DE102005048359A1 - Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors - Google Patents
Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors Download PDFInfo
- Publication number
- DE102005048359A1 DE102005048359A1 DE200510048359 DE102005048359A DE102005048359A1 DE 102005048359 A1 DE102005048359 A1 DE 102005048359A1 DE 200510048359 DE200510048359 DE 200510048359 DE 102005048359 A DE102005048359 A DE 102005048359A DE 102005048359 A1 DE102005048359 A1 DE 102005048359A1
- Authority
- DE
- Germany
- Prior art keywords
- optical
- behavior
- silicon
- nano structures
- improving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 8
- 230000003287 optical effect Effects 0.000 title claims abstract 16
- 230000005855 radiation Effects 0.000 title 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 14
- 239000010703 silicon Substances 0.000 claims abstract description 14
- 238000005530 etching Methods 0.000 claims abstract 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims description 2
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 claims 2
- 241000549556 Nanos Species 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000006378 damage Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract 2
- 230000005693 optoelectronics Effects 0.000 abstract 2
- 239000006096 absorbing agent Substances 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 abstract 1
- 230000002950 deficient Effects 0.000 abstract 1
- 238000009877 rendering Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/02—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Silizium kann als IR-Fenster verwendet werden. Bei einer Wellenlänge von größer 1000 nm beginnt Silizium transparent zu werden und absorbiert immer weniger Licht.silicon can be used as an IR window. At a wavelength of greater than 1000 nm, silicon begins to become transparent and absorbs less and less Light.
Da die Grenzfläche Luft/Silizium eine Reflexion von mehr als 30% aufweist und ein Fenster immer zwei Grenzflächen hat, lässt ein unbehandeltes Stück Silizium trotz seiner Transparenz im Infraroten nur etwa 50% der eingestrahlten Lichtmenge hindurch, die andere Hälfte geht durch Reflexion verloren.There the interface Air / silicon has a reflection of more than 30% and a window always two interfaces has, lets an untreated piece Silicon, despite its transparency in the infrared only about 50% of amount of light transmitted through, the other half is lost by reflection.
Es gibt zwar Möglichkeiten, durch reflexionsmindernde Schichten die Transparenz zu verbessern, z.B. durch λ/4-Schichten, es bleiben aber folgende Einschränkungen bzw. Nachteile bestehen:
- 1. Die Schichtdicken müssen eng toleriert sein.
- 2. Die Entspiegelung gelingt nur für eine bestimmte Wellenlänge befriedigend, man findet auch andere Wellenlängen, die andere Interferenzordnungen darstellen, für die gut entspiegelt wird, diese sind aber nicht frei wählbar
- 3. Um die Reflexion in einem breiten Wellenlängenbereich auf nahe Null zu vermindern, versagt eine Entspiegelung durch einfache λ/4-Schichten. Es wären Materialien mit fein abgestuften Brechzahlen zwischen 1 und 3.4 notwendig. Solche sind aber in der konventionellen Halbleitertechnologie nicht verfügbar.
- 4. Die aufgebrachten Schichten müssen im verwendeten Wellenlängenbereich eine sehr geringe Absorption aufweisen.
- 1. The layer thicknesses must be tightly tolerated.
- 2. The anti-reflection succeeds satisfactorily only for a certain wavelength, one also finds other wavelengths that represent other interference orders for which there is good anti-reflection, but these are not freely selectable
- 3. In order to reduce the reflection in a broad wavelength range to near zero, an antireflection by simple λ / 4 layers fails. It would be necessary materials with finely graded refractive indices between 1 and 3.4. However, such are not available in conventional semiconductor technology.
- 4. The applied layers must have a very low absorption in the wavelength range used.
Der Erfindung liegt die Aufgabe zugrunde, ein IR-Fenster aus Silizium mit breitbandiger Transparenz zu schaffen.Of the Invention is based on the object, an IR window made of silicon to create broadband transparency.
Gelöst wird diese Aufgabe mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen.Is solved This object with the features stated in the characterizing part of claim 1.
Der Gegenstand des Anspruchs 1 weist die Vorteile auf, dass die durch das RIE-Verfahren erzeugten selbstorganisierten Nanostrukturen ein effektives Medium bilden, das für den stetigen Übergang der beiden Materialeigenschaften sorgt. Dadurch kann im infraroten Bereich mit der Modifikation der Siliziumoberflächen eine Transmission von über 90 erreicht werden. Die modifizierte Oberfläche erfüllt ihre Aufgabe, indem sie die Grenzflächeneigenschaften zwischen dem Silizium und Luft bzw. Vakuum so verändert, dass zwischen ihnen kein Impedanzsprung auftritt, sondern die unterschiedlichen Impedanzen stetig ineinander übergehen. Dabei ist das Material für den gewünschten Wellenlängenbereich nicht absorbierend. Die Grenzflächenmodifikation des Siliziums dient der Reflexionsunterdrückung und somit der verbesserten Transmission. Entscheidend dabei ist die Form der nadelförmigen Strukturen der Oberfläche. Die Strukturen bilden ein effektives Medium, dass für den stetigen Übergang der beiden Materialeigenschaften sorgt. Eine einseitige Oberflächenmodifizierung erreicht bereits eine Transmission von etwa 70%.Of the The subject of claim 1 has the advantages that by the RIE process generated self-assembled nanostructures form effective medium for that the steady transition the two material properties provides. This can be done in the infrared Range with the modification of the silicon surfaces reaches a transmission of over 90 become. The modified surface meets her Task by taking the interface properties between the silicon and air or vacuum changed so that between them no impedance jump occurs, but the different ones Impedances constantly merge into each other. Here is the material for the wished Wavelength range is not absorbent. The interface modification of Silicon is used for reflection suppression and thus the improved Transmission. Decisive here is the shape of the needle-shaped structures the surface. The structures form an effective medium for the steady transition the two material properties provides. A one-sided surface modification already achieves a transmission of about 70%.
In
der
Das
Diagramm enthält
eine theoretische (
Die Theorie vernachlässigt die Absorption des Siliziums für kurze Wellenlängen.The Theory neglected the absorption of silicon for short wavelengths.
Für infrarotes Licht ab 1200 nm werden die theoretischen werte von 70% gut getroffen.For infrared Light from 1200 nm, the theoretical values of 70% are well hit.
Ein Problem bei einer zweiseitigen Oberflächenmodifizierung stellt die geringe mechanische Belastbarkeit der erzeugten Strukturen dar, so dass die Handhabung des Fensters erschwert wird.One Problem with a two-sided surface modification is the low mechanical strength of the structures produced, so that the handling of the window is difficult.
Die Oberflächenmodifizierung kann mit konventionellen Fotolackmaskierungstechniken auf bestimmte Bereiche begrenzt werden, so dass sich mechanisch beanspruchte von optisch transparenten Bereichen einfach separieren lassen. Damit ist der Nachteil der schwierigen Handhabung beseitigt, ein stabiler, gegebenenfalls auch luft-, flüssigkeits- oder vakuumdichter Einbau eines derartigen Fensters ist ohne weiteres möglich.The surface modification can target certain types of photoresist masking techniques Be limited areas, so that mechanically stressed by optically transparent areas can be separated easily. In order to the disadvantage of difficult handling is eliminated, a stable, if necessary, also air, liquid or vacuum-tight installation of such a window is readily available possible.
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510048359 DE102005048359A1 (en) | 2005-10-10 | 2005-10-10 | Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors |
EP06794005A EP1935035A2 (en) | 2005-10-10 | 2006-10-10 | Production of self-organized pin-type nanostructures, and the rather extensive applications thereof |
PCT/EP2006/067249 WO2007042521A2 (en) | 2005-10-10 | 2006-10-10 | Production of self-organized pin-type nanostructures, and the rather extensive applications thereof |
US12/089,727 US8350209B2 (en) | 2005-10-10 | 2006-10-10 | Production of self-organized pin-type nanostructures, and the rather extensive applications thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510048359 DE102005048359A1 (en) | 2005-10-10 | 2005-10-10 | Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005048359A1 true DE102005048359A1 (en) | 2007-04-19 |
Family
ID=37896269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200510048359 Ceased DE102005048359A1 (en) | 2005-10-10 | 2005-10-10 | Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102005048359A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038065A (en) * | 1997-06-06 | 2000-03-14 | Raytheon Company | Infrared-transparent window structure |
US20020000244A1 (en) * | 2000-04-11 | 2002-01-03 | Zaidi Saleem H. | Enhanced light absorption of solar cells and photodetectors by diffraction |
EP1536461A1 (en) * | 2002-09-06 | 2005-06-01 | Asahi Glass Company Ltd. | Polishing agent composition for insulating film for semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
-
2005
- 2005-10-10 DE DE200510048359 patent/DE102005048359A1/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038065A (en) * | 1997-06-06 | 2000-03-14 | Raytheon Company | Infrared-transparent window structure |
US20020000244A1 (en) * | 2000-04-11 | 2002-01-03 | Zaidi Saleem H. | Enhanced light absorption of solar cells and photodetectors by diffraction |
EP1536461A1 (en) * | 2002-09-06 | 2005-06-01 | Asahi Glass Company Ltd. | Polishing agent composition for insulating film for semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3011370B1 (en) | Method for producing an antireflective layer | |
DE69735727T2 (en) | PROCESS FOR REDUCING THE REFLECTION OF OPTICAL SUBSTRATES | |
DE60129499T2 (en) | Microlens and solid-state imaging device | |
DE102013208310B4 (en) | Optical element with substrate body and hardcoat layer and manufacturing method thereof | |
DE102006046131B4 (en) | Process for manufacturing an optical interface for integrated optical applications | |
DE102013204502A1 (en) | WINDOWS FOR HIGH INFRARED TRANSMISSION WITH SELF-CLEANING HYDROPHILIC SURFACE | |
EP1935035A2 (en) | Production of self-organized pin-type nanostructures, and the rather extensive applications thereof | |
DE10064143A1 (en) | Anti-reflection coating for ultraviolet light at large angles of incidence | |
EP1223437A3 (en) | Anti-reflection coating for ultraviolet light | |
DE10120703A1 (en) | Semiconductor chip for optoelectronics | |
DE202011003479U1 (en) | Structured silicon layer for an optoelectronic component and optoelectronic component | |
DE102018110193A1 (en) | Coated optical element, device with a coated optical element and method of making the same | |
US20190204478A1 (en) | Apparatus and methods of electrically conductive optical semiconductor coating | |
WO2009074146A2 (en) | Method for producing a reflection-reducing layer and optical element having a reflection-reducing layer | |
DE102005048359A1 (en) | Optical radiation methods/devices for converting nano structures has nano structures for improving optical behavior in components/apparatus and/or improving behavior of sensors | |
WO2015110546A1 (en) | Method for producing a reflection-reducing layer system, and a reflection-reducing layer system | |
KR102559836B1 (en) | Polarizer, optical apparatus comprising the polarizer, display apparus comprising the polarizer and method for preparing the polarizer | |
DE102021112288B4 (en) | Layer system with anti-fog and anti-reflective properties and method for producing a layer system | |
DE20311942U1 (en) | Porous materials for blocking IR radiation | |
DE102010029570A1 (en) | Substrate for optical elements | |
EP4025718A1 (en) | Motor vehicle headlamp | |
DE102005001671B4 (en) | Photolithography arrangement | |
DE4441973C2 (en) | Optical waveguide structure on a substrate | |
DE19709750C1 (en) | Multi-layer light absorber e.g. for image screen | |
DE10143134A1 (en) | light integrator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |