the condensation side (heat sink) after down there because here the capillary force against gravity work got to.
Es ist von Vorteil, wenn als thermoelektrisches Wandlerelement ein Seebeck-Element eingesetzt wird. Beim Seebeck-Effekt wird die Thermoelektrizität genutzt. Einige der frei beweglichen Elektronen können die Oberfläche eines Metalls verlassen, wenn ihre kinetische Energie mindestens gleich der Austritts- oder Ablösearbeit ist. Da diese materialabhängig ist, treten bei einer innigen Berührung zweier Metalloberflächen einige Elektronen vom Metall mit niedrigerer Austrittsarbeit in das andere über. Es entsteht eine Berührungsspannung, deren Größe tem peraturabhängig ist. Ein Thermoelement besteht aus zwei dieser Berührungsstellen. Besteht zwischen diesen keine Temperaturdifferenz, so gleichen sich die beiden Berührungsspannungen aus. Haben die beiden Verbindungsstellen unterschiedliche Temperatur, so fließt als Folge einer Thermospannung ein Thermostrom. Seine Größe hängt außer vom Stromkreiswiderstand von den Materialien und der Temperaturdifferenz ab. Die Metalle lassen sich hinsichtlich ihrer Thermospannung in eine thermoelektrische Spannungsreihe einordnen.It is advantageous if a thermoelectric transducer element Seebeck element is used. The Seebeck effect becomes thermoelectricity used. Some of the free moving electrons can leave the surface of a metal if its kinetic Energy at least equal to the exit or detachment work is. Since this is material-dependent, occur in a intimate Touching two metal surfaces some electrons from the lower work function metal to the other. It creates a touch voltage whose size tem peraturabhängig is. A thermocouple consists of two of these contact points. If there is no difference in temperature between them, they are equal two touch voltages. Do the two connection points different temperature, so flows as a result of a Thermoelectric voltage a thermo-current. Its size depends except from the circuit resistance of the materials and the temperature difference. The metals can be considered in terms of their Classify thermoelectric voltage into a thermoelectric voltage series.
Alternativ dazu kann als thermoelektrisches Wandlerelement ein Peltier-Element verwendet werden, welches elektrische Energie in thermische Energie umwandelt. Die Umkehrung des thermoelektrischen Effektes wird als der Peltier-Effekt bezeichnet. Fließt ein Strom durch eine Metallkombination analog dem Thermoelement, so entsteht zwischen den beiden Berührungsstellen eine Temperaturdifferenz. Und zwar kühlt sich die Stelle ab, die bei gleicher Richtung eines Thermostromes erhitzt werden müsste.alternative this can be done as a thermoelectric transducer element, a Peltier element used, which converts electrical energy into thermal energy transforms. The reversal of the thermoelectric effect is called called the Peltier effect. A current flows through one Metal combination analogous to the thermocouple, so arises between the two points of contact a temperature difference. And Although the place cools, the same direction a thermo-current would have to be heated.
Die vom thermoelektrischen Wandlerelement aufgenommene Wärmemenge wird durch Kühlmittel an der Oberfläche des thermoelektrischen Wandlerelements abgeführt. Das Kühlmittel kann beispielweise ein Kühlkörper sein, der von einem Kühlmedium durchströmt wird.The absorbed by the thermoelectric conversion element amount of heat is caused by coolant on the surface of the thermoelectric conversion element dissipated. The coolant can, for example, a Be heat sink, that of a cooling medium is flowed through.
Zwischen thermoelektrischem Wandlerelement und Abgaskanal sollte zumindest ein Isolierelement angeordnet sein, welches das Wandlerelement und den Abgaskanal thermisch trennt. Dadurch ist das thermoelektrische Wandlerelement entkoppelt vom Abgaskanal, somit werden vor allem thermische Verluste aber auch thermomechanische Verspannungen sehr gering gehalten. Mit einer leistungsfähigen Kühleinheit, welche an der anderen Oberfläche der thermoelektrischen Wandlereinheit angeordnet ist, um die thermoelektrische Wandlereinheit zu kühlen und durch eine Isolierung vom Abgaskanal getrennt ist, kann der Wirkungsgrad des thermoelektrischen Generators weiter optimiert werden.Between thermoelectric transducer element and exhaust duct should at least an insulating element may be arranged, which the transducer element and thermally separates the exhaust duct. This is the thermoelectric Transducer element decoupled from the exhaust duct, thus, above all thermal losses but also thermomechanical tensions very kept low. With a powerful cooling unit, which on the other surface of the thermoelectric Transducer unit is arranged to the thermoelectric conversion unit to cool and separated by an isolation from the exhaust duct is, the efficiency of the thermoelectric generator can continue be optimized.
Es ist günstig wenn zumindest ein Kontaktkörper im thermoelektrischen Generator angeordnet ist, wobei das thermoelektrische Wandlerelement zwischen Kontaktkörper und Kühlung befestigt, vorzugsweise geklemmt, angeordnet ist. Am Kontaktkörper und/oder am Kühlkörper befinden sich Mittel, vorzugsweise Erhebungen oder Vertiefungen, die ein Verschieben oder Verrutschen der in Kontakt befindlichen Kontaktkörper und Kühlkörper verhindern. Der Kontaktkörper kann als Wärmespeicher fungieren, in den die Heatpipes münden und an dessen Oberfläche die thermoelektrische Wandlereinheit angeordnet ist.It is favorable if at least one contact body in thermoelectric generator is arranged, wherein the thermoelectric Transducer element between contact body and cooling attached, preferably clamped, is arranged. At the contact body and / or on the heat sink are means, preferably Elevations or depressions that move or slip the contact body and heat sink in contact prevent. The contact body can be used as a heat storage act, in which the heat pipes open and on the surface the thermoelectric conversion unit is arranged.
Um die Wärmeaufnahme aus dem Abgasstrom zu verbessern, sollte an der Oberfläche der Heatpipes mehrere Wärmetauscherflächen angeordnet sein. Die Wärmetauscherflächen können dabei als Lamellen ausgebildet sein und gleiche oder ungleiche Abstände voneinander haben. Die Lamellen selbst können als ebene Fläche ausgebildet sein. Alternativ dazu, ist ein gewelltes und/oder ein zick-zack-förmiges Profil der Lamellen günstig. Als Material für die Wärmetauscherflächen eignen sich gut wärmeleitende Metalle, wie Kupfer oder Aluminium.Around should improve the heat absorption from the exhaust stream on the surface of the heatpipes several heat exchanger surfaces be arranged. The heat exchanger surfaces can while being formed as fins and equal or unequal distances have each other. The slats themselves can be as level Be formed surface. Alternatively, a wavy one and / or a zigzag-shaped profile of the slats favorably. As material for the heat exchanger surfaces are good heat conducting metals, such as copper or Aluminum.
Werden die Lamellen an der Oberfläche mit einer katalytischen Beschichtung versehen, so kann mit dem thermoelektrischen Generator eine Reinigung des Abgasstromes betrieben werden, beispielsweise können Kohlenstoffmonoxide (CO) oder Kohlenwasserstoffe (HC) aus dem Abgasstrom oxidiert werden. Als mögliche Beschichtungen sind hierfür Metalle, Metalloxiden, seltene Erden oder Verbindungen daraus geeignet. Beispielsweise sind Metalle, wie Lanthan, Cobalt, Vanadium, Cer oder Edelmetalle, wie Platin, Silber, Palladium, Rhodium, geeignet. Als geeignetes Metalloxid ist beispielsweise Aluminiumoxid zu nennen.Become the lamellae on the surface with a catalytic Coating provided so can with the thermoelectric generator a purification of the exhaust gas flow are operated, for example can be carbon monoxide (CO) or hydrocarbons (HC) are oxidized from the exhaust stream. As possible coatings are metals, metal oxides, rare earths or Compounds suitable. For example, metals such as lanthanum, Cobalt, vanadium, cerium or precious metals such as platinum, silver, palladium, Rhodium, suitable. As a suitable metal oxide is, for example To call alumina.
Um die Wärmeaufnahme aus dem Abgasstrom weiter zu erhöhen können die Lamellen an deren Oberflächen oberflächenvergrößernde Elemente in Form von Rippen und/oder Noppen und/oder Spitzen und/oder Taschen aufweisen. Die Taschen können auch zur Aufnahme von Ruß und/oder Feinstaub aus dem Abgasstrom dienen und bilden somit einen Filter für den Abgasstrom. Eine Regenerierung oder Reinigung des Filters kann durch Absenken der Wärmeabfuhr auf der Kühlmittelseite erreicht werden, wodurch die Temperatur im Abgaskanal erhöht wird und die Ruß- und/oder Feinstaubpartikel abgebrannt werden.Around to further increase the heat absorption from the exhaust gas flow the lamellas can surface-enlarging on their surfaces Elements in the form of ribs and / or studs and / or tips and / or Have pockets. The bags can also be used for recording of soot and / or particulate matter from the exhaust stream and serve thus form a filter for the exhaust stream. A regeneration or cleaning the filter can be done by lowering the heat dissipation be reached on the coolant side, reducing the temperature is increased in the exhaust passage and the soot and / or Fine dust particles are burned off.
In einer weiteren Ausführung ist zumindest ein Haltelement im Abgaskanal angeordnet, welches das Heatpipe im Abgaskanal befestigt. Das im Abgaskanal angebrachte Halteelement dient als Halterung für die Heatpipes, so dass diese in Durchströmungsrichtung fixiert sind. Das Material der Halteeinrichtungen kann hinsichtlich der thermischen Wärmeausdehnung so ausgebildet sein, dass die Heatpipes aufgrund der thermomechanischen Ausdehnungen nicht im Abgaskanal verspannt werden.In Another embodiment is at least one retaining element arranged in the exhaust duct, which secures the heat pipe in the exhaust duct. The attached in the exhaust duct retaining element serves as a holder for the heatpipes, so this in the flow direction are fixed. The material of the holding devices can with regard to Thermal thermal expansion be designed so that the heatpipes are not due to the thermo-mechanical expansions be braced in the exhaust passage.
In einer besonderen Ausführung ist der thermoelektrische Generator und der Abgaskanal als Schalldämpfer oder Endschalldämpfer einer Brennkraftmaschine ausgebildet. Die Lamellen können dann als Absorberbleche für den Abgasstrom der Brennkraftmaschine fungieren.In a particular embodiment is the thermoelectric generator and the exhaust duct as a muffler or rear silencer an internal combustion engine formed. The slats can then as absorber plates for the exhaust gas flow of the internal combustion engine act.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung. Verschiedene Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnungen näher erläutert. Dabei zeigt:preferred Further developments of the invention will become apparent from the following Description. Various embodiments of the invention are without being limited thereto, with reference to the drawings explained in more detail. Showing:
Die
Im
unteren Teil der
Die
oberste Lamelle
Die
Im
unteren Teil der
Die
- 11
- Thermoelektrisches Wandlerelementthermoelectric transducer element
- 22
- HeatpipeHeatpipe
- 33
- Wärmetauscherfläche/LamelleHeat exchange surface / plate
- 44
- KontaktkörperContact body
- 55
- Kühlungcooling
- 66
- Isolierunginsulation
- 77
- Abgaskanalexhaust duct
- 88th
- Haltelement/Oberste LamelleHolding element / Supreme lamella
- 99
- Bohrungdrilling
- 1010
- Halteelementretaining element
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- - DE 102005005077 A1 [0002] - DE 102005005077 A1 [0002]
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008005334A DE102008005334A1 (en) | 2008-01-21 | 2008-01-21 | Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008005334A DE102008005334A1 (en) | 2008-01-21 | 2008-01-21 | Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102008005334A1 true DE102008005334A1 (en) | 2009-07-30 |
Family
ID=40794250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102008005334A Withdrawn DE102008005334A1 (en) | 2008-01-21 | 2008-01-21 | Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102008005334A1 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101882902A (en) * | 2010-07-20 | 2010-11-10 | 赵耀华 | Semiconductor thermoelectric power generator |
DE102010001417A1 (en) | 2010-02-01 | 2011-08-04 | Robert Bosch GmbH, 70469 | Heat exchanger for thermoelectric generators |
DE102010007013A1 (en) * | 2010-02-05 | 2011-08-11 | J. Eberspächer GmbH & Co. KG, 73730 | exhaust system |
WO2011163109A1 (en) * | 2010-06-21 | 2011-12-29 | Corning Incorporated | Exhaust gas treatment system including a thermoelectric generator |
DE102010043281A1 (en) | 2010-11-03 | 2012-05-03 | Robert Bosch Gmbh | Thermoelectric generator with thermoelectric module with meandering p-n arrangement |
EP2463491A1 (en) * | 2010-12-08 | 2012-06-13 | IFP Energies Nouvelles | Method and device for controlling the temperature of exhaust gas of an internal combustion engine passing through a means for treating the pollutants contained in said gas. |
EP2466086A1 (en) * | 2010-12-15 | 2012-06-20 | Benteler Automobiltechnik GmbH | Heat exchanger |
FR2980038A1 (en) * | 2011-09-13 | 2013-03-15 | Valeo Systemes Thermiques | THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE |
WO2013092394A3 (en) * | 2011-12-22 | 2013-08-22 | Wind Plus Sonne Gmbh | Device for directly generating electrical energy from thermal energy |
CN103726951A (en) * | 2013-01-14 | 2014-04-16 | 闫化启 | Automobile waste heat using method |
EP2811142A1 (en) * | 2012-01-31 | 2014-12-10 | Toyota Jidosha Kabushiki Kaisha | Thermoelectric generator |
EP2818657A1 (en) * | 2013-06-24 | 2014-12-31 | Delphi Technologies, Inc. | Thermoelectric generator to engine exhaust manifold assembly |
EP2636079A4 (en) * | 2010-11-05 | 2015-02-25 | Mack Trucks | Thermoelectric recovery and peltier heating of engine fluids |
DE102013112911A1 (en) | 2013-11-22 | 2015-06-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator apparatus and method of manufacturing a thermoelectric generator apparatus |
DE102013022190A1 (en) | 2013-12-31 | 2015-07-02 | Daan Reiling | Device and method for direct conversion of thermal energy into electrical energy |
WO2016005294A1 (en) * | 2014-07-11 | 2016-01-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | System for recovering the energy from the heat of hot gas(es) and/or fumes, application to the recovery of energy from fouling fumes, in particular from heat engines |
DE102015115054A1 (en) | 2014-12-23 | 2016-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device |
CN101882902B (en) * | 2010-07-20 | 2016-12-14 | 光威和通能源科技(北京)有限公司 | Semiconductor thermo-electric generation apparatus |
CN106499484A (en) * | 2016-11-17 | 2017-03-15 | 南京交通职业技术学院 | A kind of three-element catalytic exhaust purifier and exhaust purifying method |
DE102016112752A1 (en) | 2016-07-12 | 2018-01-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device with a heat pipe device, method for operating a thermoelectric generator device |
DE102016112763A1 (en) | 2016-07-12 | 2018-01-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device with a heat flow concentrator device, method for operating a thermoelectric generator device |
US10141492B2 (en) | 2015-05-14 | 2018-11-27 | Nimbus Materials Inc. | Energy harvesting for wearable technology through a thin flexible thermoelectric device |
US10290794B2 (en) | 2016-12-05 | 2019-05-14 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
US10367131B2 (en) | 2013-12-06 | 2019-07-30 | Sridhar Kasichainula | Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US10553773B2 (en) | 2013-12-06 | 2020-02-04 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US10566515B2 (en) | 2013-12-06 | 2020-02-18 | Sridhar Kasichainula | Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US20200343430A1 (en) * | 2016-05-25 | 2020-10-29 | Yanmar Co., Ltd. | Thermoelectric power generation device |
US11024789B2 (en) | 2013-12-06 | 2021-06-01 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US11276810B2 (en) | 2015-05-14 | 2022-03-15 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US11283000B2 (en) | 2015-05-14 | 2022-03-22 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
DE102014010055B4 (en) | 2014-07-07 | 2023-03-16 | Hitachi Zosen Inova Ag | Process for operating a reactor |
DE102015205197B4 (en) | 2014-11-27 | 2023-09-21 | Hyundai Motor Company | Clamp thermoelectric generator system of an internal combustion engine |
EP4166765A4 (en) * | 2020-06-16 | 2023-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Thermal power generation system and method for controlling same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3314166A1 (en) * | 1982-04-29 | 1983-11-03 | Energy Conversion Devices, Inc., 48084 Troy, Mich. | THERMOELECTRIC SYSTEM |
DE3314159A1 (en) * | 1982-04-28 | 1983-11-03 | Energy Conversion Devices, Inc., 48084 Troy, Mich. | THERMOELECTRIC SYSTEM FOR GENERATING ELECTRICAL ENERGY |
JP2003065045A (en) * | 2001-08-24 | 2003-03-05 | Toyota Motor Corp | Exhaust heat recovery device |
US20030223919A1 (en) * | 2002-05-30 | 2003-12-04 | Sehoon Kwak | Integrated thermoelectric power generator and catalytic converter |
DE102005005077A1 (en) | 2004-02-05 | 2005-09-08 | Toyota Jidosha K.K., Toyota | Thermoelectric generator for an internal combustion engine |
DE102005013330A1 (en) * | 2004-03-22 | 2005-10-20 | Toyota Motor Co Ltd | heat recovery system |
US6986247B1 (en) * | 1997-05-09 | 2006-01-17 | Parise Ronald J | Thermoelectric catalytic power generator with preheat |
US20060179819A1 (en) * | 2005-02-14 | 2006-08-17 | Sullivan John T | System and method for reducing vehicle emissions and/or generating hydrogen |
WO2007032801A2 (en) * | 2005-06-28 | 2007-03-22 | Bsst Llc | Thermoelectric power generator for variable thermal power source |
-
2008
- 2008-01-21 DE DE102008005334A patent/DE102008005334A1/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3314159A1 (en) * | 1982-04-28 | 1983-11-03 | Energy Conversion Devices, Inc., 48084 Troy, Mich. | THERMOELECTRIC SYSTEM FOR GENERATING ELECTRICAL ENERGY |
DE3314166A1 (en) * | 1982-04-29 | 1983-11-03 | Energy Conversion Devices, Inc., 48084 Troy, Mich. | THERMOELECTRIC SYSTEM |
US6986247B1 (en) * | 1997-05-09 | 2006-01-17 | Parise Ronald J | Thermoelectric catalytic power generator with preheat |
JP2003065045A (en) * | 2001-08-24 | 2003-03-05 | Toyota Motor Corp | Exhaust heat recovery device |
US20030223919A1 (en) * | 2002-05-30 | 2003-12-04 | Sehoon Kwak | Integrated thermoelectric power generator and catalytic converter |
DE102005005077A1 (en) | 2004-02-05 | 2005-09-08 | Toyota Jidosha K.K., Toyota | Thermoelectric generator for an internal combustion engine |
DE102005013330A1 (en) * | 2004-03-22 | 2005-10-20 | Toyota Motor Co Ltd | heat recovery system |
US20060179819A1 (en) * | 2005-02-14 | 2006-08-17 | Sullivan John T | System and method for reducing vehicle emissions and/or generating hydrogen |
WO2007032801A2 (en) * | 2005-06-28 | 2007-03-22 | Bsst Llc | Thermoelectric power generator for variable thermal power source |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010001417A1 (en) | 2010-02-01 | 2011-08-04 | Robert Bosch GmbH, 70469 | Heat exchanger for thermoelectric generators |
WO2011091911A1 (en) | 2010-02-01 | 2011-08-04 | Robert Bosch Gmbh | Heat exchanger for thermoelectric generators |
DE102010007013A1 (en) * | 2010-02-05 | 2011-08-11 | J. Eberspächer GmbH & Co. KG, 73730 | exhaust system |
US8309044B2 (en) | 2010-06-21 | 2012-11-13 | Corning Incorporated | Exhaust gas treatment system including a thermoelectric generator |
WO2011163109A1 (en) * | 2010-06-21 | 2011-12-29 | Corning Incorporated | Exhaust gas treatment system including a thermoelectric generator |
CN103119263A (en) * | 2010-06-21 | 2013-05-22 | 康宁股份有限公司 | Exhaust gas treatment system including a thermoelectric generator |
CN101882902B (en) * | 2010-07-20 | 2016-12-14 | 光威和通能源科技(北京)有限公司 | Semiconductor thermo-electric generation apparatus |
CN101882902A (en) * | 2010-07-20 | 2010-11-10 | 赵耀华 | Semiconductor thermoelectric power generator |
DE102010043281A1 (en) | 2010-11-03 | 2012-05-03 | Robert Bosch Gmbh | Thermoelectric generator with thermoelectric module with meandering p-n arrangement |
EP2636079A4 (en) * | 2010-11-05 | 2015-02-25 | Mack Trucks | Thermoelectric recovery and peltier heating of engine fluids |
EP2463491A1 (en) * | 2010-12-08 | 2012-06-13 | IFP Energies Nouvelles | Method and device for controlling the temperature of exhaust gas of an internal combustion engine passing through a means for treating the pollutants contained in said gas. |
FR2968714A1 (en) * | 2010-12-08 | 2012-06-15 | IFP Energies Nouvelles | METHOD AND DEVICE FOR CONTROLLING THE EXHAUST GAS TEMPERATURE OF AN INTERNAL COMBUSTION ENGINE CROSSING A MEANS FOR TREATING THE POLLUTANTS CONTAINED IN THESE GASES |
DE102010054640A1 (en) * | 2010-12-15 | 2012-06-21 | Benteler Automobiltechnik Gmbh | heat exchangers |
EP2466086A1 (en) * | 2010-12-15 | 2012-06-20 | Benteler Automobiltechnik GmbH | Heat exchanger |
WO2013037773A1 (en) * | 2011-09-13 | 2013-03-21 | Valeo Systemes Thermiques | Thermoelectric device, in particular for generating an electrical current in a motor vehicle |
FR2980038A1 (en) * | 2011-09-13 | 2013-03-15 | Valeo Systemes Thermiques | THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE |
WO2013092394A3 (en) * | 2011-12-22 | 2013-08-22 | Wind Plus Sonne Gmbh | Device for directly generating electrical energy from thermal energy |
EP2811142A1 (en) * | 2012-01-31 | 2014-12-10 | Toyota Jidosha Kabushiki Kaisha | Thermoelectric generator |
EP2811142A4 (en) * | 2012-01-31 | 2014-12-10 | Toyota Motor Co Ltd | Thermoelectric generator |
CN103726951A (en) * | 2013-01-14 | 2014-04-16 | 闫化启 | Automobile waste heat using method |
EP2818657A1 (en) * | 2013-06-24 | 2014-12-31 | Delphi Technologies, Inc. | Thermoelectric generator to engine exhaust manifold assembly |
DE102013112911A1 (en) | 2013-11-22 | 2015-06-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator apparatus and method of manufacturing a thermoelectric generator apparatus |
US11024789B2 (en) | 2013-12-06 | 2021-06-01 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US10566515B2 (en) | 2013-12-06 | 2020-02-18 | Sridhar Kasichainula | Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US10553773B2 (en) | 2013-12-06 | 2020-02-04 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US10367131B2 (en) | 2013-12-06 | 2019-07-30 | Sridhar Kasichainula | Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device |
WO2015101408A1 (en) | 2013-12-31 | 2015-07-09 | Ortwin Gerrit Siebelder | Device and method for directly converting thermal energy into electrical energy |
DE102013022190A1 (en) | 2013-12-31 | 2015-07-02 | Daan Reiling | Device and method for direct conversion of thermal energy into electrical energy |
DE102014010055B4 (en) | 2014-07-07 | 2023-03-16 | Hitachi Zosen Inova Ag | Process for operating a reactor |
FR3023582A1 (en) * | 2014-07-11 | 2016-01-15 | Commissariat Energie Atomique | SYSTEM FOR RECOVERING ENERGY FROM HOT (S) AND / OR SMOKE (S) GAS HEAT, APPLICATION TO THE RECOVERY OF ENERGY FROM HEAT-CONTAINING SMOKE, ESPECIALLY FROM THERMAL MOTORS. |
WO2016005294A1 (en) * | 2014-07-11 | 2016-01-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | System for recovering the energy from the heat of hot gas(es) and/or fumes, application to the recovery of energy from fouling fumes, in particular from heat engines |
DE102015205197B4 (en) | 2014-11-27 | 2023-09-21 | Hyundai Motor Company | Clamp thermoelectric generator system of an internal combustion engine |
DE102015115054A1 (en) | 2014-12-23 | 2016-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device |
US10141492B2 (en) | 2015-05-14 | 2018-11-27 | Nimbus Materials Inc. | Energy harvesting for wearable technology through a thin flexible thermoelectric device |
US11276810B2 (en) | 2015-05-14 | 2022-03-15 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US11283000B2 (en) | 2015-05-14 | 2022-03-22 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US11930707B2 (en) * | 2016-05-25 | 2024-03-12 | Yanmar Co., Ltd. | Thermoelectric power generation device |
US20200343430A1 (en) * | 2016-05-25 | 2020-10-29 | Yanmar Co., Ltd. | Thermoelectric power generation device |
DE102016112763A1 (en) | 2016-07-12 | 2018-01-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device with a heat flow concentrator device, method for operating a thermoelectric generator device |
DE102016112752A1 (en) | 2016-07-12 | 2018-01-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Thermoelectric generator device with a heat pipe device, method for operating a thermoelectric generator device |
CN106499484A (en) * | 2016-11-17 | 2017-03-15 | 南京交通职业技术学院 | A kind of three-element catalytic exhaust purifier and exhaust purifying method |
US10290794B2 (en) | 2016-12-05 | 2019-05-14 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
US10559738B2 (en) | 2016-12-05 | 2020-02-11 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
US10516088B2 (en) | 2016-12-05 | 2019-12-24 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
EP4166765A4 (en) * | 2020-06-16 | 2023-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Thermal power generation system and method for controlling same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008005334A1 (en) | Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity | |
DE202008000832U1 (en) | Thermoelectric generator | |
WO2005088207A1 (en) | Heat exchanger with a vacuum tubes | |
DE2933901C2 (en) | Solar collector | |
DE102010054640A1 (en) | heat exchangers | |
DE3924411A1 (en) | RIB TUBE HEAT EXCHANGER | |
DE102010005177A1 (en) | Efficient and lightweight thermoelectric recovery system for unused heat | |
DE102009003144A1 (en) | Heat exchanger and method for converting thermal energy of a fluid into electrical energy | |
DE10123456A1 (en) | Heat exchanger consists of open pored metal foam, whereby at least some cells contained in metal foam are connected together so that fluid medium can flow through metal foam | |
WO2010076098A1 (en) | Device for producing electrical energy from exhaust gas | |
DE102014208955A1 (en) | Heat transfer device and its use | |
EP2377596B1 (en) | Refrigerant type dryer, in particular pressurised air refrigerant type dryer and heat exchanger for a refrigerant type dryer, in particular pressurised air refrigerant type dryer | |
DE102007015146B4 (en) | Aluminum system radiator | |
WO2006136149A1 (en) | Heating apparatus comprising a thermoelectric device | |
DE10251446A1 (en) | Cooling arrangement for a photovoltaic light concentrating unit has heat pipe attached to the heat transmitting surfaces of the device or devices | |
DE102008055946A1 (en) | Internal combustion engine for motor vehicle, has cooling circuit for cooling oil cooler, and thermoelectric converter arranged in region of cooling circuit for cooling and/or heating cooling unit or for producing electrical energy | |
DE102011056877A1 (en) | Apparatus and method for direct generation of electrical energy from thermal energy | |
DE102015107472B3 (en) | Automotive heat exchanger system | |
WO2015101408A1 (en) | Device and method for directly converting thermal energy into electrical energy | |
DE102006031480A1 (en) | Thin reformer for fuel cell, comprises substrate in which a flow path is formed, fuel-filling section for filling the flow path with the fuel, reformer section, carbon monoxide-remover and cover to cover the substrates upper section | |
DE2029910A1 (en) | Pipes for heat exchangers | |
DE102015120082B4 (en) | Thermoelectric generator device for a vehicle | |
DE10003273B4 (en) | Device for vaporizing and / or overheating a medium | |
EP2562485A2 (en) | Media heater | |
DE102009047751A1 (en) | Burner arrangement for production of electricity, has volume burner, whose combustion chamber is formed from porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8130 | Withdrawal | ||
8165 | Publication of following application cancelled |