DE1018558B - Process for the production of directional conductors, transistors and. Like. From a semiconductor - Google Patents
Process for the production of directional conductors, transistors and. Like. From a semiconductorInfo
- Publication number
- DE1018558B DE1018558B DE1954S0010040 DES0010040A DE1018558B DE 1018558 B DE1018558 B DE 1018558B DE 1954S0010040 DE1954S0010040 DE 1954S0010040 DE S0010040 A DES0010040 A DE S0010040A DE 1018558 B DE1018558 B DE 1018558B
- Authority
- DE
- Germany
- Prior art keywords
- semiconductor
- type
- disc
- core
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 26
- 230000008569 process Effects 0.000 title claims description 10
- 239000004020 conductor Substances 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000012535 impurity Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 7
- 239000002019 doping agent Substances 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 claims description 5
- 238000004857 zone melting Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 230000005518 electrochemistry Effects 0.000 claims 1
- 238000010309 melting process Methods 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 5
- 239000000370 acceptor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/223—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/24—Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/167—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Electrodes Of Semiconductors (AREA)
Description
DEUTSCHESGERMAN
Zur Umwandlung des Leitungstyps eines Teiles eines Halbleiters zwecks Herstellung eines p-n-Überganges wird an einer oder mehreren Stellen auf der Oberfläche des Halbleiters von gegebenem Leitungstyp ein Dotierungsstoff, welcher geeignet ist, den entgegengesetzten Leitungstyp zu erzeugen, durch Legieren bzw. Diffusion derart eingebracht, daß er bis zu einer begrenzten Tiefe vordringt. Das kann entweder dadurch geschehen, daß der Dotierungsstoff als fester Körper, Scheibe oder Pille oder als Pulverschicht ζ. B. in Form einer aufgestrichenen Paste auf den Halbleiter aufgebracht und durch Erhitzung beispielsweise in einem Ofen draufgeschmolzen wird. Es ist auch bekannt, stellenweise auf den Halbleiter eine Schicht des Dotierungsstoffes aufzudampfen. Dabei schlägt sich der erzeugte Dampf auf dem kalten bzw. gering vorgeheizten Halbleiter nieder. Die Diffusion bzw. !Regierungsbildung erfolgt ebenfalls durch nachträgliche Erhitzung, beispielsweise in einem Ofen. Diese bekannten Verfahren erfordern also zum Aufbringen und zur Umwandlung des Leitungstyps meist zwei verschiedene Behandlungsvorgänge. Außerdem entsteht hierbei in der Regel eine Schicht von verändertem Leitungstyp nur auf einer der beiden Seiten des scheibenförmigen Halbleiters. Schließlich lassen sich die Grenzen der veränderten Flächenbereiche und die Eindringtiefe der Veränderung schwer im voraus festlegen. Die Tiefe der Veränderung ist meist ungleichmäßig; sogar innerhalb eines Flächenbereiches reicht die Veränderung in der Mitte gewöhnlich tiefer als am Rande.For converting the conductivity type of a part of a semiconductor for the purpose of producing a p-n junction at one or more locations on the surface of the semiconductor of a given conductivity type a dopant which is suitable for the to generate opposite conductivity type, introduced by alloying or diffusion in such a way that it is up to penetrates to a limited depth. This can either be done in that the dopant as solid body, disc or pill or as a powder layer ζ. B. in the form of a spread paste the semiconductor is applied and melted on it by heating, for example in an oven. It is also known to vaporize a layer of the dopant in places on the semiconductor. The generated steam is deposited on the cold or slightly preheated semiconductor. the Diffusion or the formation of a government also takes place through subsequent heating, for example in an oven. These known methods therefore require application and conversion of the Line type usually two different treatment processes. In addition, this usually arises a layer of changed conductivity type only on one of the two sides of the disc-shaped semiconductor. Finally, the limits of the changed surface areas and the depth of penetration of the It is difficult to determine change in advance. The depth of change is mostly uneven; even within an area, the change in the middle usually extends deeper than on Edge.
Demgegenüber kann mit der Erfindung eine Verbesserung erzielt werden. Die Erfindung beruht aut dem Gedanken, das Störstellenverhältnis nicht durch Eindiffusion, also Zugabe von Störstellenbildnern, sondern durch Entzug von Störstellenbildnern der einen Art aus einem Teile des Halbleiters, in welchem beide Arten enthalten sind, zu verändern, und die Erfindung bezieht sich auf Verfahren zur Herstellung von Leitungstyp-Übergängen für Richtleiter, Transistoren u. dgl. bei Halbleitern mit Störstellenbildnern. Eine geeignete Möglichkeit zu einer solchen Entfernung von Störstellenbildnern bietet die Verdampfung, weil nämlich die verschiedenen Arten von Störstellenbildnern verschieden leicht verdampfen, und zwar bei Silizium meist die Donatorsubstanzen leichter und daher bei zunehmender Temperatur eher als die Akzeptorsubstanzen. Demgemäß besteht die Erfindung darin, daß der Halbleiter zunächst mit StÖTstellenbildnern der bei ihm leichter abdampfenden Art durch und durch derart annähernd gleichmäßig angereichert wird, daß diese seinen Leitungstyp bestimmen, und daß später der Halbleiter im Vakuum Verfahren zur HerstellungIn contrast, an improvement can be achieved with the invention. The invention is based on the idea that the impurity ratio is not caused by diffusion, i.e. the addition of impurity formers, but by removing impurity formers of one type from a part of the semiconductor in which both types are included, and the invention relates to methods of manufacture of conduction type transitions for directional conductors, transistors and the like in semiconductors with impurity formers. Evaporation is a suitable way of removing impurities in this way, because the different types of impurity formers evaporate at different rates, In the case of silicon, the donor substances are usually lighter and therefore more likely with increasing temperature than the acceptor substances. Accordingly, the invention consists in that the semiconductor initially with StÖTstellebildnern the more easily evaporated with him Type is enriched through and through so approximately evenly that these determine its conductivity type, and that later the semiconductor in a vacuum process for manufacturing
von Richtleitern, Transistoren u. dgl.of directional ladders, transistors and the like.
aus einem Halbleiterfrom a semiconductor
Anmelder:Applicant:
Siemens-SchuckertwerkeSiemens-Schuckertwerke
Aktiengesellschaft,Corporation,
Berlin und Erlangen,Berlin and Erlangen,
Erlangen, Werner-von-Siemens-Str. 50Erlangen, Werner-von-Siemens-Str. 50
Dipl.-Phys. Reimer Emeis, Pretzfeld,
ist als Erfinder genannt wordenDipl.-Phys. Reimer Emeis, Pretzfeld,
has been named as the inventor
so lange erhitzt wird, bis der Leitungstyp einer Oberflächenschicht durch Abdampfen bzw. Herausdiffusion von Störstellenbildnern vorwiegend einer Art wieder verändert ist.is heated until the conductivity type of a surface layer by evaporation or diffusion of impurity formers predominantly of one kind again is changed.
An Hand der Zeichnung sollen das neue Verfahren und weitere Verbesserungen näher erläutert werden. Fig. 1 zeigt beispielsweise in einem Schaubild die Verteilung von Donatoren und Akzeptoren in einem Halbleiter, z. B. einem Silizium-Einkristall, der in Stabform z. B. nach dem tiegelfreien senkrechten Zonenschmeizverfahren hergestellt sein kann. Ein solcher Siliziumstab ist gewöhnlich mangelleitend. Die Anzahl %> der Donatoren je Raumeinheit ist in Abhängigkeit vom Abstand von der Oberfläche aus als waagerechte gestrichelte Linie D1 eingetragen, und zwar nur für einen Randbereich, der hier betrachtet werden soll. Die Anzahl nA der Akzeptoren je Raumeinheit ist zunächst größer und sei durch die waagerechte Linie Λ wiedergegeben. Ein solcher Siliziumstab kann nun mit Doniatorsubstanz bis zur n-Leitung dotiert werden, z. B. durch weiteres Zonenschmelzen in einer Antimon-Wasserstoff-Atmosphäre oder unter Beigabe von Antimon in fester Form direkt in die flüssige Zone innerhalb einer Schutzgasatmosphäre, beispielsweise von Argon. An Stelle von Antimon können auch andere Donatorsubstanzen, wie z. B. Arsen oder Phosphor, verwendet werden. Die Anzahl der Donatoren je Raumeinheit des Siliziumstabes nach der erwähnten Behandlung wird in Fig. 1 durch die waagerechte Linie D2 wiedergegeben. Der Siliziumstab ist nunmehr überschußleitend. Er wirdThe new method and further improvements are to be explained in more detail using the drawing. Fig. 1 shows, for example, in a diagram the distribution of donors and acceptors in a semiconductor, e.g. B. a silicon single crystal, which z. B. can be produced according to the crucible-free vertical zone melting process. Such a silicon rod is usually manganese. The number%> of donors per unit of space is entered as a horizontal dashed line D 1 as a function of the distance from the surface, namely only for an edge area that is to be considered here. The number n A of acceptors per unit of space is initially greater and is represented by the horizontal line Λ . Such a silicon rod can now be doped with donor substance up to the n-line, e.g. B. by further zone melting in an antimony-hydrogen atmosphere or with the addition of antimony in solid form directly into the liquid zone within a protective gas atmosphere, for example argon. Instead of antimony, other donor substances, such as. B. arsenic or phosphorus can be used. The number of donors per unit space of the silicon rod after the treatment mentioned is shown in FIG. 1 by the horizontal line D 2 . The silicon rod is now excessively conductive. He will
70S 75f.'34970S 75f. '349
3 43 4
in Scheiben zersägt, und die Scheiben werden eine bringung eines solchen Basiskontaktes ist aber wegen Zeitlang im Vakuum beispielsweise in einem Ofen der geringen Breite dieses Umfangsstreifens verhältgeglüht. Dabei dampft Donatorsubstanz ab, so daß nismäßig schwierig. Es empfiehlt sich daher, zunächst sich an der Oberfläche keine mehr befindet, d. h., die durch Entfernung weiterer Teile der umgewandelten Konzentration der Donatoren an der Oberfläche ist 5 Oberflächenschicht, etwa wie in Fig. 7 durch geNull. Der Halbleiter ist außen wieder mangelleitend strichelte Linien angedeutet, den Kern des Halbleiters geworden. Es hat sich ein Konzentrationsgefälle der zum Teil an mehreren Seiten für die Anbringung des verbliebenen Donatorsubstanz von innen nach außen Basiskontaktes freizulegen.sawn into wafers, and the wafers are due to such a basic contact For a period of time in a vacuum, for example in a furnace of the narrow width of this peripheral strip, annealed. The donor substance evaporates, making it difficult to use. It is therefore advisable to start with there is no longer any on the surface, d. that is, by removing further parts of the converted Concentration of donors on the surface is 5 surface layer, approximately as in Fig. 7 by zero. The outside of the semiconductor is again indicated by dashed lines, the core of the semiconductor become. There has been a concentration gradient, in part on several sides for the attachment of the to expose the remaining donor substance from the inside to the outside of the basic contact.
eingestellt, das beispielsweise in Fig. 1 durch die Eine bequemere Möglichkeit zu einer weiteren Frei-set, for example in Fig. 1 by the A more convenient option for a further free
Kurve D3 wiedergegeben werde. Wo die fallende io legung des Kernes mit Hilfe einer an sich bekannten Konzentrationskurve D3 der Donatorsubstanz die Schleifvorrichtung, mit welcher ebene Schliffe herwaagerechte Akzeptorkurve A schneidet, dort befindet gestellt werden können, veranschaulichen die folgensich der p-n-Übergang. Der nach dem beschriebenen den Figuren. Nach den Fig. 8 und 9 ist der scheiben-Verfahren behandelte Halbleiter besteht also aus förmige Halbleiter an seinem unteren Rande verdickt, einem Kern, der infolge der zuerst beschriebenen 15 Nach dem Abdampfungsvorgang wird zunächst der Vorbehandlung den entgegengesetzten Leitungstyp hat Rand ringsherum entfernt. Anschließend werden die wie der Ausgangsstab, und einer allseitigen Hülle, Vorsprünge auf beiden Seiten weggeschliffen, so daß welche wieder den gleichen Leitungstyp hat wie dieser beide Seitenflächen völlig eben sind. In Fig. 9 ist dies Ausgangsstab. Die Dicke dieser umhüllenden Ober- durch gestrichelte Linien angegeben. Von der nunflächenschicht zeichnet sich durch große Gleichmäßig- 20 mehr vorhandenen Zylinderscheibe haben gemäß keit aus. Zwischen Kern und Hülle befindet sich ein Fig. 10 nur die oberen Teile der beiden Seitenflächen p-n-Übergang. noch eine Schicht von verändertem Leitungstyp. HierCurve D 3 will be reproduced. The following illustrate the pn-junction where the falling io laying of the core can be placed there with the aid of a known concentration curve D 3 of the donor substance, the grinding device with which flat sections cuts the horizontal acceptor curve A. The one described after the figures. According to FIGS. 8 and 9, the wafer-process-treated semiconductor consists of shaped semiconductor thickened at its lower edge, a core which, as a result of the first-described 15 After the evaporation process, the pretreatment is first of all the opposite conductivity type, the edge has been removed all around. Subsequently, like the starting rod and an all-round cover, projections on both sides are ground away so that which again has the same conduction type as this two side surfaces are completely flat. In Fig. 9 this is the starting rod. The thickness of this enveloping top is indicated by dashed lines. The surface layer is characterized by great uniformity. 10 only the upper parts of the two side surfaces pn-junction is located between the core and the shell. another layer of modified conduction type. here
Ein derartiger scheibenförmiger Halbleiter ist in werden die Richtelektrodenkontakte 11 und 12 mit den Fig. 2 bis 4 in vergrößertem Maßstabe als Bei - den daran befestigten Anschluß drähten angebracht, spiel dargestellt. Der p-n-Übergang ist jeweils durch 25 Für die Anbringung des Basiskontaktes 10 steht hier eine dünne ausgezogene Linie angedeutet, beiderseits der untere Teil der Scheibe 9 zur Verfügung, wo der welcher die Bezeichnungen η und ρ eingetragen sind. Kern an drei Seiten freigelegt ist. Der Basiskontakt Ein solcher Halbleiter wird vorteilhaft in der Weise 10 kann infolgedessen, wie dargestellt, so angebracht weiterbehandelt, daß durch nachträgliche teilweise werden, daß er diesen freigelegten Teil des Kernes Entfernung der Oberflächenschicht der entgegen- 3° umklammert. Diese Kontaktierung ist verhältnisgesetzten Leitungstyp aufweisende Kern an einer oder mäßig bequem durchführbar.Such a disk-shaped semiconductor is in the directional electrode contacts 11 and 12 with Figs. 2 to 4 on an enlarged scale as two - attached to the attached connection wires, game shown. The p-n junction is always through 25 For the attachment of the base contact 10 is written here indicated by a thin solid line, on both sides of the lower part of the disc 9 available where the which the designations η and ρ are entered. Core is exposed on three sides. The basic contact Such a semiconductor is advantageously mounted in the manner 10 as a result, as shown further treated that by subsequent partial that he has this exposed part of the core Removal of the surface layer of the opposite 3 ° clasps. This contact is proportional Conductor type core on one or moderately easy to carry out.
mehreren Stellen freigelegt wird. So kann beispiels- Die Herstellung der stellenweise verdickten Halbweise der Rand der Siliziumscheibe ringsherum bis zu leiterscheiben gemäß Fig. 8 und 9 aus einem stabder in Fig. 3 eingezeichneten gestrichelten Kreislinie förmigen Einkristall, wie er beispielsweise durch das durch Ätzen oder Schleifen entfernt werden. Beträgt 35 senkrechte Zonenziehverfahren gewonnen wird, kanu die Fläche der Siliziumscheibe ein Mehrfaches der mittels der bekannten Fadensäge durch Stufenschnitte Fläche der fertigen Gleichrichter bzw. Transistoren, beispielsweise gemäß Fig. 12 derart durchgeführt so wird z. B. gemäß Fig. 2 die Scheibe hinterhei werden, daß möglichst wenig Abfall entsteht, durch senkrechte Schnitte, die durch gestrichelte Bei den Scheibenformen gemäß den Fig. 13 und 14is exposed in several places. For example, the production of the partially thickened half-way the edge of the silicon wafer all around up to the conductor wafers according to FIGS. 8 and 9 from a rod In Fig. 3 drawn dashed circular line-shaped single crystal, as it is, for example, by the can be removed by etching or grinding. Is 35 vertical zone drawing is won, canoeing the area of the silicon wafer is a multiple of that by means of the known thread saw through step cuts Area of the finished rectifier or transistors, for example in accordance with FIG. 12 carried out in this way so z. B. according to Fig. 2, the disc will be nachhei that as little waste as possible is created, by vertical cuts indicated by dashed lines in the case of the disk shapes according to FIGS. 13 and 14
Linien a, b angedeutet sind, in mehrere Teile 7, 8 zer- 40 befindet sich die Verdickung in der Mitte der beiden legt, wobei der Rand ohne weiteres zum Abfall ge- Flachseiten der Scheibe. Nach dem oben beschriebehört. Die vorerwähnten Arbeitsvorgänge sind unter neu Abdampfungsvorgang wird auch hier zunächst Umständen auch bei den bekannten Verfahren er- der Rand ringsherum abgeschliffen. Danach werden forderlich. Sie stellen also keinen zusätzlichen, durch die beiden Seitenflächen eben geschliffen und damit das neue Verfahren bedingten Aufwand dar. *5 der unverändert gebliebene Kern auch in der Mitte inLines a, b are indicated, divided into several parts 7, 8, the thickening is located in the middle of the two, with the edge easily falling flat sides of the disc. According to what is described above. The above-mentioned work processes are under the new evaporation process, here too, under certain circumstances, also with the known methods, the edge is ground all around. After that it will be required. So they do not represent an additional, ground level due to the two side surfaces and thus the effort required for the new process. * 5 the unchanged core also in the middle in
Bei genügend großer Scheibendicke kann der Halb- Form eines Streifens freigelegt. Dann wird die leiter auch, wie in Fig. 4 beispielsweise durch eine Scheibe gemäß Fig. 15 beispielsweise in vier Teile 13 gestrichelte senkrechte Linie angedeutet ist, so zer- zerschnitten und jeder dieser Teile 13 gemäß Fig. 16 schnitten werden, daß sein Kern teilweise freigelegt mit den Richtelektrodenkontakten 11 und 12 und dem wird. Einen der beiden so erhaltenen Teile zeigt 5° den freigelegten Kernteil auf drei Seiten umfassenden Fig. 5. Basiskontakt 10 versehen.If the pane is thick enough, the half-shape of a strip can be exposed. Then the Conductor also, as in FIG. 4, for example by a disk according to FIG. 15, for example in four parts 13 The dashed vertical line is indicated, so cut up and each of these parts 13 according to FIG are cut so that its core is partially exposed with the directional electrode contacts 11 and 12 and the will. One of the two parts thus obtained shows 5 ° encompassing the exposed core part on three sides Fig. 5. Base contact 10 provided.
Wird vor oder nach der Ausführung des in Fig. 4 Dadurch, daß man bei dem in Fig. 7 dargestelltenIs used before or after the execution of the in FIG
dargestellten Parallelschnittes der Rand mit media- Halbleiter mit zwei p-u-Übergängen die äußeren nischen oder chemischen Mitteln entfernt, wie früher p-leitenden Seitenteile in an sich bekannter Weise mit erwähnt und in Fig. 3 und 4 durch weitere gestrichelte 55 Donatorsubstanz legiert, kann die Anzahl der auf-Linien angedeutet, so entsteht die in Fig. 6 abge- einanderfolgenden Schichten entgegengesetzten Leibildete Form des Halbleiters. Die beiden Formen tungstyps um zwei weitere vermehrt werden. Dabei ist gemäß Fig. 5 und 6 können beiderseits in an sich es zweckmäßig, die bereits bestehenden p-n-Übergänge bekannter Weise kontaktiert und als Gleichrichter und ihre Umgebung möglichst wenig zu erwärmen, verwendet werden. 60 weil sonst die Übergänge verwischt werden. Deshalbshown parallel section of the edge with media semiconductors with two p-u junctions the outer niche or chemical means removed, as previously with p-conductive side parts in a manner known per se mentioned and alloyed in Fig. 3 and 4 by further dashed 55 donor substance, the number of on-lines indicated, the result is the opposite body structure in FIG. 6 Shape of the semiconductor. The two forms can be increased by two more. It is According to FIGS. 5 and 6, it is expedient on both sides to use the already existing p-n junctions contacted in a known way and as a rectifier and its surroundings to be heated as little as possible, be used. 60 because otherwise the transitions will be blurred. That's why
Unterbleibt bei einem Halbleiter ähnlich dem- erfolgt die zusätzliche Legierung der äußeren Seitenjenigen nach Fig. 3 und 4, jedoch vorteilhaft mit teile vorteilhaft nach dem an sich bekannten und geringerer Gesamtdicke, nach dem Abschleifen des eingangs beschriebenen Schmelz- oder Lötverfahren. Randes eine weitere Zerlegung, so hat er die in Fig. 7 Ein so behandelter Halbleiter mit vier Übergängen ist dargestellte Form. Er kann dann zu einem Transistor 65 in Fig. 17 beispielsweise dargestellt, weiterverarbeitet werden, indem je ein Kontakt auf Durch Herstellung mehrerer, gegebenenfalls einerIf it is omitted in the case of a semiconductor, the additional alloying of the outer sides takes place 3 and 4, but advantageous with parts advantageously according to the known and smaller overall thickness, after grinding down the melting or soldering process described above. If the edge has a further decomposition, it has that shown in FIG. 7. A semiconductor treated in this way with four junctions shown form. It can then be shown for a transistor 65 in FIG. 17, for example, are processed further by making one contact each
den beiden Seitenflächen angebracht wird, von denen größeren Anzahl von Verdickungen des Halbleiters, die eine die Kollektorelektrode und die andere die etwa in Form einer einseitigen Bemusterung, wie es Emitterelektrode bildet, und ein Basiskontakt am bereits vorgeschlagen wurde, durch Einätzen oder Rande dort, wo der Kern zutage tritt. Die An- 70 Einsägen von Rillen kann mit Hilfe des beschriebenenis attached to the two side surfaces, of which the greater number of thickenings of the semiconductor, one the collector electrode and the other the roughly in the form of a one-sided pattern, like it Emitter electrode forms, and a base contact has already been proposed on, by etching or Edge where the core emerges. The sawing of grooves can be done with the help of the described
Claims (11)
Das Elektron, Bd. 5 (1951/52), S. 434/435;
Zeitschrift für Elektrochemie, Bd. 58 (1954). S.300;
Phys. Rev., Bd. 91 (1953), S. 754/755 und 757/758.Considered publications:
Das Elektron, Vol. 5 (1951/52), pp. 434/435;
Zeitschrift für Elektrochemie, Vol. 58 (1954). P.300;
Phys. Rev., Vol. 91 (1953), pp. 754/755 and 757/758.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES0040040 | 1954-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1018558B true DE1018558B (en) | 1957-10-31 |
Family
ID=7483506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1954S0010040 Pending DE1018558B (en) | 1954-07-15 | 1954-07-15 | Process for the production of directional conductors, transistors and. Like. From a semiconductor |
Country Status (3)
Country | Link |
---|---|
CH (2) | CH335766A (en) |
DE (1) | DE1018558B (en) |
FR (2) | FR1135345A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1153460B (en) * | 1959-01-28 | 1963-08-29 | Siemens Ag | Method for manufacturing and contacting a semiconductor device |
DE1164680B (en) * | 1958-05-21 | 1964-03-05 | Siemens Ag | Process for the production of rod-shaped semiconductor bodies of high purity |
DE1186950B (en) * | 1960-02-15 | 1965-02-11 | Intermetall | Method for removing unwanted metals or interference points from a semiconductor body |
DE1198937B (en) * | 1961-12-27 | 1965-08-19 | Siemens Ag | Process for the production of semiconductor plates, the surfaces of which are parallel to a crystal lattice surface |
DE1262388B (en) * | 1960-09-20 | 1968-03-07 | Gen Dynamics Corp | Method for generating a non-rectifying transition between an electrode and a doped thermo-electrical semiconductor for a thermoelectric device |
DE1275208B (en) * | 1960-09-29 | 1968-08-14 | Philips Nv | Controllable semiconductor rectifier |
DE1282203B (en) * | 1957-06-24 | 1968-11-07 | Siemens Ag | A method for producing a semiconductor crystal arrangement that is particularly responsive to radiation and has a pn junction and the pn junction to protect against moisture, and a semiconductor arrangement produced thereafter |
DE1286644B (en) * | 1959-10-28 | 1969-01-09 | Western Electric Co | Method for diffusing out doping impurities from a semiconductor body |
DE1614803B1 (en) * | 1966-04-29 | 1971-06-09 | Texas Instruments Inc | METHOD OF MANUFACTURING A SEMICONDUCTOR ARRANGEMENT |
DE1269732C2 (en) * | 1962-12-24 | 1973-12-13 | METHOD FOR MANUFACTURING SEMICONDUCTOR ARRANGEMENTS | |
DE1093019C2 (en) * | 1958-07-26 | 1974-08-08 | METHOD FOR MANUFACTURING SEMICONDUCTOR ARRANGEMENTS |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2964435A (en) * | 1957-03-27 | 1960-12-13 | Mc Graw Edison Co | Semiconductor devices and their manufacture |
FR1196063A (en) * | 1957-12-27 | 1959-11-20 | Labo Cent Telecommunicat | Methods of preparing junctions in semiconductor crystals |
DE1141723B (en) * | 1960-06-10 | 1962-12-27 | Siemens Ag | Method for producing a semiconductor arrangement with an n-conducting silicon crystal, in particular a surface transistor of the pnp type |
-
1954
- 1954-07-15 DE DE1954S0010040 patent/DE1018558B/en active Pending
-
1955
- 1955-07-07 FR FR1135345D patent/FR1135345A/en not_active Expired
- 1955-07-12 CH CH335766D patent/CH335766A/en unknown
-
1956
- 1956-02-10 FR FR69413D patent/FR69413E/en not_active Expired
- 1956-02-13 CH CH341572D patent/CH341572A/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1282203B (en) * | 1957-06-24 | 1968-11-07 | Siemens Ag | A method for producing a semiconductor crystal arrangement that is particularly responsive to radiation and has a pn junction and the pn junction to protect against moisture, and a semiconductor arrangement produced thereafter |
DE1164680B (en) * | 1958-05-21 | 1964-03-05 | Siemens Ag | Process for the production of rod-shaped semiconductor bodies of high purity |
DE1093019C2 (en) * | 1958-07-26 | 1974-08-08 | METHOD FOR MANUFACTURING SEMICONDUCTOR ARRANGEMENTS | |
DE1093019B (en) * | 1958-07-26 | 1974-08-08 | ||
DE1153460B (en) * | 1959-01-28 | 1963-08-29 | Siemens Ag | Method for manufacturing and contacting a semiconductor device |
DE1286644B (en) * | 1959-10-28 | 1969-01-09 | Western Electric Co | Method for diffusing out doping impurities from a semiconductor body |
DE1186950B (en) * | 1960-02-15 | 1965-02-11 | Intermetall | Method for removing unwanted metals or interference points from a semiconductor body |
DE1262388B (en) * | 1960-09-20 | 1968-03-07 | Gen Dynamics Corp | Method for generating a non-rectifying transition between an electrode and a doped thermo-electrical semiconductor for a thermoelectric device |
DE1275208B (en) * | 1960-09-29 | 1968-08-14 | Philips Nv | Controllable semiconductor rectifier |
DE1198937B (en) * | 1961-12-27 | 1965-08-19 | Siemens Ag | Process for the production of semiconductor plates, the surfaces of which are parallel to a crystal lattice surface |
DE1269732B (en) * | 1962-12-24 | 1973-12-13 | Liwentia Patent Verwaltungs-G m bH, 6000 Frankfurt | Method for manufacturing semiconductor devices |
DE1269732C2 (en) * | 1962-12-24 | 1973-12-13 | METHOD FOR MANUFACTURING SEMICONDUCTOR ARRANGEMENTS | |
DE1614803B1 (en) * | 1966-04-29 | 1971-06-09 | Texas Instruments Inc | METHOD OF MANUFACTURING A SEMICONDUCTOR ARRANGEMENT |
Also Published As
Publication number | Publication date |
---|---|
CH335766A (en) | 1959-01-31 |
FR1135345A (en) | 1957-04-26 |
CH341572A (en) | 1959-10-15 |
FR69413E (en) | 1958-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1294557C2 (en) | INTEGRATED COMPLEMENTARY TRANSISTOR ARRANGEMENT AND METHOD OF MANUFACTURING IT | |
DE1246890B (en) | Diffusion process for manufacturing a semiconductor component | |
DE1018558B (en) | Process for the production of directional conductors, transistors and. Like. From a semiconductor | |
EP0048288B1 (en) | Method of doping semiconductor devices by ion implantation | |
DE2019655C2 (en) | Method for diffusing an activator which changes the conductivity type into a surface region of a semiconductor body | |
DE1024640B (en) | Process for the production of crystallodes | |
DE1564191B2 (en) | METHOD FOR PRODUCING AN INTEGRATED SEMI-CONDUCTOR CIRCUIT WITH DIFFERENT CIRCUIT ELEMENTS, ELECTRICALLY INSULATED CIRCUIT ELEMENTS, EACH OTHER AND AGAINST A COMMON SILICONE SUBSTRATE | |
DE1950069B2 (en) | Method for manufacturing a semiconductor device | |
DE2633714C2 (en) | Integrated semiconductor circuit arrangement with a bipolar transistor and method for its production | |
DE1093484B (en) | Process for the production of semiconductor components, in particular pnp or npn power transistors | |
DE1489250C3 (en) | TRANSISTOR WITH SEVERAL EMITTER ZONES | |
DE1930423C3 (en) | Method for manufacturing a semiconductor component | |
DE1564423C3 (en) | Process for manufacturing a double diffused transistor and transistor manufactured according to this process | |
DE1090770B (en) | Method for the production of a semiconductor arrangement with fused electrodes lying close together | |
DE2107671A1 (en) | Semiconductor component and method for its manufacture | |
DE1963131A1 (en) | Method of manufacturing semiconductor elements | |
DE1644025A1 (en) | Semiconductor arrangement with diffused zone transitions | |
DE1816082B2 (en) | ||
DE1464921B2 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR ARRANGEMENT | |
DE1091672B (en) | Diffusion process for manufacturing a semiconductor device | |
DE1282204B (en) | Solar cell and process for its manufacture | |
DE1564191C3 (en) | Method for producing an integrated semiconductor circuit with different circuit elements that are electrically isolated from one another and from a common silicon substrate | |
DE1295237B (en) | Pressure sensitive semiconductor devices and methods of making them | |
DE1439339C (en) | Method of manufacturing a transistor for high frequencies | |
DE1151881B (en) | Method for manufacturing directional conductors, transistors and Like. With a single crystal semiconductor body |