DE102007018817A1 - Method and device for pressure measurement - Google Patents
Method and device for pressure measurement Download PDFInfo
- Publication number
- DE102007018817A1 DE102007018817A1 DE102007018817A DE102007018817A DE102007018817A1 DE 102007018817 A1 DE102007018817 A1 DE 102007018817A1 DE 102007018817 A DE102007018817 A DE 102007018817A DE 102007018817 A DE102007018817 A DE 102007018817A DE 102007018817 A1 DE102007018817 A1 DE 102007018817A1
- Authority
- DE
- Germany
- Prior art keywords
- measuring
- membrane
- pressure
- interferometric
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000009530 blood pressure measurement Methods 0.000 title claims abstract description 13
- 239000012528 membrane Substances 0.000 claims abstract description 53
- 239000013307 optical fiber Substances 0.000 claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 14
- 230000001427 coherent effect Effects 0.000 claims abstract description 5
- 239000000523 sample Substances 0.000 claims description 36
- 238000002485 combustion reaction Methods 0.000 claims description 18
- 239000000835 fiber Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/08—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
- G01L23/16—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by photoelectric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35303—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35312—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0092—Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0076—Transmitting or indicating the displacement of flexible diaphragms using photoelectric means
- G01L9/0077—Transmitting or indicating the displacement of flexible diaphragms using photoelectric means for measuring reflected light
- G01L9/0079—Transmitting or indicating the displacement of flexible diaphragms using photoelectric means for measuring reflected light with Fabry-Perot arrangements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Measuring Fluid Pressure (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Druckmessung in einem Messraum, wobei zur Druckmessung die Auslenkung einer mit dem Messraum in Wirkverbindung stehenden Membran mit einer interferometrischen Druckmesseinrichtung bestimmt wird. Die Erfindung sieht vor, dass die Auslenkung zumindest eines Teils der in eine Wandung des Messraums integrierten Membran mit der interferometrischen Druckmesseinrichtung bestimmt wird und wobei die interferometrische Druckmesseinrichtung mit einer räumlich kohärenten, zeitlich kurzkohärenten Strahlungsquelle betrieben wird. Vorteilhaft gegenüber dem Stand der Technik ist, dass ein Teil der Wandung des Messraums selber als Membran ausgebildet ist und keine präzise zu einer Stirnfläche der Lichtleitfaser ausgerichtete hoch reflektierende Membran verwendet werden muss, die in einem Messkopf montiert ist.The invention relates to a method for pressure measurement in a measuring chamber, wherein the deflection of a membrane in operative connection with the measuring chamber is determined by an interferometric pressure measuring device for pressure measurement. The invention provides that the deflection of at least part of the membrane integrated into a wall of the measuring space is determined with the interferometric pressure measuring device, and wherein the interferometric pressure measuring device is operated with a spatially coherent, temporally short-coherent radiation source. An advantage over the prior art is that a part of the wall of the measuring space itself is formed as a membrane and no precisely aligned to an end face of the optical fiber highly reflective membrane must be used, which is mounted in a measuring head.
Description
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren zur Druckmessung in einem Messraum, wobei zur Druckmessung die Auslenkung einer mit dem Messraum in Wirkverbindung stehenden Membran mit einer interferometrischen Druckmesseinrichtung bestimmt wird.The The invention relates to a method for pressure measurement in a measuring room, wherein for the pressure measurement, the deflection of a with the measuring space in Actively connected membrane with an interferometric pressure measuring device is determined.
Die Erfindung betrifft weiterhin eine Vorrichtung zur Druckmessung in einem Messraum, wobei zur Druckmessung eine mit dem Messraum in Wirkverbindung stehende Membran und eine interferometrische Druckmesseinrichtung zur Messung einer Auslenkung der Membran vorgesehen sind.The The invention further relates to a device for measuring pressure in a measuring space, wherein for pressure measurement one with the measuring space in Actively connected membrane and an interferometric pressure measuring device are provided for measuring a deflection of the membrane.
In der Automobiltechnik werden an mehreren Stellen Drucksensoren für einen Druckbereich von einigen 100 bar bis 1000 bar eingesetzt. In einer Ausführungsform arbeiten diese Drucksensoren mit einer auf der vom Messraum abgewandten Seite angebrachten Widerstandsschicht (Dehnungsmessstreifen). Die Membran ist so ausgelegt, dass sie im Betrieb einige Mikrometer ausgelenkt wird. Die dabei am Dehnungsmessstreifen auftretende Widerstandsänderung wird mit einer Auswerteelektronik erfasst und mit einer Abtastrate von maximal 1 kHz ausgewertet. Die Ergebnisse haben dabei eine Auflösung von 1% des Maximalwerts, was einer Auflösung der Auslenkung von einigen 10 Nanometern entspricht. Nachteilig an solchen Dehnungsmessstreifen ist, dass deren Ausgangssignal auch von der Temperatur abhängt und dass die maximale Betriebstemperatur verhindert, dass die mit ihnen ausgestatteten Drucksensoren im oder am Brennraum einer Brennkraftmaschine eingesetzt werden können. Weiterhin nachteilig ist die maximal mögliche Abtastfrequenz, die es verbietet, beispielhaft die dynamischen Einspritz- und Verbrennungsprozesse in dem Brennraum zeitlich aufgelöst zu erfassen.In Automotive technology is used in several places pressure sensors for used a pressure range of several 100 bar to 1000 bar. In one embodiment, these pressure sensors work with one on the side facing away from the measuring chamber side resistance layer (Strain gauges). The membrane is designed to be in the Operation is deflected a few microns. The case on the strain gauge occurring resistance change is with an evaluation detected and evaluated with a sampling rate of 1 kHz maximum. The results have a resolution of 1% of the maximum value, what a resolution of the deflection of some 10 nanometers equivalent. A disadvantage of such strain gauges is that whose output signal also depends on the temperature and that the maximum operating temperature prevents those with them equipped pressure sensors in or on the combustion chamber of an internal combustion engine can be used. Another disadvantage is the maximum possible sampling frequency that prohibits it, by way of example the dynamic injection and combustion processes in the combustion chamber to be temporally resolved.
Die
Die
Die
Es ist Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Druckmessung anzugeben, die auch für den Einsatz bei hohen Temperaturen, wie sie beispielhaft in oder an Brennräumen von Brennkraftmaschinen vorkommen, geeignet sind und die eine ausreichend schnelle Messwerterfassung ermöglichen.It Object of the invention, a method and an apparatus for Indicate pressure measurement, which is also suitable for use at high Temperatures, as exemplified in or on combustion chambers of internal combustion engines, are suitable and the one sufficient enable fast measured value acquisition.
Offenbarung der ErfindungDisclosure of the invention
Vorteile der ErfindungAdvantages of the invention
Die
Aufgabe der Erfindung betreffend des Verfahrens wird dadurch gelöst,
dass die Auslenkung zumindest eines Teils der in eine Wandung des Messraums
integrierten Membran mit der interferometrischen Druckmesseinrichtung
bestimmt wird und wobei die interferometrische Druckmesseinrichtung mit
einer räumlich kohärenten, zeitlich kurzkohärenten
Strahlungsquelle betrieben wird. Vorteilhaft gegenüber
dem Stand der Technik, wie er beispielhaft in der
Wird eine in ein Modulationsinterferometer und eine mit dieser über eine Lichtleitfaseranordnung verbundene Mess-Sonde aufgeteilte interferometrische Druckmesseinrichtung verwendet, können Standard-Messgeräte verwendet werden und insbesondere die Druckmesseinrichtung in eine robuste an die jeweilige Messaufgabe angepasste Mess-Sonde und ein von dieser getrenntes unter kontrollierten Umweltbedingungen aufgestelltes hoch präzises Modulationsinterferometer aufgeteilt werden. Durch die Verwendung eines Modulationsinterferometers kann der Arbeitsabstand der Mess-Sonde in einem weiten Bereich der Messaufgabe angepasst werden.Becomes one in a modulation interferometer and one with this over an optical fiber array connected measuring probe split interferometric Pressure gauges used may be standard gauges be used and in particular the pressure measuring device in a robust measuring probe adapted to the respective measuring task and a from this separate set up under controlled environmental conditions high-precision modulation interferometer be split. By using a modulation interferometer, the working distance the measuring probe is adapted to a wide range of the measuring task become.
Dadurch, dass die interferometrische Druckmesseinrichtung mit einer Messfrequenz von mehr als 1 kHz, vorzugsweise mehr als 100 kHz, betrieben wird, können auch schnelle Vorgänge, wie sie beispielhaft bei Einspritz- und Verbrennungsprozessen im Brennraum einer Brennkraftmaschine stattfinden, erfasst und ausgewertet werden. Die hier auf Zeitskalen von einigen zehn bis 100 Mikrosekunden stattfindenden Prozesse lassen sich durch das erfindungsgemäße Verfahren erfassen.Thereby, that the interferometric pressure measuring device with a measuring frequency of more than 1 kHz, preferably more than 100 kHz, is operated, can also be fast processes, as exemplified in injection and combustion processes in the combustion chamber of an internal combustion engine take place, recorded and evaluated. The here on time scales from tens to 100 microseconds to be detected by the method according to the invention.
Die Aufgabe der Erfindung betreffend die Vorrichtung wird dadurch gelöst, dass die Membran in eine Wandung des Messraums integriert ist und dass als Strahlungsquelle der interferometrischen Druckmesseinrichtung eine räumlich kohärente, zeitlich kurzkohärente Strahlungsquelle vorgesehen ist. Durch die Verwendung eines Teils der Wandung des Messraums als Membran kann dessen Innenfläche unverändert erhalten bleiben und insbesondere Dichtflächen können entfallen. Durch die Wahl der restlichen Wanddicke und der Querschnittsfläche der Ausnehmung in der Wandung des Messraums kann die Druckmesseinrichtung an die Messaufgabe angepasst werden.The The object of the invention concerning the device is solved by that the membrane is integrated in a wall of the measuring space and that as a radiation source of the interferometric pressure measuring device a spatially coherent, temporally short-coherent Radiation source is provided. By using a part the wall of the measuring space as a membrane can its inner surface unchanged preserved and in particular sealing surfaces can omitted. By choosing the remaining wall thickness and the cross-sectional area the recess in the wall of the measuring space, the pressure measuring device adapted to the measuring task.
Ist die interferometrische Druckmesseinrichtung in ein Modulationsinterferometer und eine mit diesem über eine Lichtleitfaseranordnung verbundene Mess-Sonde aufgeteilt, kann die Mess-Sonde betreffend Messabstand und Sondenquerschnitt der Messaufgabe individuell angepasst werden. Die Lichtleitfaseranordnung erlaubt es, das Modulationsinterferometer unter kontrollierten Umweltbedingungen entfernt vom Messort anzubringen. Bei Verwendung von handelsüblichen Modulationsinterferometern kann der Messabstand der Mess-Sonde zwischen einigen Mikrometern und 25 cm variiert und damit praktisch allen Messaufgaben angepasst werden.is the interferometric pressure measuring device in a modulation interferometer and one connected thereto via an optical fiber array Split measuring probe, the measuring probe can regarding measuring distance and probe cross-section of the measurement task can be customized. The optical fiber array allows the modulation interferometer under controlled environmental conditions away from the measuring location. When using commercially available modulation interferometers the measuring distance of the measuring probe can be between a few micrometers and 25 cm varies and thus adapted to virtually all measurement tasks become.
Ist die Membran als ein Teilbereich der Wandung des Messraums mit verringerter Wanddicke ausgebildet, kann die Druckmessung verwirklicht werden, ohne die Wandung des Messraums zu unterbrechen und damit ohne zusätzliche Dichtflächen erforderlich zu machen. Eine Vergrößerung des Volumens des Messraums, wie dies beispielhaft durch in Bohrungen eingebrachte Mess-Köpfe von Drucksensoren geschehen würde, wird vermieden und die Druckbedingungen bei dynamischen Vorgängen, wie beispielhaft im Brennraum einer Brennkraftmaschine, werden realitätsnäher wiedergegeben.is the membrane as a portion of the wall of the measuring chamber with reduced Wall thickness formed, the pressure measurement can be realized without interrupting the wall of the measuring room and thus without additional To make sealing surfaces required. An enlargement the volume of the measuring space, as exemplified by in drilling introduced measuring heads would happen from pressure sensors is avoided and the pressure conditions in dynamic processes, as an example in the combustion chamber of an internal combustion engine, become closer to reality played.
Ist die Membran als ein mit der Wandung des Messraums fest verbundenes Bauteil ausgebildet, kann die Wanddicke der Membran besonders gut kontrolliert gewählt werden. Weiterhin ist es möglich, Materialien für die Membran zu verwenden, die eine verbesserte Druckmessung ermöglichen.If the membrane is designed as a component firmly connected to the wall of the measuring space, the wall thickness of the membrane can be chosen particularly well controlled. Furthermore, it is possible to use materials for the membrane, which allow an improved pressure measurement.
Eine einfach zu realisierende Ausführungsvariante sieht vor, dass in der Wandung des Messraums eine Ausnehmung vorgesehen ist, die messraumseitig durch die Membran abgeschlossen ist und dass die Mess-Sonde in der Ausnehmung gehalten ist. Die Membran kann dabei als Restwanddicke einer Sacklochbohrung ausgeführt sein, die von außen in die Wandung des Messraums eingebracht ist. Hierbei kann es erforderlich sein, die Druckmesseinrichtung wegen der unzureichend genau bestimmbaren Restwanddicke zu kalibrieren.A easy to implement variant provides, a recess is provided in the wall of the measuring space, the measuring chamber side is completed by the membrane and that the measuring probe is held in the recess. The membrane can thereby executed as a residual wall thickness of a blind hole be introduced into the wall of the measuring room from the outside is. This may require the pressure measuring device because of the insufficiently determinable residual wall thickness to calibrate.
Eine besonders kleine Ausführung der Mess-Sonde ist realisierbar, indem die Mess-Sonde als eine Lichtleitfaser mit einer angeformten Fokussierungsoptik ausgebildet ist. Der Durchmesser der Mess-Sonde kann dann in der Größenordnung der Faserdicke von einigen 10 Mikrometern gewählt werden. Auch die Membranfläche kann ab einer solchen Größenordnung gewählt werden, wodurch die Membran besonders robust gewählt werden kann und an praktisch jeder gewünschten Position angebracht werden kann. Insbesondere für kleine Messräume ist eine solche Ausführung geeignet.A particularly small version of the measuring probe can be realized, by the measuring probe as an optical fiber with an integrally formed Focusing optics is formed. The diameter of the measuring probe can then be of the order of the fiber thickness be chosen by some 10 microns. Also the membrane surface can be chosen from such an order of magnitude which makes the membrane particularly robust can be installed and in virtually any desired position can. Especially for small measuring rooms is one such execution suitable.
In einer Ausführungsform ist vorgesehen, dass die Vorrichtung zur Druckmessung eine Referenz-Sonde zur Temperaturkompensation aufweist. Mittels einer nahe an der Mess-Sonde angebrachten Referenz-Sonde können die auf der Wärmedehnung der Wandung des Messraums und der weiteren Komponenten beruhenden Messeffekte berücksichtigt werden.In an embodiment, it is provided that the device For pressure measurement, a reference probe for temperature compensation having. By means of a reference probe mounted close to the measuring probe can on the thermal expansion of the wall of the Measuring room and the other components based measurement effects are taken into account.
Eine besonders gute Berücksichtigung der temperaturabhängigen Effekte lässt sich verwirklichen, indem die Referenzsonde nahe an der Mess-Sonde angebracht ist und indem ein Referenz-Strahl der Referenz-Sonde auf eine von der Membran mechanisch entkoppelte Oberfläche gerichtet ist. Hierbei kann es sich um einen Referenz-Spiegel handeln, der von der Rückseite der Membran soweit beabstandet ist, dass er auch bei deren Maximalauslenkung nicht bewegt wird.A especially good consideration of the temperature-dependent Effects can be realized by the reference probe is attached close to the measuring probe and adding a reference beam the reference probe on a mechanically decoupled from the membrane Surface is directed. This can be a Reference mirror acting from the back of the membrane as far as it is spaced so that it is at their maximum deflection is not moved.
Werden das beschriebene Verfahren und/oder die Vorrichtung zur Bestimmung eines Drucks und eines Druckverlaufs in einem Brennraum einer Brennkraftmaschine verwendet, können die schnellen Vorgänge bei der Einspritzung und bei der Verbrennung verfolgt werden und es ist eine Optimierung der Vorgänge, beispielsweise mit dem Ziel einer Verminderung des Kraftstoffverbrauchs oder der Abgabe unerwünschter Abgasbeimischungen, möglich.Become the described method and / or the device for determining a pressure and a pressure curve in a combustion chamber of an internal combustion engine used, the fast processes in the Injection and combustion are tracked and it is an optimization of the processes, for example with the goal a reduction in fuel consumption or the discharge of undesirable Exhaust admixtures, possible.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Die Erfindung wird im Folgenden anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:The Invention will be described below with reference to the figures shown in the figures Embodiments explained in more detail. Show it:
Ausführungsformen der Erfindungembodiments the invention
Eine
besonders klein ausführbare Ausführungsform der
Mess-Sonde
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- - DE 10312491 [0004] - DE 10312491 [0004]
- - DE 4018998 [0005, 0008] - DE 4018998 [0005, 0008]
- - DE 10244553 [0006] - DE 10244553 [0006]
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007018817A DE102007018817A1 (en) | 2007-04-20 | 2007-04-20 | Method and device for pressure measurement |
PCT/EP2008/053054 WO2008128829A1 (en) | 2007-04-20 | 2008-03-14 | Method and device for measuring pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007018817A DE102007018817A1 (en) | 2007-04-20 | 2007-04-20 | Method and device for pressure measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102007018817A1 true DE102007018817A1 (en) | 2008-10-23 |
Family
ID=39638701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102007018817A Withdrawn DE102007018817A1 (en) | 2007-04-20 | 2007-04-20 | Method and device for pressure measurement |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102007018817A1 (en) |
WO (1) | WO2008128829A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013210349A1 (en) * | 2013-06-04 | 2014-12-04 | Conti Temic Microelectronic Gmbh | Optical pressure measuring device and optical pressure measuring method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7845235B2 (en) | 2007-11-06 | 2010-12-07 | Costin Sandu | Non-invasive system and method for measuring vacuum pressure in a fluid |
CN102654413B (en) * | 2011-03-01 | 2013-11-13 | 中国科学院合肥物质科学研究院 | Temperature self-compensating type fiber optic liquid level sensor |
US11406415B2 (en) | 2012-06-11 | 2022-08-09 | Tenex Health, Inc. | Systems and methods for tissue treatment |
US9962181B2 (en) | 2014-09-02 | 2018-05-08 | Tenex Health, Inc. | Subcutaneous wound debridement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4018998A1 (en) | 1990-06-13 | 1992-01-02 | Dynisco Geraete Gmbh | FIBER OPTICAL PRESSURE SENSOR |
DE10244553B3 (en) | 2002-09-25 | 2004-02-05 | Robert Bosch Gmbh | Interferometric measuring device for detecting shape, roughness of distance of object surface has beam from modulation interferometer fed to optical measuring probe with angled light output surface |
DE10312491B3 (en) | 2003-03-20 | 2005-02-03 | Robert Bosch Gmbh | Pressure sensor with heat shield for use in internal combustion engines |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4572949A (en) * | 1982-04-14 | 1986-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Fiber optic sensor for detecting very small displacements of a surface |
US4627731A (en) * | 1985-09-03 | 1986-12-09 | United Technologies Corporation | Common optical path interferometric gauge |
JPH03291545A (en) * | 1990-04-09 | 1991-12-20 | Nissan Motor Co Ltd | Knocking detecting device |
DE19819762A1 (en) * | 1998-05-04 | 1999-11-25 | Bosch Gmbh Robert | Interferometric measuring device |
DE10057607A1 (en) * | 2000-11-21 | 2002-05-29 | Gfeller City Crown Gmbh Gisiko | Pressure and temperature sensors for hostile environments, such as the combustion chamber of an internal combustion engine with the resulting sensors rugged, long lasting and insensitive to electromagnetic interference |
-
2007
- 2007-04-20 DE DE102007018817A patent/DE102007018817A1/en not_active Withdrawn
-
2008
- 2008-03-14 WO PCT/EP2008/053054 patent/WO2008128829A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4018998A1 (en) | 1990-06-13 | 1992-01-02 | Dynisco Geraete Gmbh | FIBER OPTICAL PRESSURE SENSOR |
DE10244553B3 (en) | 2002-09-25 | 2004-02-05 | Robert Bosch Gmbh | Interferometric measuring device for detecting shape, roughness of distance of object surface has beam from modulation interferometer fed to optical measuring probe with angled light output surface |
DE10312491B3 (en) | 2003-03-20 | 2005-02-03 | Robert Bosch Gmbh | Pressure sensor with heat shield for use in internal combustion engines |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013210349A1 (en) * | 2013-06-04 | 2014-12-04 | Conti Temic Microelectronic Gmbh | Optical pressure measuring device and optical pressure measuring method |
Also Published As
Publication number | Publication date |
---|---|
WO2008128829A1 (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012111008A1 (en) | Optical measuring method and optical measuring device for detecting a surface topography | |
DE102017100956B4 (en) | Diagnostic system and method for checking the functionality of an actuator for influencing a process medium flow of a process plant and actuator | |
DE102008033942B3 (en) | Fiber-optic multi-wavelength interferometer (MWLI) for the absolute measurement of distances and topologies of surfaces at a large working distance | |
DE102010053726A1 (en) | Device for non-incremental position and shape measurement of moving solids | |
EP2363685B1 (en) | Positioning device with confocal Fabry-Perot interferometer | |
DE102007018817A1 (en) | Method and device for pressure measurement | |
DE102017122689A1 (en) | Method and device for non-contact measurement of a distance to a surface or a distance between two surfaces | |
EP1931939B1 (en) | Interferometric measuring device | |
DE102004052205A1 (en) | Interferometric method e.g. for recording of separation and form and optical coherence tomography (OCT), involves having multi-wavelength source or tunable source and imaging on receiver by focusing systems | |
DE102009039659B4 (en) | Vortex flowmeter and pressure transducer for a vortex flowmeter | |
EP2734808B1 (en) | Apparatus for tactile form determination | |
DE10301607B4 (en) | Interference measuring probe | |
DE102017131388B4 (en) | Fiber optic torsion angle sensor and method of detecting a torsion angle | |
DE102008038883A1 (en) | Microphone assembly for measuring sound signals, particularly in hot temperature, has switching device that alternatively defers light of frequency to link another light of another frequency into light conductor | |
DE10131898B4 (en) | Interferometric measuring device for wavelength calibration | |
EP2463615B1 (en) | Sensor system for detecting the shape, diameter and/or roughness of a surface | |
DE102019116471B4 (en) | Measuring device for a scanning probe microscope and method for examining a measurement sample using a scanning probe microscope with a scanning probe microscope | |
DE102013213525B3 (en) | Method for calibrating position measuring system of wafer used for manufacturing semiconductor device, involves applying calibration regulation in position determination during generation of first, second and third measuring signals | |
DE102004020059B4 (en) | Measuring device and method for the discontinuous absolute measurement of displacements | |
DE102006014766A1 (en) | Interferometric measuring device for e.g. optical distance measurement in quality control, has reference and modulation interferometers, and dispersive optical component that is arranged in one of optical paths of reference interferometer | |
DE102008002206A1 (en) | Fiber optic probe head for detecting form or distance, particularly coarse surface area of specimen of interferometric measuring arrangement, comprises non-discretely built Fizeau interferometer for introducing partial beams | |
DE4426814C1 (en) | Dynamic force-distance measuring device | |
DE102016125799B4 (en) | Acoustic emission sensor | |
EP1794572B1 (en) | Method of operating an interferometric system with a reference element with one or multiple mirrored zones | |
DE102018110381B4 (en) | Device for taking pictures and method for stress analysis of a test body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R005 | Application deemed withdrawn due to failure to request examination |
Effective date: 20140423 |