[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE102005050388A1 - Recovery system for the further processing of a cracked gas stream of an ethylene plant - Google Patents

Recovery system for the further processing of a cracked gas stream of an ethylene plant Download PDF

Info

Publication number
DE102005050388A1
DE102005050388A1 DE102005050388A DE102005050388A DE102005050388A1 DE 102005050388 A1 DE102005050388 A1 DE 102005050388A1 DE 102005050388 A DE102005050388 A DE 102005050388A DE 102005050388 A DE102005050388 A DE 102005050388A DE 102005050388 A1 DE102005050388 A1 DE 102005050388A1
Authority
DE
Germany
Prior art keywords
gas
methane
condensate
separator
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005050388A
Other languages
German (de)
Inventor
Tuat Pham Duc
Holger Schmigalle
Roland Walzl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE102005050388A priority Critical patent/DE102005050388A1/en
Priority to PCT/EP2006/009687 priority patent/WO2007045364A2/en
Priority to MYPI20081181A priority patent/MY146026A/en
Priority to RU2008119407/04A priority patent/RU2412147C2/en
Publication of DE102005050388A1 publication Critical patent/DE102005050388A1/en
Priority to NO20082280A priority patent/NO20082280L/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/09Purification; Separation; Use of additives by fractional condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Die Erfindung betrifft ein Rückgewinnungssystem und ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage. Das Rückgewinnungssystem weist dabei folgende Komponenten auf: DOLLAR A - einen integrierten Multi-Kondensatabscheider, DOLLAR A - einen C2-Absorber, DOLLAR A - eine Wasserstoff/Methan-Expansionsvorrichtung und DOLLAR A - eine C1/C2-Niederdruckkolonne (Demethanizer), DOLLAR A wobei der Multi-Kondensatabscheider mindestens zwei verschiedene Bereiche aufweist, die mit verschieden zusammengesetzten Spaltgasströmen beaufschlagt werden.The invention relates to a recovery system and a method for recovering hydrogen and methane from a cracked gas stream in the low-temperature part of an ethylene plant. The recovery system has the following components: DOLLAR A - an integrated multi-condensate separator, DOLLAR A - a C2 absorber, DOLLAR A - a hydrogen / methane expansion device and DOLLAR A - a C1 / C2 low-pressure column (demethanizer), DOLLAR A wherein the multi-condensate separator has at least two different areas, which are acted upon with differently composed fission gas flows.

Description

Die vorliegende Erfindung betrifft ein Rückgewinnungssystem und ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage.The The present invention relates to a recovery system and a Recovery process of hydrogen and methane from a cracked gas stream in the low temperature part an ethylene plant.

Ethylenanlagen weisen in der Regel eine Zuspeisung für Erdöl oder Erdgas, einen Spaltofen zur Aufspaltung der langen Ketten dieser Stoffe sowie verschiedene Einrichtungen zur Fraktionierung und weiteren Stoffumwandlung der Produkte auf. Im Tieftemperaturteil wird die C2(minus)-Fraktion, die aus der Hydrierung kommt, üblicherweise schrittweise heruntergekühlt bis die C2-Komponenten im Spaltgas größtenteils von Wasserstoff und von Methan getrennt sind. Die verbleibenden C2-Komponenten in der Wasserstoff/Methan-Fraktion werden beispielsweise in einem sog. C2-Absorber (z. B. aus der Linde-Baureihe T4002) zurückgewonnen. Um den Methanabscheider (z. B. T4101) zu entladen, werden die sich während des Kühlprozesses ansammelnden Kondensate in der Regel in einen Methan-Vorabscheider (z. B. T4001) geleitet. Dort werden gelöster Wasserstoff und Methan zum Teil herausgelöst (stripped off). Ein herkömmlicher Methan-Vorabscheider weist drei Bereiche auf, in denen der teilweise kondensierte C2(minus)-Strom nach jedem Abkühlschritt in seine Gasphase und seine flüssige Phase getrennt wird. Die Kondensate der höheren Bereiche des Methan-Vorabscheiders werden zum nächst niedrigeren Bereich geführt, was als Gasbarriere für von niedrigeren Bereichen kommendes Gas dient. Der Boden des Methan-Vorabscheiders führt zu einem Methanabscheider (z. B. T4101), in dem der verbliebene gelöste Wasserstoff und verbliebenes Methan von der C2-Fraktion abgestreift werden (stripped off). Das Bodenprodukt des Methanabscheiders wird dann üblicherweise einem C2-Trenner (C2-Splitter) zugeführt. Der Overhead-Strom (Overhead Stream) des C2-Absorbers ist frei von C2-Komponenten. Er enthält lediglich Wasserstoff und Methan und wird über zwei Expansionsschritte in den sog. Restgas-Expansionsvorrichtungen (z. B. X4001/X4002) den Gegenstrom-Wärmetauschern im Tieftemperaturteil einer Ethylenanlage und in der Vorkühleinrichtung zur Wärmerückgewinnung zugeführt.ethylene plants usually have a feed for oil or natural gas, a cracking furnace for splitting the long chains of these substances as well as different ones Facilities for fractionation and further transformation of the substance Products on. In the low-temperature part, the C2 (minus) fraction, which comes from the hydrogenation, usually gradually cooled down until the C2 components in the fission gas are largely hydrogen and are separated from methane. The remaining C2 components in the hydrogen / methane fraction are used, for example, in a so-called C2 absorber (eg from the Linde series T4002) recovered. In order to unload the methane separator (eg T4101), the while the cooling process accumulating condensates usually in a methane pre-separator (z. T4001). There are dissolved hydrogen and methane partly removed (stripped off). A conventional one Methane pre-separator has three areas in which the partial condensed C2 (minus) stream after each cooling step in its gas phase and its liquid Phase is disconnected. The condensates of the higher areas of the methane pre-separator become the next lower range, what as a gas barrier for serves lower gas coming from lower areas. The bottom of the methane pre-separator leads to a methane separator (eg T4101), in which the remaining dissolved hydrogen and remaining methane are stripped from the C2 fraction (stripped off). The bottom product of the methane separator then becomes common a C2 separator (C2 splitter) supplied. The overhead current (overhead Stream) of the C2 absorber is free of C2 components. It only contains Hydrogen and methane and is over two Expansion steps in the so-called residual gas expansion devices (z. B. X4001 / X4002) the countercurrent heat exchangers in the low-temperature part of an ethylene plant and in the pre-cooler for heat recovery fed.

Nach einer Wiederverdichtung im Restgas-Druckerhöher wird das Restgas dem Regenerierungs- und Brenngassystem zugeführt. Der Bodensatz des C2-Absorbers wird als Rückfluss zum Methan-Vorabscheider (z. B. T4001) recycled. Die 1 zeigt ein Beispiel für den hier beschriebenen Stand der Technik. Folgende weitere Komponenten sind dort gezeigt:After recompression in the residual gas pressure booster, the residual gas is fed to the regeneration and fuel gas system. The bottoms of the C2 absorber are recycled as reflux to the methane pre-separator (eg T4001). The 1 shows an example of the prior art described here. The following additional components are shown there:

1010
von der Hydrierung kommender Einsatzstrom,from the hydrogenation incoming feed stream,
1111
Strom zur Vorkühlung,electricity for pre-cooling,
1212
Strom zum C2-Splitter,electricity to the C2 splitter,
1313
Restgasstrom von der Vorkühlung kommend undResidual gas stream from the precooling coming and
1414
Restgasstrom zum Brenngassystem.Residual gas stream to the fuel gas system.

Aufgabe der vorliegenden Erfindung ist es, eine Verbesserung hinsichtlich Energiebedarf und Kostenaufwand bei der Abtrennung von Wasserstoff und Methan von C2-Komponenten im Tieftemperaturteil einer Ethylenanlage gegenüber dem Stand der Technik zu erreichen.task The present invention is an improvement in terms of Energy demand and cost in the separation of hydrogen and Methane of C2 components in the low-temperature part of an ethylene plant across from to achieve the state of the art.

Die gestellte Aufgabe wird vorrichtungsseitig durch ein Rückgewinnungssystem für die Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage gelöst, das folgende Komponenten aufweist:

  • – einen integrierten Multi-Kondesatabscheider,
  • – einen C2-Absorber,
  • – eine Wasserstoff/Methan Expansionsvorrichtung und
  • – eine C1/C2-Niederdruckkolonne (Demethanizer),
wobei der Multi-Kondensatabscheider mindestens zwei verschiedene Bereiche aufweist, die mit verschieden zusammengesetzten Spaltgasströmen beaufschlagt werden. Ein derartiger Multi-Kondensatabscheider kann als Kombination von einem Gasverflüssiger und einer Destillationsvorrichtung zur Abtrennung von Wasserstoff und Methan angesehen werden. Beispielsweise ist der Multi-Kondesatabscheider als Trommel ausgebildet, die drei Bereiche (A, B und C) aufweist, wobei jeder Bereich Gas und Flüssigkeit auf einem anderen Temperaturniveau trennt.The object is achieved on the device side by a recovery system for the recovery of hydrogen and methane from a cracked gas stream in the low-temperature part of an ethylene plant, comprising the following components:
  • - an integrated multi-condenser,
  • A C2 absorber,
  • A hydrogen / methane expansion device and
  • A C1 / C2 low pressure column (demethanizer),
wherein the multi-Kondensatabscheider has at least two different areas which are acted upon with different composite fission gas streams. Such a multi-condensate separator may be considered as a combination of a gas liquefier and a distillation apparatus for separating hydrogen and methane. For example, the multi-condenser is formed as a drum having three areas (A, B and C), each area separating gas and liquid at a different temperature level.

Verfahrensseitig wird die gestellte Aufgabe durch ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage gelöst, das folgende Schritte aufweist:

  • – eine C2-Fraktion wird von einer Ethanabscheidevorrichtung (Deethanizer) kommend über einen Wärmetauscher (E1) einem ersten Bereich (A) in einem Multi-Kondensatsbscheider (D1) zugeführt,
  • – Kondensat wird aus dem ersten Bereich (A) des Multi-Kondensatabscheiders (D1) abgezogen und einem Methanabscheider (T1) zugeführt,
  • – Gas wird aus dem Multi-Kondensatabscheiders (D1) einem weiteren Wärmetauscher (E2) zugeführt und dort weiter abgekühlt,
  • – das weiter abgekühlte Gas wird einer Gas/Flüssigkeitstrennung in einem zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) unterzogen,
  • – das dabei entstehende Kondensat wird erneut dem Methanabscheider (T1) zugeführt,
  • – Gas aus dem zweiten Bereich (B) des Multi-Kondesatabscheider (D1) wird einer Expansionsvorrichtung (X1) zugeführt, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird, und
  • – die C2-Fraktion vom Boden des Methanabscheiders (T1) wird auf den Druck eines C2-Splitters gedrosselt und wird teilweise im Wärmetauscher (E1) verdampft und zum C2-Splitter geführt.
In terms of process, this object is achieved by a process for the recovery of hydrogen and methane from a cracked gas stream in the low-temperature part of an ethylene plant, comprising the following steps:
  • A C2 fraction is fed from an ethane separation device (deethanizer) via a heat exchanger (E1) to a first region (A) in a multi-condensate separator (D1),
  • Condensate is withdrawn from the first region (A) of the multi-condensate separator (D1) and fed to a methane separator (T1),
  • - Gas is supplied from the multi-Kondensatabscheiders (D1) to another heat exchanger (E2) and further cooled there,
  • - The further cooled gas is a gas / liquid separation in a second region (B) of the Subjected to a multi-condensate separator (D1),
  • The resulting condensate is again fed to the methane separator (T1),
  • - Gas from the second region (B) of the multi-Kondesatabscheider (D1) is supplied to an expansion device (X1), in which the gas is expanded, and then to the Methaneabscheider (T1) is performed, and
  • - The C2 fraction from the bottom of the methane separator (T1) is throttled to the pressure of a C2 splitter and is partially vaporized in the heat exchanger (E1) and fed to the C2 splitter.

Der Methanabscheider (T1) wird vorteilhaft bei einem Druck im Bereich von 13 bar betrieben. Er erhält die Kondensatströme vom Multi-Kondensatabscheider (D1) und von der Expansionsvorrichtung (X1). Der Bodensatz wird erneut zum Sieden gebracht durch Kondensation von HP Ethylen (high pressure ethylene) aus der dritten Stufe des Ethylenverdichters, um frei von Methan zu sein. Im oberen Bereich der Kolonne werden zwei gasförmige Nebenströme abgezogen und weiter im Wärmetauscher (E3) gekühlt. Der Wärmetauscher (E3) dient als eine Art Seitenkondensator, der das gesamte in der Gasphase vorliegende C2-Material kondensiert. Dieser Wärmetauscher oder Seitenkondensator ist am oberen Ende der Kolonne angebracht, was das Rückfließen des Kondensats zur Kolonne durch die Gravitation erlaubt. Im Inneren der Kolonne sind zwei Flüssigkeitssperren (Siphons) angebracht, die erlauben, dass Flüssigkeit hinunter fließt und verhindern, dass Gas hinauf strömt. Der Overhead-Strom der Kolonne, der die Restgas-Fraktion darstellt, wird zur Expansionsvorrichtung geführt, in der er auf ca. 5 bar entspannt wird, und eine Kühlaufgabe im Wärmetauscher (E3) übernehmen kann.Of the Methane (T1) is advantageous at a pressure in the range operated by 13 bar. He receives the condensate streams from the multi-condensate separator (D1) and from the expansion device (X1). The sediment is boiled again by condensation from HP ethylene (high pressure ethylene) from the third stage of the Ethylene compressor to be free of methane. In the upper area the column become two gaseous secondary streams withdrawn and continue in the heat exchanger (E3) cooled. The heat exchanger (E3) serves as a kind of side condenser, which covers the whole in the Gas phase present C2 material condenses. This heat exchanger or side condenser is attached to the top of the column, what the backflow of the Condensate to the column allowed by gravity. Internally the column are two liquid barriers Attached (siphons) that allow liquid to flow down and prevent that gas flows up. The overhead current the column, which represents the residual gas fraction, becomes the expansion device guided, in which it is relaxed to about 5 bar, and a cooling task in the heat exchanger (E3) take over can.

Die Arbeitsenergie der Expansionsvorrichtungen X1 und X2 wir zurückgewonnen um den Restgas-Strom wieder zu verdichten.The Working energy of the expansion devices X1 and X2 we recovered to recompress the residual gas flow.

Die Wärmetauscher können alle in einer Gold Box angebracht sein, was den Vorteil hat, dass diese Cold Box vorgefertigt werden kann und somit der Aufwand für den Aufbau der Anlage vor Ort reduziert wird.The heat exchangers can all be mounted in a gold box, which has the advantage that these Cold box can be prefabricated and thus the effort for the construction the site is reduced.

Mit besonderem Vorteil wird für die Erfindung ein Multi-Kondensatabscheider (D1) eingesetzt, der mehr als zwei Bereiche (A, B) aufweist. Der nach der Abtrennung im zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) dort verbliebene Gasstrom wird weiter abgekühlt und einem dritten Bereich (C) des Multi-Kondensatabscheiders (D1) zugeführt und Gas aus dem dritten Bereich (C) des Multi-Kondesatabscheider (D1) wird einer Expansionsvorrichtung (X1) zugeführt, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird.With particular advantage is for the invention uses a multi-condensate (D1), the more as two regions (A, B). The after separation in the second Area (B) of the multi-condensate separator (D1) remaining there Gas flow is further cooled and a third region (C) of the multi-condensate separator (D1) supplied and gas from the third region (C) of the multi-condenser (D1) is supplied to an expansion device (X1) in which the gas expands and then to the methane separator (T1).

Eine vorteilhafte Weiterbildung der Erfindung sieht den Einsatz eines Multi-Kondensatabscheiders (D1) vor, der vier oder mehr Bereiche (A, B, C, ...) aufweist. Die Erfindung eignet sich besonders für die Trennung und Rückgewinnung der C2-Komponenten aus einem C2minus-Strom einer Ethylenanlage mit Ethan oder Ethan/Propan als Einsätze für die Spaltung.A advantageous development of the invention provides the use of a Multi-condensate separator (D1) which has four or more areas (A, B, C, ...). The invention is particularly suitable for the separation and recovery of the C2 components a C2-minus stream of an ethylene plant with ethane or ethane / propane as inserts for the Cleavage.

Die Erfindung sowie weitere Ausgestaltungen der Erfindung werden im Folgenden anhand des in der 2 dargestellten Ausführungsbeispiels näher erläutert.The invention and further embodiments of the invention are described below with reference to in the 2 illustrated embodiment illustrated.

Die 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung mit den bereits beschriebenen Komponenten. Die Auflistung der verwendeten Bezugszeichen soll die Orientierung erleichternThe 2 shows a schematic representation of a device according to the invention with the components already described. The list of the reference numbers used is intended to facilitate orientation

2020
C2-Strom vom Ethanabscheider (Deethanizer) kommend,C2 stream coming from the ethane separator (deethanizer),
2121
C2-Strom zum C2-Splitter,C2 stream to the C2 splitter,
22a, b, c22a, b, c
Restgas-Strom,Residual gas stream,
2323
Ethan-Strom,Ethane stream,
E1, E2 und E3E1, E2 and E3
: Wärmetauscher,: Heat exchanger,
2424
Cold-Box, die E1, E2 und E3 enthält,Cold box, which contains E1, E2 and E3,
2525
Kühlmittel, Coolant,
D1D1
Multi-Kondensatabscheider,Multi-condensate,
X1, X2X1, X2
Expansionsvorrichtung undexpansion device and
T1T1
Methanabscheider.Demethanizer.

Die Erfindung bietet eine ganze Reihe von Vorteilen:
Es wird ein gegenüber dem Stand der Technik deutlich reduzierter Energieverbrauch bei geringeren Investitionskosten erreicht. Es werden weniger Bauteile benötigt (z. B. Wegfall der kalten Pumpen), wodurch die Investitionskosten, der Wartungsaufwand und der Verbrauch an Betriebsmittel gesenkt werden konnten. Die mehrfache Durchführung verschieden zusammengesetzter Gasströme durch den Multi-Kondensatabscheider ermöglicht diese Vorteile.
The invention offers a whole series of advantages:
It is achieved over the prior art significantly reduced energy consumption at lower investment costs. Fewer components are needed (eg elimination of cold pumps), which has reduced investment, maintenance and equipment consumption. The multiple implementation of different composite gas flows through the multi-condensate allows these advantages.

Zusätzlich macht die Integration der Restgas-Expansionsvorrichtung einen separaten Methan-Verdichter überflüssig, wodurch weitere Einsparungen erzielt werden.Additional power the integration of the residual gas expansion device a separate Methane compressor superfluous, causing Further savings can be achieved.

Mit der Erfindung wird eine hohe Ethylen-Rückgewinnung erreicht. Die Verbindung des Methanabscheiders mit den Wärmetauschern E2 und E3 und den Expansionsvorrichtungen X1 und X2 weist den Vorteil der sog. Recontactor-Technologie auf, was zu einer extrem hohen Rückgewinnungsrate führt. Die Ethylenverluste in den Restgasstrom bewegen sich beispielsweise im Bereich von 300ppm oder 27 kg/h, was in etwa 0,035% der Ethylenproduktion entspricht.With the invention, a high ethylene recovery is achieved. The connection of the methane separator with the heat exchangers E2 and E3 and the expansion devices X1 and X2 has the advantage of the so-called Recontactor technology, which leads to an extremely high recovery rate. For example, ethylene losses into the residual gas stream are in the range of 300 ppm or 27 kg / h, which corresponds to about 0.035% of ethylene production.

Ein weiterer Vorteil der vorliegenden Erfindung liegt im Erzielen einer hohen Reinheit. In Kombination mit einer vorgeschalteten C(3plus)-Rückgewinnung und einer Acetylen-Umwandlung ist der Einsatzstrom (feed stream), der in den kryogenen Bereich eintritt, frei von jeglichem Material, das ein Verschmutzen oder Verstopfen der Anlagenteile verursachen könnte, weshalb die Verwendung von Platten-Lamellen-Wärmetauschern (plate-fin heat exchangers) und vollständig geschweißte Kolonnen und Rohranordnungen kompromißlos akzeptiert werden können. Es ist sogar ein vorgefertigtes Design für die Cold Box möglich, um den Aufwand an der Baustelle bei der Errichtung der Anlage zu minimieren.One Another advantage of the present invention is to achieve a high purity. In combination with an upstream C (3plus) recovery and an acetylene conversion is the feed stream that enters the cryogenic area enters, free of any material that is contaminating or Clogging of the system parts could cause, which is why the use of plate-fin heat exchangers (plate-fin heat exchangers) and fully welded columns and Pipe arrangements uncompromising can be accepted. There is even a pre-made design for the cold box possible To minimize the effort on the construction site during the construction of the facility.

Vorteilhaft ist auch das besonders einfache Steuer- und Regelsystem der Erfindung. Es genügen im Wesentlichen zwei Druck-Regel-Ventile, die Gas an die Turbo- Expansionsvorrichtungen abgeben. Kondensate aus dem Multi-Kondensatabscheider D1 werden der Kolonne über eine Niveau-Steuer- oder Regeleinrichtung zugeführt. Die Dienste des Rückerwärmers (reboiler) werden über die Temperatur der Kolonne gesteuert.Advantageous is also the most simple control system of the invention. It is enough in Essentially two pressure-regulating valves that deliver gas to the turbo-expanders submit. Condensates from the multi-condensate D1 be the column over supplied to a level control or regulating device. The services of the reheater (reboiler) be over controlled the temperature of the column.

Ein weiterer Vorteil besteht darin, dass der Tieftemperaturteil eine im Vergleich zu anderen Systemen hohe Verfügbarkeit aufweist. Es gibt dort keine Pumpen und die Wartungsanforderungen sind sehr gering. Besonders bei sehr tiefen Temperaturen würde die Verwendung von Pumpen hohe Kosten verursachen und diese Pumpen wären sehr störungsanfällig.One Another advantage is that the low-temperature part a has high availability compared to other systems. There is There are no pumps and the maintenance requirements are very low. Especially at very low temperatures, the use of pumps would cause high costs and these pumps would be very prone to failure.

Im Falle eines Ausfalls einer Expansionsvorrichtung kann die Anlage vorteilhafterweise ohne größere Störungen weiter betrieben werden. In diesem Fall wird der Gasstrom über ein Bypass-Ventil entspannt, was zu einem Anstieg der Ethylenverluste in den Restgasstrom von einigen hundert kg/h beim Ausfall einer Expansionsvorrichtung führt. Falls beide Expansionsvorrichtungen ausfallen sollten, steigt der Ethylenverlust lediglich auf wenige t/h an.in the In case of failure of an expansion device, the plant advantageously without major disturbances on operate. In this case, the gas flow over a Bypass valve relaxes, causing an increase in ethylene losses in the residual gas flow of a few hundred kg / h in the event of failure Expansion device leads. If both expansion devices fail, the loss of ethylene increases only to a few t / h.

Es sei hier nochmal betont, dass das einfache und kompakte Design der erfindungsgemäßen Vorrichtung von besonderem Vorteil ist, nicht zuletzt deshalb, weil damit eine deutliche Reduzierung der nötigen Investitionskosten einhergeht. Die reduzierte Zahl an Anlagenteilen ist platzsparend, minimiert Wärmeverluste aus dem kalten Prozeß und ermöglicht ein vorgefertigtes Cold Box Design.It Let's emphasize again that the simple and compact design of the Device according to the invention is of particular advantage, not least because it is a significant reduction of the necessary Investment costs associated. The reduced number of system parts saves space, minimizes heat loss from the cold process and allows a prefabricated cold box design.

Claims (4)

Rückgewinnungssystem für die Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage, das folgende Komponenten aufweist: – einen integrierten Multi-Kondensatabscheider, – einen C2-Absorber, – eine Wasserstoff/Methan Expansionsvorrichtung und – eine C1/C2-Niederdruckkolonne (Demethanizer), wobei der Multi-Kondensatabscheider mindestens zwei verschiedene Bereiche aufweist, die mit verschieden zusammengesetzten Spaltgasströmen beaufschlagt werden.Recovery system for the reclamation of hydrogen and methane from a cracked gas stream in the low temperature part an ethylene plant comprising the following components: - one integrated multi-condensate separator, A C2 absorber, - a hydrogen / methane Expansion device and - one C1 / C2 low-pressure column (demethanizer), the multi-condensate separator has at least two different areas with different composite fission gas streams be charged. Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage, das folgende Schritte aufweist: – eine C2-Fraktion wird von einer Ethanabscheidevorrichtung (Deethanizer) kommend über einen Wärmetauscher (E1) einem ersten Bereich (A) in einem Multi-Kondensatabscheider (D1) zugeführt, – Kondensat wird aus dem ersten Bereich (A) des Multi-Kondensatabscheiders (D1) abgezogen und einem Methanabscheider (T1) zugeführt, – Gas wird aus dem Multi-Kondensatabscheiders (D1) einem weiteren Wärmetauscher (E2) zugeführt und dort weiter abgekühlt, – das weiter abgekühlte Gas wird einer Gas/Flüssigkeitstrennung in einem zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) unterzogen, – das dabei entstehende Kondensat wird erneut dem Methanabscheider (T1) zugeführt, – Gas aus dem zweiten Bereich (B) des Multi-Kondesatabscheider (D1) wird einer Expansionsvorrichtung (X1) zugeführt, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird, und – die C2-Fraktion vom Boden des Methanabscheiders (T1) wird auf den Druck eines C2-Splitters gedrosselt und wird teilweise im Wärmetauscher (E1) verdampft und zum C2-Splitter geführt.Recovery process of hydrogen and methane from a cracked gas stream in the low temperature part an ethylene plant comprising the following steps: - a C2 fraction is from a Ethanabscheidevorrichtung (deethanizer) coming over a heat exchangers (E1) is supplied to a first region (A) in a multi-condensate separator (D1), - condensate is taken from the first area (A) of the multi-condensate separator (D1) drawn off and fed to a methane separator (T1), - Gas is released from the multi-condensate separator (D1) another heat exchanger Fed (E2) and further cooled down there, - the next cooled Gas becomes a gas / liquid separation in a second area (B) of the multi-condensate separator (D1) subjected - the Resulting condensate is again the methane (T1) supplied - Gas off the second region (B) of the multi-Kondesatabscheider (D1) is a Supplied expansion device (X1), in which the gas is expanded, and then to the methane separator (T1) guided will, and - the C2 fraction from the bottom of the methane separator (T1) is pressurized throttled a C2 splitter and is partially in the heat exchanger (E1) evaporated and led to the C2 splitter. Verfahren nach Anspruch 2, wobei der nach der Abtrennung im zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) dort verbliebene Gasstrom weiter abgekühlt und einem dritten Bereich (G) des Multi-Kondensatabscheiders (D1) zugeführt wird und das Gas aus dem dritten Bereich (C) des Multi-Kondesatabscheider (D1) einer Expansionsvorrichtung (X1) zugeführt wird, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird.The method of claim 2, wherein after separation in the second area (B) of the multi-condensate (D1) there remaining gas stream cooled further and a third area (G) of the multi-condensate (D1) is supplied and the gas from the third area (C) of the multi-Kondesatabscheider (D1) of an expansion device (X1) supplied becomes, in which the gas is expanded, and then to the Methaneabscheider (T1) is performed. Verfahren nach Anspruch 2 oder 3, wobei ein Multi-Kondensatabscheider (D1) eingesetzt wird, der vier oder mehr Bereiche (A, B, C, ...) aufweist.A method according to claim 2 or 3, wherein a multi-condensate separator (D1) is used, the four or more areas (A, B, C, ...) having.
DE102005050388A 2005-10-20 2005-10-20 Recovery system for the further processing of a cracked gas stream of an ethylene plant Withdrawn DE102005050388A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102005050388A DE102005050388A1 (en) 2005-10-20 2005-10-20 Recovery system for the further processing of a cracked gas stream of an ethylene plant
PCT/EP2006/009687 WO2007045364A2 (en) 2005-10-20 2006-10-06 Recovery system for the further processing of a cracking gas stream in an ethylene plant
MYPI20081181A MY146026A (en) 2005-10-20 2006-10-06 Recovery system for the further processing of a cracking gas stream of an ethylene plant
RU2008119407/04A RU2412147C2 (en) 2005-10-20 2006-10-06 Method of recuperating hydrogen and methane from cracking gas stream in low temperature part of ethylene synthesis apparatus
NO20082280A NO20082280L (en) 2005-10-20 2008-05-19 Recovery system for further treatment of a cracking gas stream in an ethylene plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005050388A DE102005050388A1 (en) 2005-10-20 2005-10-20 Recovery system for the further processing of a cracked gas stream of an ethylene plant

Publications (1)

Publication Number Publication Date
DE102005050388A1 true DE102005050388A1 (en) 2007-04-26

Family

ID=37891569

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005050388A Withdrawn DE102005050388A1 (en) 2005-10-20 2005-10-20 Recovery system for the further processing of a cracked gas stream of an ethylene plant

Country Status (5)

Country Link
DE (1) DE102005050388A1 (en)
MY (1) MY146026A (en)
NO (1) NO20082280L (en)
RU (1) RU2412147C2 (en)
WO (1) WO2007045364A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104153A1 (en) * 2014-01-07 2015-07-16 Linde Aktiengesellschaft Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant
EP3550240A1 (en) * 2018-04-06 2019-10-09 Linde Aktiengesellschaft Method for separating a mixture of components, and a separating device
RU2703135C1 (en) * 2019-03-07 2019-10-15 Игорь Анатольевич Мнушкин Gas chemical complex

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9969660B2 (en) * 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
DE102012018602A1 (en) * 2012-09-20 2014-03-20 Linde Aktiengesellschaft Plant and process for the production of ethylene
CA2893948C (en) 2012-12-07 2022-12-06 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to ethylene and conversion of ethylene to higher hydrocarbon products
EP3074119B1 (en) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
EP3092286A4 (en) 2014-01-08 2017-08-09 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3097068A4 (en) 2014-01-09 2017-08-16 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3786138A1 (en) 2015-10-16 2021-03-03 Lummus Technology LLC Oxidative coupling of methane
CA3019396A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
EP3282212A1 (en) * 2016-08-12 2018-02-14 Linde Aktiengesellschaft Method for obtaining a separation product containing mostly hydrocarbons with 2 carbon atoms
EP3554672A4 (en) 2016-12-19 2020-08-12 Siluria Technologies, Inc. Methods and systems for performing chemical separations
KR20200034961A (en) 2017-05-23 2020-04-01 루머스 테크놀로지 엘엘씨 Integration of methane oxidative coupling process
RU2020102298A (en) 2017-07-07 2021-08-10 Люммус Текнолоджи Ллс SYSTEMS AND METHODS FOR OXIDATIVE COMBINATIONS OF METHANE
RU2703132C1 (en) * 2018-09-03 2019-10-15 Андрей Владиславович Курочкин Plant for low-temperature separation with dephlegmation ltsd to obtain hydrocarbons c2+ from natural gas (versions)
CN109000429B (en) * 2018-10-15 2020-12-25 聊城市鲁西化工工程设计有限责任公司 Carbon dioxide liquefaction device and process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257794A (en) * 1979-07-20 1981-03-24 Shirokov Vasily I Method of and apparatus for separating a gaseous hydrocarbon mixture
US4720293A (en) * 1987-04-28 1988-01-19 Air Products And Chemicals, Inc. Process for the recovery and purification of ethylene
US5452581A (en) * 1994-04-01 1995-09-26 Dinh; Cong X. Olefin recovery method
DE4417584A1 (en) * 1994-05-19 1995-11-23 Linde Ag Process for the separation of C¶2¶ / C¶3¶ hydrocarbons in ethylene plants
TR199801906T2 (en) * 1996-03-26 1999-01-18 Phillips Petroleum Company Removal of aromatic substances and/or heavy substances by condensation and stripping from a methane-based feed.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104153A1 (en) * 2014-01-07 2015-07-16 Linde Aktiengesellschaft Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant
US10677525B2 (en) 2014-01-07 2020-06-09 Linde Aktiengesellschaft Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant
EP3550240A1 (en) * 2018-04-06 2019-10-09 Linde Aktiengesellschaft Method for separating a mixture of components, and a separating device
WO2019193187A1 (en) 2018-04-06 2019-10-10 Linde Aktiengesellschaft Method for separating a component mixture and separating device
CN111936813A (en) * 2018-04-06 2020-11-13 林德有限责任公司 Method for separating a mixture of components and separation device
US11781079B2 (en) 2018-04-06 2023-10-10 Linde Gmbh Process for separating a component mixture and separation apparatus
RU2703135C1 (en) * 2019-03-07 2019-10-15 Игорь Анатольевич Мнушкин Gas chemical complex

Also Published As

Publication number Publication date
RU2008119407A (en) 2009-11-27
WO2007045364A3 (en) 2007-06-07
NO20082280L (en) 2008-05-19
RU2412147C2 (en) 2011-02-20
MY146026A (en) 2012-06-15
WO2007045364A2 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2007045364A2 (en) Recovery system for the further processing of a cracking gas stream in an ethylene plant
DE69612532T2 (en) Method and device for producing oxygen of moderate purity
EP2386814B1 (en) Separation of nitrogen from natural gas
WO2009083227A2 (en) Method and device for separating off low-boiling components from hydrocarbon mixtures
WO2016128110A1 (en) Combined removal of heavies and lights from natural gas
EP0318504B1 (en) Process for separating higher hydrocarbons from a gas mixture
DE102013013883A1 (en) Combined separation of heavy and light ends from natural gas
DE69312231T2 (en) Cryogenic manufacturing process for helium
DE69909143T2 (en) Separation of carbon monoxide from nitrogen-contaminated gas mixtures containing hydrogen and methane
EP3313779B1 (en) Method and installation for the production of hydrogen from a feed containing hydrogen and hydrocarbons
DE102009008230A1 (en) Process for liquefying a hydrocarbon-rich stream
DE102012017485A1 (en) Process for separating C2 + hydrocarbons or C3 + hydrocarbons from a hydrocarbon-rich fraction
DE3244143A1 (en) METHOD FOR GAS DISASSEMBLY
DE102007047147A1 (en) Extraction of helium-enriched fraction from a liquified natural gas product, comprises e.g. separating a fraction containing methane, nitrogen and helium to a helium-rich gas fraction and a methane and nitrogen containing liquid fraction
DE102006021620A1 (en) Method for liquefying hydrocarbon-rich flow, particularly natural gas flow, involves subjecting hydrocarbon-rich flow to absorptive water separation, before its liquefaction, where cooling of liquefied hydrocarbon-rich flow is up streamed
WO2010094396A2 (en) Method for removing nitrogen
EP2347206B1 (en) Method for removing nitrogen
EP1032798B1 (en) Method and installation for separating off c2 - or c2+ - hydrocarbons
DE19821242A1 (en) Liquefaction of pressurized hydrocarbon-enriched stream
DE102011115987B4 (en) Liquefied Natural gas
DE102010035230A1 (en) Process for separating nitrogen from natural gas
DE10140585A1 (en) Separation of lower hydrocarbons comprises operating de-ethanizer at no less than de-methanizer pressure and combines head fractions for at least an interval
EP3394535A1 (en) Method and device for the cryogenic decomposition of syngas
DE102009036366A1 (en) Process for separating nitrogen
WO2016155863A1 (en) Method for removing nitrogen from a hydrocarbon-rich fraction

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: LINDE AG, 80807 MUENCHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110502