[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE102005048359A1 - Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors - Google Patents

Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors Download PDF

Info

Publication number
DE102005048359A1
DE102005048359A1 DE200510048359 DE102005048359A DE102005048359A1 DE 102005048359 A1 DE102005048359 A1 DE 102005048359A1 DE 200510048359 DE200510048359 DE 200510048359 DE 102005048359 A DE102005048359 A DE 102005048359A DE 102005048359 A1 DE102005048359 A1 DE 102005048359A1
Authority
DE
Germany
Prior art keywords
optical
behavior
silicon
nano structures
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200510048359
Other languages
German (de)
Inventor
Konrad Dr. Bach
Daniel Gäbler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X Fab Semiconductor Foundries GmbH
Original Assignee
X Fab Semiconductor Foundries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X Fab Semiconductor Foundries GmbH filed Critical X Fab Semiconductor Foundries GmbH
Priority to DE200510048359 priority Critical patent/DE102005048359A1/en
Priority to EP06794005A priority patent/EP1935035A2/en
Priority to PCT/EP2006/067249 priority patent/WO2007042521A2/en
Priority to US12/089,727 priority patent/US8350209B2/en
Publication of DE102005048359A1 publication Critical patent/DE102005048359A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Nano structures (2; 4, 4a) improve the optical behavior of components and apparatus and/or improve the behavior of sensors. Produced via a special reactive icon etching process, a nano structure (2) can be modified regarding composition of its materials and can be provided with adequate coatings. The amount of material used for a base layer (3) can be reduced by supplying a buffer layer. Independent claims are also included for: (a) a sensor component formed by a nano structure with statistically distributed structure elements; (b) an optical coating structure for use in optical components or optical devices; (c) an optical device with a lining as a wide-band optical absorber; (d) a digital projector with mirror technology/digital light processing; (e) a device with the means of converting optical rays into heat independent of wave-length; (f) an optical element for emitting optical rays with a beam hole; (g) a reflecting reference device for determining low reflecting values; (h) a photo-electronic component with a low-reflecting layer in an optically active window area, made from silicon needles regularly distributed statistically and low in defective crystals; (i) an optical window with silicon and wide-band transparency in an infrared range; (j) a method for adapting a refraction index for an optically active window in a photoelectric component; (k) a method for protecting a layer that has needle-shaped structure elements with a large aspect ratio and is a component of a chemical sensor; (l) a method for rendering a surface with silicon passive for a semiconductor component; (m) a method for creating self-organized nano structures in the area of a window opening in an integrated switching circuit with an opto-electronic component or on a discrete opto-electronic component.

Description

Silizium kann als IR-Fenster verwendet werden. Bei einer Wellenlänge von größer 1000 nm beginnt Silizium transparent zu werden und absorbiert immer weniger Licht.silicon can be used as an IR window. At a wavelength of greater than 1000 nm, silicon begins to become transparent and absorbs less and less Light.

Da die Grenzfläche Luft/Silizium eine Reflexion von mehr als 30% aufweist und ein Fenster immer zwei Grenzflächen hat, lässt ein unbehandeltes Stück Silizium trotz seiner Transparenz im Infraroten nur etwa 50% der eingestrahlten Lichtmenge hindurch, die andere Hälfte geht durch Reflexion verloren.There the interface Air / silicon has a reflection of more than 30% and a window always two interfaces has, lets an untreated piece Silicon, despite its transparency in the infrared only about 50% of amount of light transmitted through, the other half is lost by reflection.

Es gibt zwar Möglichkeiten, durch reflexionsmindernde Schichten die Transparenz zu verbessern, z.B. durch λ/4-Schichten, es bleiben aber folgende Einschränkungen bzw. Nachteile bestehen:

  • 1. Die Schichtdicken müssen eng toleriert sein.
  • 2. Die Entspiegelung gelingt nur für eine bestimmte Wellenlänge befriedigend, man findet auch andere Wellenlängen, die andere Interferenzordnungen darstellen, für die gut entspiegelt wird, diese sind aber nicht frei wählbar
  • 3. Um die Reflexion in einem breiten Wellenlängenbereich auf nahe Null zu vermindern, versagt eine Entspiegelung durch einfache λ/4-Schichten. Es wären Materialien mit fein abgestuften Brechzahlen zwischen 1 und 3.4 notwendig. Solche sind aber in der konventionellen Halbleitertechnologie nicht verfügbar.
  • 4. Die aufgebrachten Schichten müssen im verwendeten Wellenlängenbereich eine sehr geringe Absorption aufweisen.
Although there are possibilities to improve transparency through reflection-reducing layers, for example by means of λ / 4 layers, the following restrictions or disadvantages remain:
  • 1. The layer thicknesses must be tightly tolerated.
  • 2. The anti-reflection succeeds satisfactorily only for a certain wavelength, one also finds other wavelengths that represent other interference orders for which there is good anti-reflection, but these are not freely selectable
  • 3. In order to reduce the reflection in a broad wavelength range to near zero, an antireflection by simple λ / 4 layers fails. It would be necessary materials with finely graded refractive indices between 1 and 3.4. However, such are not available in conventional semiconductor technology.
  • 4. The applied layers must have a very low absorption in the wavelength range used.

Der Erfindung liegt die Aufgabe zugrunde, ein IR-Fenster aus Silizium mit breitbandiger Transparenz zu schaffen.Of the Invention is based on the object, an IR window made of silicon to create broadband transparency.

Gelöst wird diese Aufgabe mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen.Is solved This object with the features stated in the characterizing part of claim 1.

Der Gegenstand des Anspruchs 1 weist die Vorteile auf, dass die durch das RIE-Verfahren erzeugten selbstorganisierten Nanostrukturen ein effektives Medium bilden, das für den stetigen Übergang der beiden Materialeigenschaften sorgt. Dadurch kann im infraroten Bereich mit der Modifikation der Siliziumoberflächen eine Transmission von über 90 erreicht werden. Die modifizierte Oberfläche erfüllt ihre Aufgabe, indem sie die Grenzflächeneigenschaften zwischen dem Silizium und Luft bzw. Vakuum so verändert, dass zwischen ihnen kein Impedanzsprung auftritt, sondern die unterschiedlichen Impedanzen stetig ineinander übergehen. Dabei ist das Material für den gewünschten Wellenlängenbereich nicht absorbierend. Die Grenzflächenmodifikation des Siliziums dient der Reflexionsunterdrückung und somit der verbesserten Transmission. Entscheidend dabei ist die Form der nadelförmigen Strukturen der Oberfläche. Die Strukturen bilden ein effektives Medium, dass für den stetigen Übergang der beiden Materialeigenschaften sorgt. Eine einseitige Oberflächenmodifizierung erreicht bereits eine Transmission von etwa 70%.Of the The subject of claim 1 has the advantages that by the RIE process generated self-assembled nanostructures form effective medium for that the steady transition the two material properties provides. This can be done in the infrared Range with the modification of the silicon surfaces reaches a transmission of over 90 become. The modified surface meets her Task by taking the interface properties between the silicon and air or vacuum changed so that between them no impedance jump occurs, but the different ones Impedances constantly merge into each other. Here is the material for the wished Wavelength range is not absorbent. The interface modification of Silicon is used for reflection suppression and thus the improved Transmission. Decisive here is the shape of the needle-shaped structures the surface. The structures form an effective medium for the steady transition the two material properties provides. A one-sided surface modification already achieves a transmission of about 70%.

In der 1 ist die Transparenz einer Probe mit einseitig modifizierter Oberfläche dargestellt.In the 1 the transparency of a sample with one-sided modified surface is shown.

Das Diagramm enthält eine theoretische (1) und eine gemessene (2) Kurve.The diagram contains a theoretical ( 1 ) and a measured ( 2 ) Curve.

Die Theorie vernachlässigt die Absorption des Siliziums für kurze Wellenlängen.The Theory neglected the absorption of silicon for short wavelengths.

Für infrarotes Licht ab 1200 nm werden die theoretischen werte von 70% gut getroffen.For infrared Light from 1200 nm, the theoretical values of 70% are well hit.

Ein Problem bei einer zweiseitigen Oberflächenmodifizierung stellt die geringe mechanische Belastbarkeit der erzeugten Strukturen dar, so dass die Handhabung des Fensters erschwert wird.One Problem with a two-sided surface modification is the low mechanical strength of the structures produced, so that the handling of the window is difficult.

Die Oberflächenmodifizierung kann mit konventionellen Fotolackmaskierungstechniken auf bestimmte Bereiche begrenzt werden, so dass sich mechanisch beanspruchte von optisch transparenten Bereichen einfach separieren lassen. Damit ist der Nachteil der schwierigen Handhabung beseitigt, ein stabiler, gegebenenfalls auch luft-, flüssigkeits- oder vakuumdichter Einbau eines derartigen Fensters ist ohne weiteres möglich.The surface modification can target certain types of photoresist masking techniques Be limited areas, so that mechanically stressed by optically transparent areas can be separated easily. In order to the disadvantage of difficult handling is eliminated, a stable, if necessary, also air, liquid or vacuum-tight installation of such a window is readily available possible.

Claims (4)

Optisches Fenster aus Silizium mit verbesserter breitbandiger Transparenz im IR-Bereich, dadurch gekennzeichnet, dass beide Oberflächen mit dem RIE-Verfahren nadelartige Strukturen in Nanodimensionen mit einem großen Aspektverhältnis größer 4:1, die unter Verwendung der Arbeitsgase Sauerstoff und SF6 ohne Anwendung zusätzlicher Mittel zur gezielten Maskenformation während des Ätzprozesses in einem einzigen Prozessschritt selbstorganisierend erzeugt wurden, wie bereits vorgeschlagen wurde, besitzen.Optical window made of silicon with improved broadband transparency in the IR range, characterized in that both surfaces with the RIE method needle-like structures in nanodimensions with a high aspect ratio greater than 4: 1, using the working gases oxygen and SF 6 without the use of additional funds have been self-organizing generated for targeted mask formation during the etching process in a single process step, as has already been proposed possess. Optisches Fenster aus Silizium nach Anspruch 1, dadurch gekennzeichnet, das die Nanostrukturen mit einer SOG-Schicht (Spin On-Glas) gegen mechanische Zerstörung geschützt sind.Silicon optical window according to claim 1, characterized characterized in that the nanostructures are provided with an SOG (spin on glass) layer against mechanical destruction protected are. Optisches Fenster nach Anspruch 2, dadurch gekennzeichnet, dass das der Schutz aus Hydrogen-Silses-Quioxane (HSQ) besteht.Optical window according to claim 2, characterized that the protection consists of hydrogen silsesquioxane (HSQ). Optisches Fenster nach Anspruch 1, dadurch gekennzeichnet dass die reflexionsminderte Nanostrukturierung mittels konventioneller Maskierungstechnik auf bestimmte Bereiche des Fensters begrenzt wird und damit unbehandelte, mechanisch stabile und einfach gegen Luft, Flüssigkeiten und Vakuum abdichtbare Bereiche verbleiben.Optical window according to claim 1, characterized in that the reflection-reduced nanos Restructuring by conventional masking technology is limited to certain areas of the window and thus untreated, mechanically stable and easily sealed against air, liquids and vacuum areas remain.
DE200510048359 2005-10-10 2005-10-10 Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors Ceased DE102005048359A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE200510048359 DE102005048359A1 (en) 2005-10-10 2005-10-10 Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors
EP06794005A EP1935035A2 (en) 2005-10-10 2006-10-10 Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
PCT/EP2006/067249 WO2007042521A2 (en) 2005-10-10 2006-10-10 Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
US12/089,727 US8350209B2 (en) 2005-10-10 2006-10-10 Production of self-organized pin-type nanostructures, and the rather extensive applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510048359 DE102005048359A1 (en) 2005-10-10 2005-10-10 Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors

Publications (1)

Publication Number Publication Date
DE102005048359A1 true DE102005048359A1 (en) 2007-04-19

Family

ID=37896269

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510048359 Ceased DE102005048359A1 (en) 2005-10-10 2005-10-10 Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors

Country Status (1)

Country Link
DE (1) DE102005048359A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038065A (en) * 1997-06-06 2000-03-14 Raytheon Company Infrared-transparent window structure
US20020000244A1 (en) * 2000-04-11 2002-01-03 Zaidi Saleem H. Enhanced light absorption of solar cells and photodetectors by diffraction
EP1536461A1 (en) * 2002-09-06 2005-06-01 Asahi Glass Company Ltd. Polishing agent composition for insulating film for semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038065A (en) * 1997-06-06 2000-03-14 Raytheon Company Infrared-transparent window structure
US20020000244A1 (en) * 2000-04-11 2002-01-03 Zaidi Saleem H. Enhanced light absorption of solar cells and photodetectors by diffraction
EP1536461A1 (en) * 2002-09-06 2005-06-01 Asahi Glass Company Ltd. Polishing agent composition for insulating film for semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
EP3011370B1 (en) Method for producing an antireflective layer
DE69735727T2 (en) PROCESS FOR REDUCING THE REFLECTION OF OPTICAL SUBSTRATES
DE60129499T2 (en) Microlens and solid-state imaging device
DE102013208310B4 (en) Optical element with substrate body and hardcoat layer and manufacturing method thereof
DE102006046131B4 (en) Process for manufacturing an optical interface for integrated optical applications
DE102013204502A1 (en) WINDOWS FOR HIGH INFRARED TRANSMISSION WITH SELF-CLEANING HYDROPHILIC SURFACE
EP1935035A2 (en) Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
DE10064143A1 (en) Anti-reflection coating for ultraviolet light at large angles of incidence
EP1223437A3 (en) Anti-reflection coating for ultraviolet light
DE10120703A1 (en) Semiconductor chip for optoelectronics
DE202011003479U1 (en) Structured silicon layer for an optoelectronic component and optoelectronic component
DE102018110193A1 (en) Coated optical element, device with a coated optical element and method of making the same
US20190204478A1 (en) Apparatus and methods of electrically conductive optical semiconductor coating
WO2009074146A2 (en) Method for producing a reflection-reducing layer and optical element having a reflection-reducing layer
DE102005048359A1 (en) Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors
WO2015110546A1 (en) Method for producing a reflection-reducing layer system, and a reflection-reducing layer system
KR102559836B1 (en) Polarizer, optical apparatus comprising the polarizer, display apparus comprising the polarizer and method for preparing the polarizer
DE102021112288B4 (en) Layer system with anti-fog and anti-reflective properties and method for producing a layer system
DE20311942U1 (en) Porous materials for blocking IR radiation
DE102010029570A1 (en) Substrate for optical elements
EP4025718A1 (en) Motor vehicle headlamp
DE102005001671B4 (en) Photolithography arrangement
DE4441973C2 (en) Optical waveguide structure on a substrate
DE19709750C1 (en) Multi-layer light absorber e.g. for image screen
DE10143134A1 (en) light integrator

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final