[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE10118269A1 - Kosmetische Zubereitungen - Google Patents

Kosmetische Zubereitungen

Info

Publication number
DE10118269A1
DE10118269A1 DE10118269A DE10118269A DE10118269A1 DE 10118269 A1 DE10118269 A1 DE 10118269A1 DE 10118269 A DE10118269 A DE 10118269A DE 10118269 A DE10118269 A DE 10118269A DE 10118269 A1 DE10118269 A1 DE 10118269A1
Authority
DE
Germany
Prior art keywords
acid
alcohol
oil
independently
cosmetic preparations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10118269A
Other languages
English (en)
Inventor
Joachim Conradi
Dagmar Goebels
Ludwig Schieferstein
Werner Seipel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE10118269A priority Critical patent/DE10118269A1/de
Priority to JP2002585509A priority patent/JP2004528355A/ja
Priority to US10/474,572 priority patent/US7318929B2/en
Priority to PCT/EP2002/003703 priority patent/WO2002088212A1/de
Priority to EP02766616A priority patent/EP1377619A1/de
Publication of DE10118269A1 publication Critical patent/DE10118269A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Vorgeschlagen werden kosmetische Zubereitungen, enthaltend Polyetherurethan-Verdicker, gemäß Formel (I), DOLLAR F1 in der R·1·, R·2· und R·3· unabhängig voneinander für lineare oder Verzweigte Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, x, y, z unabhängig voneinander für Zahlen von 1 bis 10 und k, m und n unabhängig voneinander für Zahlen von 10 bis 200 stehen, sowie DOLLAR A deren Verwendung zur Pflege und Reinigung von Haut und Haaren.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft Zubereitungen mit Po­ lyetherurethanen als Viskositäts- und Konsistenzerhöher.
Stand der Technik
Polyetherurethane sind Polymere, die durch Umsetzung von Alkoholethoxylaten mit Isocya­ naten oder Polyisocyanaten entstehen.
Seit Jahrzehnten werden diese Verbindungen in der Druckindustrie eingesetzt. Entsprechend der Wahl der Ausgangsstoffe und des stöchiometrischen Verhältnis der Ausgangsstoffe erhält man Polyetherurethane mit sehr unterschiedlichen physikalisch-chemischen Eigenschaften. In Druckmassen für den Pigmentdruck verbessern sie die Schmierfähigkeit der eingesetzten Emulsionen (Auslegeschrift DE 10 81 225). Diisocyanate umgesetzt mit ethoxylierten a­ liphatischen Alkoholen mit einem Ethylenoxidgrad von 60 bis 400 ergeben in Druckpasten eine Viskosität, die die Reduktion organischer Lösungsmittel ermöglicht (OS DE 20 54 885) und zu brillianten Drucken führt. Wählt man in diesen Druckpasten Verdicker, die aromati­ sche Diisocyanate enthalten, lassen sich die vorteilhaften Eigenschaften der Druckpasten weiterhin verbessern.
Der Einsatz dieser Verdickungsmittel in wässrigen Systemen wird in der Offenlegungsschrift DE 36 30 319 A1 beschrieben. Um jedoch anstelle der zuvor erwähnten Verdicker, die pastenförmige und feste Produkte darstellen, leicht verarbeitbare, niedrigviskose und scher­ stabile Substanzen zu erhalten, wurden hier Polyetherurethane aus einem Gemisch von E­ thylenoxid und Propylenoxid und aliphatischen Alkoholen mit Diisocyanaten in einem festge­ legten Molverhältnis hergestellt.
Die in Zubereitungen für Kosmetik und Körperpflege einzusetzenden Verdicker müssen hohen Anforderungen gerecht werden. In erster Linie haben sie ein gute Verträglichkeit, wenn mög­ lich auch Bioabbaubarkeit aufzuweisen, so dass viele Substanzen zum Gebrauch für Kosmetik von vornherein ausgeschlossen werden müssen. Desweiteren sollen sie universell in wässri­ gen, emulsoiden, alkoholischen und ölhaltigen Grundlagen einsetzbar sein, gut verarbeitbar sein und zu einer Rheologie führen, die eine leichte Anwendung des Produktes ermöglicht, so dass ein Entnehmen und Verteilen der Zubereitungen unter sauberen und einfachen Bedin­ gungen stattfinden kann.
Die Verträglichkeit mit zahlreichen anderen Hilfsstoffen, insbesondere mit Salzen und Tensi­ den und auch die Einarbeitbarkeit des Verdickers selbst, sowie der weiteren Hilfsstoffe sollte gegeben sein. Außerdem müssen die verdickten Zubereitungen auch bei Langzeitlagerung, Temperatur- und pH-Veränderungen eine gleichbleibende Rheologie und physikalische und chemische Qualität aufweisen. Letzlich sollen diese Verdicker noch kostengünstig und ohne eine merkliche Umweltbelastung herzustellen sein.
Bei diesem komplexen Anforderungsprofil wird deutlich, dass auch heutzutage immernoch ein Bedarf an neuen Verdickern im Bereich der Kosmetik besteht.
Somit hat die Aufgabe der vorliegenden Erfindung darin bestanden, kosmetische Formulie­ rungen zur Verfügung zu stellen, die nach Zusatz nur geringer Mengen eines Verdickers eine leichte Anwendung ermöglichen und ein angenehmes Hautgefühl bewirken. Sie sollen ohne ein klebriges Gefühl zu hinterlassen leicht auf Haut und Haaren zu verteilen sein. Die Formu­ lierungen sollen eine verbesserte physikalische und chemische Stabilität und eine gute Haut- und Kopfhautverträglichkeit aufweisen. Der eingesetzte Viskositäts- und Konsistenzgeber soll außerdem unempfindlich gegen Ionenzusätze, andere Hilfsstoffe, pH-Wert- und Temperatur­ schwankungen sein.
Beschreibung der Erfindung
Gegenstand der Erfindung sind kosmetische Zubereitungen, die Polyetherurethan-Verdicker, gemäß Formel (I) enthalten,
in der R1, R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, x, y, z unabhängig voneinander für Zahlen von 1 bis 10 und k, m und n unabhängig voneinander für Zahlen von 10 bis 200 stehen, sowie deren Verwendung in Haut- und Haarpflege und -reinigung.
Überraschender Weise wurde gefunden, dass kosmetische Mittel, in denen Polyetherurethane als Viskositäts- und Konsistenzerhöher eingesetzt wurden, eine vorteilhafte Rheologie aufwei­ sen. Die eingesetzten Polyetherurethane bewirken schon in geringen Mengen eine hohe Ver­ dickungsleistung. Dabei ist es möglich, auch Systeme mit niedrigen Tensidgehalten zu verdi­ cken. Die Rheologie der Formulierungen bleibt auch nach längerer Lagerung und bei wech­ selnden Temperaturen unverändert. Die Formulierungen weisen eine gute Haut- und Kopf­ hautverträglichkeit auf. Die geringen Mengen an Polymeren führen zu einem angenehmen, nicht klebrigen Hautgefühl, so dass auch ein Verkleben von Haaren vermieden wird. Die Zu­ bereitungen zeigen auch bei hohen Salzkonzentrationen eine gute physikalische und chemi­ sche Stabilität.
Polyetherurethane
Polyetherurethane sind Polymere, die durch Umsetzung von Alkoholethoxylaten mit Isocya­ naten oder Polyisocyanaten entstehen.
Alkoholethoxylate werden herstellungsbedingt als Fettalkohol- oder Oxoalkoholethoxylate bezeichnet und folgen vorzugsweise der Formel (II),
R1O(CH2CH2O)nH (II)
in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlen­ stoff-atomen und n für Zahlen von 1 bis 200 steht. Typische Beispiele für die Alkoholethox­ late, die in den erfindungsgemäßen Polyetherurethane eingesetzt werden, sind die Addukte von durchschnittlich 10 bis 200, vorzugsweise 30 bis 150 und insbesondere 80 bis 120 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalko­ hol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, I­ sostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl-alkohol, Gadoleylal­ kohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mi­ schungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomer­ fraktion bei der Dime-risierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Ad­ dukte von 40 bis 60 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlen­ stoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol, insbesondere Fettalkohole mit 16 bis 18 Kohlenstoffatomen.
Als Isocyanate können aliphatische Polyisocyanate eingesetzt werden, wobei der Einsatz von Diisocyanaten bevorzugt ist, die 1 bis 10 Methylengruppen enthalten, vorzugsweise 4 bis 8 Methylengruppen, besonders bevorzugt ist das Hexamethylendiisocyanat, das auch zu cycli­ schen Vielfachen von Hexamethylendiisocyanat verknüpft sein kann wie das im Handel be­ findliche Isocyanaurat T 1890® der Firma Degussa, und insbesondere das trifunktionelle a­ liphatische Hexamethylendiisocyanat, erhältlich unter dem Namen Desmodur RF® bei der Firma Bayer. Bei Einsatz von cyclischen Polyisocyanaten entstehen Polyetherurethane gemäß Formel (VI).
Besonders bevorzugt wird auch das Umsetzungsprodukt eines halbseitig zum Monoamin hydrolisierten Hexamethylandiisocyanats mit jeweils einer Isocyanatgruppe zweier weiterer Hexamethyleandiisocyanate zu (III)
NCO-CH2-CH2-CH2-CH2-CH2-CH2-N(CO-NH-CH2-CH2-CH2-CH2-CH2-CH2-NCO)2 (III)
Bezüglich der Herstellung der Polyetherurethane sei verwiesen auf die in der DE 36 30 319 A1 dargestellten Methoden. Eine weitere in der vorliegenden Erfindung beschriebene Metho­ de, die für die Verdicker der erfindungsgemäßen Zubereitungen aufgrund der einfachen, kostengünstigen und schnellen Herstellung von besonderer Bedeutung ist, wird in den Bei­ spielen dargestellt. Sie stellt ein Verfahren dar, bei dem man ethoxylierte Fettalkohole vor­ trocknet, diesen in der Rückflußapparatur bei 90 bis 110°C vorzugsweise 95 bis 105°C unter Stickstoffathmosphäre ein cyclisiertes Diisocyanat zusetzt und eine Reaktionszeit bis zu 3 Stunden, vorzugweise 2 Stunden, jedoch besonders bevorzugt nur eine Stunde benötigt, bis der NCO-Wert, der unter 0,1 Gew.-%, vorzugsweise unter 0,05 Gew.-% liegen soll, erreicht ist. Es ist dabei besonders vorteilhaft, dass die Reaktion ohne Zugabe eines Katalysators abläuft und dass die Reaktionszeit sehr kurz ausfällt.
Das durchschnittliche Molekulargewicht der in der Erfindung eingesetzten Polyetherurethane liegt im Bereich von 4000 bis 30000, vorzugsweise 8000 bis 20000 und insbesondere 10000 bis 15000.
Die erfindungsgemäßen Mittei können die Polyetherurethane in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 3 Gew.-% und insbesondere 0,1 bis 1 Gew.-% - bezogen auf die Gesamtformulierung - enthalten.
Je nach Zusammensetzung und Art der kosmetischen Zubereitung ist die Viskosität der For­ mulierung durch die Auswahl der Polyetherurethane mit entsprechendem Molekulargewicht über die Einheiten an Ethylenoxid exakt einzustellen. In Abhängigkeit von der angedickten Formulierung lassen sich Viskositäten im Bereich von 100 bis 1000000 mPa.s, vorzugsweise 1000 bis 50000 mPa.s, besonders bevorzugt 4000 bis 35000 mPa.s einstellen (Brookfield RVT-Viskosimeter, 10 Upm, Spindel 4, Raumtemperatur).
Insbesondere Tensidlösungen lassen sich mit den ausgewählten Polyetherurethanen gut ver­ dicken, dabei hat sich die Kombination mit Alkyl(en)oligoglykosiden und/oder mit Alk(en)ylsulfaten bezüglich der Stabilität und Verträglichkeit der Formulierungen besonders bewährt.
Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (IV) folgen,
R1O-[G]p (IV)
in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Bier­ mann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm. Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo-glykosid eine analytisch er­ mittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise wer­ den Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyl­ oligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Bu­ tanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren techni­ sche Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäureme­ thylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugswei­ se 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My­ ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylal­ kohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosal­ kohol mit einem DP von 1 bis 3.
Die erfindungsgemäßen Mittel können Alkyl- und/oder Alkenyloligoglykoside in Mengen von 0,1 bis 30 Gew.-%, vorzugsweise 1 bis 20 und insbesondere 5 bis 10 Gew.-% - bezogen auf die Gesamtformulierung - enthalten.
Alkyl- und/oder Alkenylsulfate
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet wer­ den, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (V) fol­ gen,
R1O-SO3X (V)
in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalka­ limetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typi­ sche Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylal­ kohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostea­ rylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl-alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruck­ hydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelen'schen Oxo­ synthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkali-salze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talgfettalkoholen bzw. pflanzliche Fettalkohole ver­ gleichbarer C-Kettenverteilung in Form ihrer Natriumsalze.
Die erfindungsgemäßen Mittel können Alkyl- und/oder Alkenylsulfate in Mengen von 0,1 bis 20 Gew.-% und vorzugsweise 1 bis 15 - bezogen auf die Gesamtformulierung - enthalten.
Gewerbliche Anwendbarkeit
Die unter erfindungsgemäßer Verwendung der Polyetherurethane angedickten kosmetischen Mittel werden eingesetzt zur Pflege, Schutz und Reinigung von Haut und Haaren, und stellen daher kosmetische und/oder pharmazeutischen Zubereitungen dar, wie beispielsweise Haar­ shampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pu­ dern oder Salben. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tensi­ de, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfet­ tungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Weitere Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder ampho­ tere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsul­ fonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Fettalkoholethersulfate, Glycerin-ethersulfate, Fettsäureethersulfate, Hydroxymischethersul­ fate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosucci­ nate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N- Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acy­ laspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Po­ lyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäurea­ midpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurede­ rivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine kon­ ventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäu­ retrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazo­ liniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf ein­ schlägige Übersichtsarbeiten beispielsweise J. Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J. Falbe (ed.), "Katalysato­ ren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d. h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkyl­ sulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäuregluta­ mate, α-Olefinsulfonate, Ethercarbonsäuren, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit li­ nearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-C13- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z. B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristyle­ rucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, I­ sostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleyl­ palmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmy­ ristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C18-C38-Alkylhy­ droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 197 56 377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guer­ betalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von C6-C18-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Es­ ter von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlen­ stoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und ver­ zweigte C6-C22-Fettalkoholcarbonate, wie z. B. Dicaprylyl Carbonate (Cetiol® CC), Guer­ betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Es­ ter der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z. B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Koh­ lenstoffatomen pro Alkylgruppe, wie z. B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungspro­ dukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Silicium­ methicontypen u. a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z. B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
  • - Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest
    (unabhängig von den zuvor mit Isocyanaten zu Verdickern umgesetzten Verbindun­ gen);
  • - Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Rici­ nusöl;
  • - Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
  • - Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
  • - Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polye­ thylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zucker­ alkoholen (z. B. Sorbit), Alkylglucosiden (z. B. Methylglucosid, Butylglucosid, Laurylgluco­ sid) sowie Polyglucosiden (z. B. Cellulose) mit gesättigten und/oder ungesättigten, linea­ ren oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethy­ lenoxid;
  • - Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 11 65 574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Me­ thylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
  • - Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
  • - Wollwachsalkohole;
  • - Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
  • - Block-Copolymere z. B. Polyethylenglycol-30 Dipolyhydroxystearate;
  • - Polymeremulgatoren, z. B. Pemulen-Typen (TR-1, TR-2) von Goodrich;
  • - Polyalkylenglycole sowie
  • - Glycerincarbonat.
Ethylenoxidanlagerungsprodukte
Weitere Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalko­ hole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxy­ lierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12/18- Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 20 24 051 PS als Rückfettungsmittel für kosmetische Zubereitungen be­ kannt. Diese Ethylenoxidanlagerungsprodukte können neben den mit Isocyanaten zu Verdickern umgesetzten Molekülen in der Formulierung vorkommen.
Partialglyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäure­ diglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremo­ noglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol E­ thylenoxid an die genannten Partialglyceride.
Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan­ diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan­ dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbi­ tandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesqui­ tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitan­ dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die ge­ nannten Sorbitanester.
Polyglycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystea­ rate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostea­ rate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polygly­ ceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cre­ mophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Di­ merate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoff­ atomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Seba­ cinsäure.
Amohothere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwit­ terionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammonium­ glycinate, beispielsweise das Kokosacylaminopropyldimethyl-ammoniumglycinat, und 2- Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethyl­ glycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Be­ taine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholyti­ sche Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbin­ dungen verstanden, die außer einer C8/18-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tensi­ de sind N-Alkylglycine, N-Alkylpropion-säuren, N-Alkylaminobuttersäuren, N-Alkyliminodi­ propionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N- Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12/18-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäu­ retriethanolaminester-Salze, besonders bevorzugt sind.
Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d. h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u. a. natürliche Wachse, wie z. B. Candelillawachs, Carnaubawachs, Ja­ panwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohr­ wachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z. B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z. B. Polyalkylenwachse und Polye­ thylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine ver­ steht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2- Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylengly­ coldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy­ substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell lang­ kettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettal­ dehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufwei­ sen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlen­ stoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Verdickungsmittel
Neben den erfindungsgemäßen Polyetherurethanen können weitere Konsistenzgeber und Verdickungsmittel eingesetzt werden. Als Konsistenzgeber kommen in erster Linie Fettalko­ hole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N- methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Ge­ eignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carbo­ xymethylcellulose und Hydroxyethyl- und Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z. B. Carbopole® und Pe­ mulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon. Als besonders wirkungsvoll haben sich auch Bentonite, wie z. B. Bentone® Gel V5-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopenta­ siloxan, Disteardimonium Hectorit und Propylencarbonat handelt. Weiter in Frage kommen Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyo­ len wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit einge­ engter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie po­ lyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceri­ de und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Ac­ rylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amo­ dimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie bei­ spielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationspro­ dukte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkylaminen, wie z. B. Bis- Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1, Mirapol® A2-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielswei­ se Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace­ tat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copoly­ mere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamido­ propyltrimethylammoniumchlorid/Acrylat-Copolymere, Octylacrylamid/Methylmeth-acry­ lat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvinylpyrro­ lidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/Dimethylaminoethylmethacry­ lat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Sili­ cone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm. Toil. 108, 95 (1993) aufgeführt.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpoly­ siloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, gly­ kosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm. Toil. 91, 27 (1976).
UV-Lichtschutzfilter und Antioxidantien
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ult­ raviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:
  • - 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3-(4- Methylbenzyliden)campher wie in der EP 0693471 B1 beschrieben;
  • - 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl­ hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe­ säureamylester;
  • - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy­ zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2- ethylhexylester (Octocrylene);
  • - Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso­ propylbenzylester, Salicylsäurehomomenthylester;
  • - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
  • - Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl­ ester;
  • - Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
  • - Propan-1,3-dione, wie z. B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
  • - Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
  • - 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylam­ monium-, Alkanolammonium- und Glucammoniumsalze;
  • - Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo­ phenon-5-sulfonsäure und ihre Salze;
  • - Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenme­ thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'- methoxydibenzoylmethan (Parsol® 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 197 12 033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z. B. 4-tert.-Butyl- 4'-methoxydibenzoylmethan (Parsol® 1789) und 2-Cyano-3,3-phenylzimtsäure-2-ethyl­ hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4- Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlösli­ chen Filtern wie z. B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Am­ monium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Licht­ schutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zir­ koniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm auf­ weisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z. B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coa­ tingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Si­ methicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Na­ nopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere ge­ eignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122, 543 (1996) sowie Parf. Kosm. 3, 11 (1999) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut ein­ dringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryp­ tophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Caroti­ ne (z. B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Deri­ vate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiou­ racil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ- Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distea­ rylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr ge­ ringen verträglichen Dosierungen (z. B. pmol bis µmol/kg), ferner (Metall)-Chelatoren (z. B. α- Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z. B. Citronen­ säure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ- Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Deri­ vate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butyl­ hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophe­ non, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnSO4) Selen und dessen Derivate (z. B. Selen-Methionin), Stilbene und deren Derivate (z. B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol­ palmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, β- Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ce­ ramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z. B. Prunusextrakt, Bambara­ nussextrakt und Vitaminkomplexe zu verstehen.
Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dement­ sprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibito­ ren, Geruchsabsorber oder Geruchsüberdecker fungieren.
Keimhemmende Mittel
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksa­ men Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4- Chlorphenyl)-N'-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxy-diphenylether (Triclosan), 4-Chlor-3,5-dimethyl-phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3- Methyl-4-(1-methylethyl)-phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1,2- propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbonilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Far­ nesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n- octylamid oder Salicylsäure-n-decylamid.
Enzyminhibitoren
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropyl­ citrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe in­ hibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterin­ sulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethyl­ ester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb­ onsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
Geruchsabsorber
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Kompo­ nenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zink­ salz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Al­ kohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylben­ zoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jo­ none und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehö­ ren hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen ver­ schiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeu­ gen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten ver­ wendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissen­ öl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Gal­ banumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyr­ cenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl­ aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, San­ delice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, p-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranyla­ cetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körperge­ ruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
  • - adstringierende Wirkstoffe,
  • - Ölkomponenten,
  • - nichtionische Emulgatoren,
  • - Coemulgatoren,
  • - Konsistenzgeber,
  • - Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
  • - nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z. B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumses­ quichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Alumini­ umhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in An­ titranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z. B. sein:
  • - entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
  • - synthetische hautschützende Wirkstoffe und/oder
  • - öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z. B. Konservierungsmittel, wasserlösliche Duftstoffe, pH- Wert-Stellmittel, z. B. Puffergemische, wasserlösliche Verdickungsmittel, z. B. wasserlösliche natürliche oder synthetische Polymere wie z. B. Xanthan-Gum, Hydroxyethylcellulose, Polyvi­ nylpyrrolidon oder hochmolekulare Polyethylenoxide.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater­ niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(1H)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketocona­ zol®, (4-Acetyl-1-{-4-[2-(2.4-dichlorphenyl) r-2-(1H-imidazol-1-ylmethyl)-1,3-dioxylan-c-4- ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefel­ polyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion/Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen so­ wie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R. Lochhead in Cosm. Toil. 108, 95 (1993) entnom­ men werden.
Insekten-Repellentien
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butyla­ cetylaminopropionate in Frage
Selbstbräuner und Depigmentierungsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispiels­ weise Arbutin, Ferulasäure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, be­ sitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
  • - Glycerin;
  • - Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty­ lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Moleku­ largewicht von 100 bis 1.000 Dalton;
  • - technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
  • - Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethy­ lolbutan, Pentaerythrit und Dipentaerythrit;
  • - Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
  • - Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
  • - Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
  • - Aminozucker, wie beispielsweise Glucamin;
  • - Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® be­ kannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung auf­ geführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Na­ türliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Ange­ lica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie bei­ spielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riech­ stoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalyl­ benzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropio­ nat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Alde­ hyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronel­ lyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Keto­ nen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro­ makomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzy­ lacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Sternanisöl, Küm­ melöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Beispiele sind Kochenillerot A (C. I. 16255), Patentblau V (C. I. 42051), Indigotin (C. I. 73015), Chlorophyllin (C. I. 75810), Chinolin­ gelb (C. I. 47005), Titandioxid (C. I. 77891), Indanthrenblau RS (C. I. 69800) und Krapplack (C. I. 58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die ge­ samte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 99, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.
Beispiele
Die folgenden Beispiele sollen den Gegenstand der Erfindung näher erläutern, ohne ihn hier­ auf zu beschränken. Das unter Herstellung beschriebene Polyetherurethan wurde in den Bei­ spielen Tabelle 1, 2 und 3 eingesetzt.
Herstellung eines erfindungsgemäßen Polyetherurethans gemäß Formel (I)
Bei diesem Polyetherurethan handelt es sich um ein Polyurethan aus Stearylalkohol.100 EO (Brij 700 P, Uniqema) und trimerisertem Hexamethylendiisocyanat (Desmodur N 3300 K, BAYER, Leverkusen; jeweils eine der beiden NCO-Gruppen dreier Hexamethylendiisocyanat­ moleküle sind über einen (-CO-NR-)3-Sechsring miteinander verbunden) im Mol-Verhältnis von 3,15 : 1.
1. Vortrocknung
Apparatur:
Vakuumdestillation: 4-Hals-Rundkolben, Rührer, Heizquelle (Ölbad), Kontaktthermometer, Ölpumpe, Kühlfalle
Durchführung:
Stearylalkohol.100 EO (Brij 700 P, Uniqema)wird unter Rühren und Stickstoffspülen auf 120°C erwärmt und dann mittels Ölpumpe 2 h lang entwässert.
Danach wird mit Stickstoff belüftet, auf 80°C abgekühlt und zur Rückflußapparatur umge­ baut.
2. Reaktion
Apparatur:
Rückflußapparatur: 4-Hals-Rundkolben, Rührer, Heizquelle (Ölbad), Kontaktthermometer, Intensivkühler, Thermometer
Rezeptur:
Vorlage:
195,6 g Brij 700 P NO-AOX-NENA (0,0558 mol)
Zusatzstoffe:
7,8 g Desmodur N3300 K (0,0177 mol)
Durchführung:
Während der Reaktionsphase wird ein leichter Stickstoffstrom übergeleitet. Zunächst wird auf 100°C erwärmt und das Triisocyanat zugesetzt. Durch NCO-Titration wird der Endpunkt der Reaktion ermittelt. Nach 1 Stunde Reaktionszeit wird ein NCO-Wert unterhalb der Detekti­ onsgrenze erreicht. Der Ansatz wird auf Raumtemperatur abgekühlt und abgefüllt.
3. Spezifikation
Steigrohrschmelzpunkt [DGF-Einheitsmethode C-IV 3a (52)]: 49°C
Die nachfolgenden Zubereitungen wurden durch Vermischen und Homogenisieren der Aus­ gangsstoffe bei Raumtemperatur hergestellt. Die Einarbeitung des Polyetherurethanverdi­ ckers erfolgte bei 40 bis 50°C im jeweiligen Tensid (Plantacare 2000 UP oder Texapon ASV 50). Die Viskosität der Reinigungslösungen wurde 24 Stunden nach der Herstellung in einem Brookfield RVT-Viskosimeter (10 Upm, Spindel 4; für Beispiel 5 Spindel 5) untersucht. Die Lagerstabilität wurde nach vierwöchiger Lagerung bei 20, 30 und 40°C subjektiv beurteilt, wobei die Parameter Fließverhalten und Aussehen bewertet wurden. Die Zusammensetzun­ gen und Ergebnisse sind in Tabelle 1 zusammengefaßt. Die Beispiele 1 bis 5 sind erfindungs­ gemäß, die Beispiele V1 bis V4 dienen zum Vergleich.
Tabelle 1
Mengenangaben in Gew.-%
INCI-Bezeichnung
Plantacare 2000 UP: Decyl Glucoside (Cognis GmbH, Düsseldorf)
Texapon NSO: Sodium Laureth Sulfate (Cognis GmbH, Düsseldorf)
Lamepon S: Potassium Cocoyl Hydrolyzed Collagen (Cognis GmbH, Düsseldorf)
TexaponASV 50: Sodium Laureth Sulfate and Sodium Laureth 8-Sulfate and Magnesium Laureth Sulfate and Magnesium Laureth 8-Sulfate and Sodium Oleth Sulfate and Magnesium Oleth Sulfate (Cognis GmbH, Düsseldorf)
Dehyton DC: Disodium Cocoamphodiacetate (Cognis GmbH, Düsseldorf)
Arlypon F: Laureth-2 (Cognis GmbH, Düsseldorf)
Antil 120: Polyethylenglycol 120 Methyl Glucose Dioleate (Goldschmidt, Essen)
Polyetherurethan*: Polyetherurethan nach der Formel (I), in der R1
und R2
= C16; x = 3; m und n = 100
Lagerstabilität
-: schlechte Viskositätsstabilität zwischen 20 und 40°C
+: geringe Viskositätsstabilität zwischen 20 und 40°C
++: gute Viskositätsstabilität zwischen 20 und 40°C
+++: ausgezeichnete Viskositätsstabilität zwischen 20 und 40°C
Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
Tabelle 3
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)

Claims (11)

1. Kosmetische Zubereitungen, enthaltend Polyetherurethan-Verdicker, gemäß Formel (I),
in der R1, R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, x, y, z unabhängig voneinander für Zahlen von 1 bis 10 und k, m und n unabhängig voneinander für Zahlen von 10 bis 200 stehen.
2. Kosmetische Zubereitungen gemäß Anspruch 1, dadurch gekennzeichnet, dass K, m und n unabhängig voneinander für Zahlen von 80 bis 120 stehen.
3. Kosmetische Zubereitungen gemäß Anspruch 1 und/oder Anspruch 2, dadurch gekenn­ zeichnet, dass x, y und z sechs ist.
4. Kosmetische Zubereitungen nach mindestens einem der Ansprüche 1 bis 3, dadurch ge­ kennzeichnet, dass R1, R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkyl- und/oder Alkenylreste mit 16 bis 18 Kohlenstoffatomen stehen.
5. Kosmetische Zubereitungen nach mindestens einem der Ansprüche 1 bis 4, dadurch ge­ kennzeichnet, dass sie Polyetherurethan-Verdicker in Mengen von 0,01 bis 5 Gew.-% be­ zogen auf die Gesamtzubereitung enthalten.
6. Kosmetische Zubereitungen nach mindestens einem der Ansprüche 1 bis 5, dadurch ge­ kennzeichnet, dass sie Polyetherurethan-Verdicker in Mengen von 0,1 bis 1 Gew.-% be­ zogen auf die Gesamtzubereitung enthalten.
7. Kosmetische Zubereitungen nach mindestens einem der Ansprüche 1 bis 6, dadurch ge­ kennzeichnet, dass sie Polyetherurethan-Verdicker enthalten, die ein durchschnittliches Molekulargewicht im Bereich von 4.000 bis 30.000 aufweisen.
8. Kosmetische Zubereitungen nach mindestens einem der Ansprüche 1 bis 7, dadurch ge­ kennzeichnet, dass sie als weitere Hilfsstoffe Alk(en)yloligoglycoside und/oder Alk(en)ylsulfate enthalten.
9. Verwendung von Zubereitungen nach mindestens einem der Ansprüche 1 bis 8 zur Pfle­ ge, Schutz und Reinigung von Haut und Haaren.
10. Verfahren zur Herstellung von Polyetherurethan-Verdickern, dadurch gekennzeichnet, dass man
  • a) Ethoxylierte Fettalkohole vortrocknet, diesen
  • b) in der Rückflußapparatur bei 90 bis 110°C unter Stickstoffathmosphäre aliphatische Diisocyanate oder Triisocyanate zusetzt und
  • c) die Reaktion nach maximal 3 Stunden bei einem NCO-Wert unter 0,1 Gew.-% (ermit­ telt durch NCO-Titration) beendet.
11. Kosmetische Zubereitungen, enthaltend Polyetherurethan-Verdicker, gemäß Formel (VI)
in der R1, R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, x, y, z unabhängig voneinander für Zahlen von 1 bis 10 und k, m und n unabhängig voneinander für Zahlen von 10 bis 200 stehen.
DE10118269A 2001-04-12 2001-04-12 Kosmetische Zubereitungen Withdrawn DE10118269A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10118269A DE10118269A1 (de) 2001-04-12 2001-04-12 Kosmetische Zubereitungen
JP2002585509A JP2004528355A (ja) 2001-04-12 2002-04-03 化粧用製剤
US10/474,572 US7318929B2 (en) 2001-04-12 2002-04-03 Cosmetic preparations
PCT/EP2002/003703 WO2002088212A1 (de) 2001-04-12 2002-04-03 Kosmetische zubereitungen
EP02766616A EP1377619A1 (de) 2001-04-12 2002-04-03 Kosmetische zubereitungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10118269A DE10118269A1 (de) 2001-04-12 2001-04-12 Kosmetische Zubereitungen

Publications (1)

Publication Number Publication Date
DE10118269A1 true DE10118269A1 (de) 2002-10-17

Family

ID=7681346

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10118269A Withdrawn DE10118269A1 (de) 2001-04-12 2001-04-12 Kosmetische Zubereitungen

Country Status (5)

Country Link
US (1) US7318929B2 (de)
EP (1) EP1377619A1 (de)
JP (1) JP2004528355A (de)
DE (1) DE10118269A1 (de)
WO (1) WO2002088212A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372783B1 (ko) * 2004-01-22 2014-03-11 유니버시티 오브 마이애미 국소용 코-엔자임 큐10 제형 및 그의 사용 방법
ES2352109T3 (es) * 2007-01-31 2011-02-15 Basf Se Agente acondicionado catiónico.
AU2008228764B2 (en) 2007-03-22 2014-05-08 Berg Llc Topical formulations having enhanced bioavailability
US8414872B2 (en) 2007-09-10 2013-04-09 Liquid Keratin, Inc. Hair straightening formulations, methods and systems
BRPI0911658A2 (pt) 2008-04-11 2015-10-13 Cytotech Labs Llc métodos e usos de indução de apoptose em células de câncer
US8173750B2 (en) 2009-04-23 2012-05-08 ATRP Solutions, Inc. Star macromolecules for personal and home care
WO2010123575A1 (en) 2009-04-23 2010-10-28 Atrp Solutions Inc Well defined stars with segmented arms
KR20120088555A (ko) * 2009-05-11 2012-08-08 버그 바이오시스템즈, 엘엘씨 환경대사적 전환인자, 다차원 세포내 분자 또는 환경적 영향인자를 사용한 대사적 장애의 진단 방법
ES2437919T3 (es) 2009-09-24 2014-01-15 Unilever Nv Agente desinfectante que comprende eugenol, terpineol y timol
EP2544663B1 (de) 2010-03-12 2018-01-03 Berg LLC Intravenöse formulierung aus dem coenzym q10 (coq10) und verwendungsverfahren dafür
CA2810099A1 (en) 2010-09-01 2012-03-08 Basf Se Associative thickener for aqueous preparations
US8871817B2 (en) 2010-10-22 2014-10-28 Basf Se Polyurethane thickeners
US9175125B2 (en) 2010-10-22 2015-11-03 Basf Se Polyurethane thickeners
CN103328527B (zh) 2010-10-22 2016-05-25 巴斯夫欧洲公司 聚氨酯增稠剂
KR101857309B1 (ko) 2010-10-22 2018-05-11 바스프 에스이 폴리우레탄 증점제
EA022986B1 (ru) 2010-12-07 2016-04-29 Юнилевер Нв Композиция для ухода за полостью рта
AU2012240222B2 (en) 2011-04-04 2017-04-27 Berg Llc Methods of treating central nervous system tumors
MX369543B (es) 2011-06-17 2019-11-12 Berg Llc Composiciones farmaceuticas inhalables.
WO2013064360A2 (en) 2011-11-03 2013-05-10 Unilever N.V. A personal cleaning composition
WO2014070689A1 (en) 2012-10-29 2014-05-08 The Procter & Gamble Company Personal care compositions having a tan delta of 0.30 or more at 10°c
EP2983654A4 (de) 2013-04-08 2016-11-30 Berg Llc Behandlung von krebs mit coenzym-q10-kombinationstherapien
AU2014315186B2 (en) 2013-09-04 2020-02-27 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10
CN112225877A (zh) * 2020-09-04 2021-01-15 华南理工大学 一种三官能度异氰酸酯改性聚氨酯增稠剂及其制备方法
CN114392199B (zh) * 2022-01-28 2024-03-19 拉芳家化股份有限公司 不含硅油和阳离子具有头皮护理功能的护发素及制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104700C (de) 1955-08-12
DE1165574B (de) 1960-08-08 1964-03-19 Dehydag Gmbh Verfahren zur Herstellung von als Emulgiermittel fuer Salbengrundlagen dienenden Mischestern
DE2024051C3 (de) 1970-05-16 1986-05-07 Henkel KGaA, 4000 Düsseldorf Verwendung der Veresterungsprodukte von Glycerin-Äthylenoxid-Addukten mit Fettsäuren als Rückfettungsmittel in kosmetischen Zubereitungen
DE2054885B2 (de) 1970-11-07 1976-05-13 Basf Ag, 6700 Ludwigshafen Pigmentdruckpasten
LU68901A1 (de) 1973-11-30 1975-08-20
US4172887A (en) 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
US4155892A (en) 1975-10-03 1979-05-22 Rohm And Haas Company Polyurethane thickeners for aqueous compositions
DE3630319A1 (de) * 1986-09-05 1988-03-10 Akzo Gmbh Verdickungsmittel
DE4136618A1 (de) * 1991-11-07 1993-05-13 Bayer Ag Wasserdispergierbare polyisocyanatgemische
DE4426215A1 (de) 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
DE4426216A1 (de) 1994-07-23 1996-01-25 Merck Patent Gmbh Benzyliden-Norcampher-Derivate
GB9612067D0 (en) * 1996-06-10 1996-08-14 Smithkline Beecham Plc Composition
EP1293504A3 (de) 1996-07-08 2003-11-05 Ciba SC Holding AG Triazinderivate als UV-Filter in kosmetischen Mitteln
DE19644933A1 (de) * 1996-10-29 1998-04-30 Borchers Gmbh Neue Verdickungsmittel-Zubereitungen auf Polyurethanbasis und ihre Verwendungen
DE19712033A1 (de) 1997-03-21 1998-09-24 Basf Ag Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
DE59712388D1 (de) 1996-11-29 2005-09-15 Basf Ag Photostabile UV-A-Filter enthaltende kosmetische Zubereitungen
EP0922447A3 (de) 1997-11-19 1999-10-27 Beiersdorf Aktiengesellschaft Verwendung von C18-38 -Alkylhydroxystearoylstearat zur Verstärkung des Lichtschutzfaktors und/oder der UV-A-Schutzleistung kosmetischer oder dermatologischer Formulierungen
DE19756377A1 (de) 1997-12-18 1999-06-24 Beiersdorf Ag Verwendung von C¶1¶¶8¶-¶3¶¶8¶-Alkylhydroxystearoylstearat zur Verstärkung der UV-A-Schutzleistung kosmetischer oder dermatologischer Formulierungen

Also Published As

Publication number Publication date
EP1377619A1 (de) 2004-01-07
JP2004528355A (ja) 2004-09-16
US20040115158A1 (en) 2004-06-17
US7318929B2 (en) 2008-01-15
WO2002088212A1 (de) 2002-11-07

Similar Documents

Publication Publication Date Title
DE10118269A1 (de) Kosmetische Zubereitungen
DE10118268A1 (de) Kosmetische Zubereitungen
EP1330230B1 (de) Verwendung von fettalkoholen als solubilisierungsmittel
EP1286758A2 (de) Emulgatoren
WO2002043685A2 (de) Kosmetische und/oder pharmazeutische emulsionen
WO2002102949A1 (de) Tensidmischungen
DE10059238A1 (de) Verdickungsmittel
EP1138313A1 (de) Pro-liposomen
EP1472211B1 (de) Weichmacher und kosmetische zusammensetzungen
EP1138310A1 (de) Pro-liposomen
DE10025756C2 (de) Lösungsvermittler
WO2001093653A2 (de) Esterquatmischungen
EP1264633B1 (de) Verwendung von Alkyl(ether)phosphaten(I)
EP1374845B1 (de) Kosmetische Zubereitungen
DE19945577B4 (de) Kosmetische und/oder pharmazeutische Zubereitungen und deren Verwendung
WO2002087537A1 (de) Verwendung von kationischen zubereitungen
DE10105904A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
WO2002043674A1 (de) Kosmetische mikroemulsionen
WO2002100523A1 (de) Polymere emulgatoren
WO2001074304A1 (de) Pro-liposomal verkapselte zubereitungen
DE10055518A1 (de) Verwendung von amphoteren Tensiden
WO2001044252A1 (de) Magnesium(ether)sulfat-pasten
EP1413285A1 (de) Haarkonditioniermittel mit einem Gehalt an Kationische Tenside, Ölkörper und Fettalkohole
DE10105908A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE10051544A1 (de) Glyceridgemische

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: COGNIS IP MANAGEMENT GMBH, 40589 DUESSELDORF, DE

8141 Disposal/no request for examination