[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE10005017A1 - Duftstofftabletten - Google Patents

Duftstofftabletten

Info

Publication number
DE10005017A1
DE10005017A1 DE10005017A DE10005017A DE10005017A1 DE 10005017 A1 DE10005017 A1 DE 10005017A1 DE 10005017 A DE10005017 A DE 10005017A DE 10005017 A DE10005017 A DE 10005017A DE 10005017 A1 DE10005017 A1 DE 10005017A1
Authority
DE
Germany
Prior art keywords
weight
alcohol
tablets
contain
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10005017A
Other languages
English (en)
Inventor
Ditmar Kischkel
Manfred Weuthen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE10005017A priority Critical patent/DE10005017A1/de
Priority to PCT/EP2001/000875 priority patent/WO2001057167A2/de
Priority to EP01902355A priority patent/EP1252284A2/de
Priority to US10/182,973 priority patent/US20030032575A1/en
Publication of DE10005017A1 publication Critical patent/DE10005017A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

Vorgeschlagen werden Duftstofftabletten, bestehend aus DOLLAR A (a) 69 bis 99 Gew.-% Sprengmitteln, DOLLAR A (b) 1 bis 31 Gew.-% Duftstoffen, DOLLAR A (c) 0 bis 10 Gew.-% Buildern und DOLLAR A (d) 0 bis 10 Gew.-% Tensiden, DOLLAR A mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der festen Waschmittel und betrifft neue Duftstofftabletten.
Stand der Technik
Zur textilen Reinigung im Haushaltsbereich werden in steigendem Maße feste Waschmittel in Tablet­ tenform eingesetzt. Im Markt haben sich unterschiedliche Anwendungsformen etabliert (Einsatz in der Einspülkammer, Einsatz in der Waschmaschinentrommel zusammen mit Applikationshilfen). Die derzeit im Markt befindlichen Waschmitteltabletten sind alle parfümölhaltig, wobei den Parfümölen im wesentli­ chen drei Funktionen zukommen:
  • - Geruchsgebung für die Tablette,
  • - Beduftung der Waschküche während des Waschprozesses und
  • - Geruchsgebung der Wäsche nach dem Reinigungsprozeß.
Aus naheliegenden Gründen kommt dem letzten Aspekt die höchste Bedeutung zu. Für eine Vielzahl von Verbrauchern führt die Mitverwendung von Parfümstoffen jedoch zu Problemen, da sie die Beduf­ tung entweder als unangenehm empfinden oder sogar ihr gegenüber allergisch reagieren. Als Alternati­ ve böte sich natürlich an, ähnlich wie bei Waschpulvern parfümhaltige und parfümfreie Waschmittelt­ abletten anzubieten. Während dem Parfümallergiker damit natürlich sofort gedient wäre, würde das Problem einer zu intensiven oder zu schwachen Beduftung der Wäsche jedoch ungelöst bleiben.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, für das geschilderte Problem eine einfache und vor allem auch unter kommerziellen Gesichtspunkten attraktive Lösung zur Verfügung zu stellen.
Beschreibung der Erfindung
Gegenstand der Erfindung sind Duftstofftabletten bestehend aus
  • a) 69 bis 99, vorzugsweise 75 bis 90 Gew.-% Sprengmitteln,
  • b) 1 bis 31, vorzugsweise 4 bis 8 Gew.-% Duftstoffen,
  • c) 0 bis 10, vorzugsweise 3 bis 7 Gew.-% Buildern und
  • d) 0 bis 10, vorzugsweise 3 bis 10 Gew.-% Tensiden,
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
Mit dem Einsatz der Duftstofftablette bleibt es dem Verbraucher selbst überlassen, ob er diese zusam­ men mit parfümfreien Waschmitteltabletten einsetzen will oder nicht. Über die Menge läßt sich zudem der Grad der Beduftung einstellen. Schließlich besteht die Möglichkeit, dem Verbraucher Tabletten mit unterschiedlichen Duftstoffen zur Verfügung zu stellen, so daß auch bei Verwendung ein und dessel­ ben Waschmittels die Beduftung der Wäsche nach Jahreszeit oder Geschmack stets anders sein kann, ohne daß der Waschmittelhersteller eine Vielzahl von verschiedenen Waschmitteltabletten bereithalten muß. Eine besondere Anwendungsform besteht beispielsweise darin, bestimmte Duftnoten mit be­ stimmten Farben der Duftstofftabletten zu kombinieren. So könnte beispielsweise eine "grüne" Duftnote in einer grünen oder grün-weißen Tablette untergebracht sein, während eine gelbe oder gelb-weiße Tablette charakteristisch für eine Citrusnote wäre. Solche Tabletten mit unterschiedlichen Duftnoten könnten separat angeboten werden oder aber als Kollektion, d. h. als Mischung von verschiedenen Duftstofftabletten, unter denen der Verbraucher dann auswählen kann. Ein weiterer Vorteil liegt darin, daß die Beduftung der Wäsche besonders einfach erreicht werden kann, wenn man die Duftstoffta­ blette - anders als die Waschmitteltablette - in den Spülgang eindosiert. Auf diesem Wege wird eine vergleichbare Wirkung des Duftstoffes gegenüber der Waschmitteltablette schon mit erheblich geringe­ ren Mengen (etwa 5 bis 90 Gew.-%) erzielt. Im übrigen erlaubt das Konzept auch die Verwendung von gegebenenfalls besonders preisgünstigen Duftstoffen, die nicht länger gegenüber den in den Wasch­ mitteltabletten obligatorisch enthaltenen Bleichmitteln und Alkalien sein müssen.
Sprengmittel
Die neuen Duftstofftabletten enthalten als Komponente (a) Spreng- oder Desintegrationsmittel. Hierun­ ter sind Stoffe zu verstehen, die den Formkörpern zugegeben werden, um deren Zerfall beim Inkon­ taktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z. B. in J. Pharm. Sci. 61 (1972), Römpp Chemilexikon, 9. Auflage, Band 6, S. 4440 sowie und Voigt "Lehrbuch der phar­ mazeutischen Technologie" (6. Auflage, 1987, S. 182-184). Diese Stoffe vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wo­ bei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie gegebenenfalls querverntztes Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, ins­ besondere Carboxymethylcellulosen und -stärken sowie deren Salze, Alginate, Casein-Derivate oder Chitosane. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Des­ integrationsmittel auf Cellulosebasis eingesetzt. Reine Cellulose weist die formale Bruttozusammenset­ zung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche che­ misch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Ve­ retherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxylgruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulosederivate einsetzen. In die Gruppe der Cellulosederivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Ami­ nocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Sprengmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischun­ gen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hy­ drolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Berei­ che (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind. Die Sprengmittel können im Formkörper makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Kon­ zentration. Sprengmittel, die im Sinne der Erfindung zugegen sein können, wie z. B. Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate, Polyethylenglycole sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 197 09 991 und DE 197 10 254 (Henkel) zu entneh­ men. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen.
Duftstoffe
Als Parfümöle bzw. Duftstoffe, die die Komponente (b) bilden, können einzelne Riechstoffverbindun­ gen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Koh­ lenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α- Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Lina­ lool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpe­ ne wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwen­ det, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Ka­ millenöf, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Oliba­ numöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandel­ holzöl.
Builder
Die erfindungsgemäßen Duftstofftabletten können des weiteren als fakultative Komponente (c) anorga­ nische und organische Builder- und Co-Buildersubstanzen enthalten, wobei als anorganische Builder­ substanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Silicate und - soweit zulässig - auch Phosphate, wie z. B. Tripolyphosphat zum Einsatz kommen. Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Cros­ field) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S. p. A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als unge­ trocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxy­ lierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylen­ oxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vor­ zugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1 . yH2O, wobei M Natrium oder Wasserstoff be­ deutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für × 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind sol­ che, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilicate Na2Si2O5 . yH2O bevorzugt, wobei β-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrie­ ben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 23 34 899 A1, EP 0026529 A9 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spe­ zielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbe­ sondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei­ spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs­ weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal­ ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, wel­ che löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "rönt­ genamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine schar­ fen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder­ eigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesonde­ re bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei­ se in der deutschen Patentanmeldung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind ver­ dichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgena­ morphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Ge­ eignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen, die als Co-Builder in Frage kommen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bern­ steinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedri­ geren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citro­ nensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus die­ sen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Po­ lymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa­ tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugs­ weise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce­ rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patent­ schriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%. Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycar­ boxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vor­ zugsweise 10000 bis 120000 und insbesondere 50000 bis 100000 (jeweils gemessen gegen Po­ lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbe­ sondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Mono­ mereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl­ säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, bei­ spielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde­ hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu­ re erhalten.
Tenside
Als weitere fakultative Bestandteile (Komponente d) können in den Duftstofftabletten des weiteren als Emulgatoren anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside, vor­ zugsweise sind jedoch anionische Tenside bzw. Kombinationen von anionischen und nichtionischen Tensiden zugegen sein. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäu­ reisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylamino-säuren wie beispielsweise Acyllac­ tylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäure­ kondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vor­ zugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtioni­ sche Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Bei­ spiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Hydroxyethyl Hydroxycetyl Dimmonium Chloride (De­ hyquart E) oder aber Esterquats. Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfo­ betaine. Vorzugsweise werden Alkylsulfate bzw. Alk(en)yloligoglucoside eingesetzt.
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verstehen, die vorzugsweise der Formel (I) folgen,
R1O-SO3X (I)
in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo­ leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl­ alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkali­ salze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalko­ hole, wie sie z. B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Han­ delsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alko­ holen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Alkyl- und Alkenyloligoglykoside folgen üblicherweise der Formel (II),
R2O-[G]p (II)
in der R2 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfang­ reiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen­ stoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (11) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo­ glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyl­ oligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R2 kann sich von primären Alkoholen mit 4 bis 11, vor­ zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca­ prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie bei­ spielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli­ goglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R2 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My­ ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal­ kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal­ kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Tablettierung
Die Herstellung der neuen Duftstofftabletten erfolgt in der Regel durch Preßagglomerierung. Die erhal­ tenen teilchenförmigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zu­ vor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbe­ handlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reini­ gungsmitteln, vorzugsweise Buildern oder Talcum Aerosilen, wodurch das Schüttgewicht im allgemei­ nen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise ge­ mäß den deutschen Patentanmeldungen DE 195 24 287 A1 und DE 195 47 457 A1 dar, wobei staubför­ mige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteil­ hafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 195 24 287 A1 und DE 195 47 457 A1 verwiesen. In der bevorzugten Ausführungsform der Erfindung weisen die Duftstofftabletten aus lager- und transporttechnischen Gründen vor abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blauweiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten. Formkörper mit besonders vorteilhafter Auflösegeschwindigkeit werden erhalten, wenn die granularen Bestandteile vor dem Verpressen einen Anteil an Teilchen, die einen Durchmes­ ser außerhalb des Bereiches von 0,02 bis 6 mm besitzen, von weniger als 20, vorzugsweise weniger als 10 Gew.-% aufweisen. Bevorzugt ist eine Teilchengrößenverteilung im Bereich von 0,05 bis 2,0 und besonders bevorzugt von 0,2 bis 1,0 mm.
Beispiele
In der nachfolgenden Tabelle 1 sind eine Reihe von Beispielrezepturen zur Herstellung von Duftstoffta­ bletten angegeben.
Tabelle 1
Duftstofftabletten (Mengenangabe als Gew.-%)

Claims (6)

1. Duftstofftabletten bestehend aus
  • a) 69 bis 99 Gew.-% Sprengmitteln,
  • b)  1 bis 31 Gew.-% Duftstoffen,
  • c)  0 bis 15 Gew.-% Buildern und
  • d)  0 bis 15 Gew.-% Tensiden,
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
2. Tabletten nach Anspruch 1, dadurch gekennzeichnet, daß sie aus
  • a) 75 bis 90 Gew.-% Sprengmitteln,
  • b)  4 bis 8 Gew.-% Duftstoffen,
  • c)  3 bis 7 Gew.-% Buildern und
  • d)  3 bis 10 Gew.-% Tensiden,
bestehen, mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% addieren.
3. Tabletten nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (a) Sprengmittel enthalten, welche ausgewählt sind aus der Gruppe, die gebildet wird von gegebe­ nenfalls quervernetzten Polyvinylpyrrolidonen, Cellulosen, Carboxymethylcellulosen, Carboxyme­ thylstärken, und Chitosanen.
4. Tabletten nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente (b) Duftstoffe enthalten, welche ausgewählt sind aus der Gruppe, die gebildet wird von Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethyl­ benzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat, Benzylsalicylat, Citral, Citronellal, Citronellyloxyacetal­ dehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial, Bourgeonal, α-Isomethylionon, Methylcedryl­ keton, Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol, Terpineol, Limonen und Pinen.
5. Tabletten nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als Komponente (c) Builder enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Zeo­ lithen, kristallinen Schichtsilicaten, amorphen Silicaten und Phosphaten.
6. Tabletten nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Komponente (d) Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Al­ kyl- und/oder Alkenylsulfaten sowie Alkyl- und/oder Alkenylglykosiden.
DE10005017A 2000-02-04 2000-02-04 Duftstofftabletten Withdrawn DE10005017A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10005017A DE10005017A1 (de) 2000-02-04 2000-02-04 Duftstofftabletten
PCT/EP2001/000875 WO2001057167A2 (de) 2000-02-04 2001-01-26 Duftstofftabletten
EP01902355A EP1252284A2 (de) 2000-02-04 2001-01-26 Duftstofftabletten
US10/182,973 US20030032575A1 (en) 2000-02-04 2001-01-26 Fragrance tablets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10005017A DE10005017A1 (de) 2000-02-04 2000-02-04 Duftstofftabletten

Publications (1)

Publication Number Publication Date
DE10005017A1 true DE10005017A1 (de) 2001-08-09

Family

ID=7629883

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10005017A Withdrawn DE10005017A1 (de) 2000-02-04 2000-02-04 Duftstofftabletten

Country Status (4)

Country Link
US (1) US20030032575A1 (de)
EP (1) EP1252284A2 (de)
DE (1) DE10005017A1 (de)
WO (1) WO2001057167A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038021A3 (en) * 2001-10-26 2003-06-12 Isp Investments Inc Tablet of compacted particulate cleaning composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378321B1 (ko) 2007-05-25 2014-03-28 (주)아모레퍼시픽 해당화의 향취를 재현한 향료 조성물
KR100927969B1 (ko) 2007-10-31 2009-11-24 주식회사 코리아나화장품 천연 백합향을 이용하여 백합의 향취를 재현한 향료 조성물

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA734721B (en) * 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) * 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
US4524009A (en) * 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) * 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) * 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597473B1 (fr) * 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
DE3706036A1 (de) * 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) * 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
US5576425A (en) * 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
YU221490A (sh) * 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
DE4133862C2 (de) * 1991-10-12 2003-07-17 Freytag Von Loringhoven Andrea Duftstoffe enthaltende Tablette
DE4134914A1 (de) * 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
DE4221381C1 (de) * 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) * 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
DE4300772C2 (de) * 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) * 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
DE4317519A1 (de) * 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4400024A1 (de) * 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) * 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
ES2079327B1 (es) * 1994-12-13 1996-08-01 Lilly Sa Formulaciones farmaceuticas de cefaclor.
DE19600018A1 (de) * 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19628617A1 (de) * 1996-07-16 1998-01-22 Basf Ag Direkttablettierhilfsmittel
DE19757059A1 (de) * 1997-12-20 1999-07-01 Merz & Co Gmbh & Co Balneologische Brausetablette, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19901064A1 (de) * 1999-01-14 2000-07-20 Henkel Kgaa Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038021A3 (en) * 2001-10-26 2003-06-12 Isp Investments Inc Tablet of compacted particulate cleaning composition
US6586386B2 (en) * 2001-10-26 2003-07-01 Isp Investments Inc. Tablet of compacted particulate cleaning composition

Also Published As

Publication number Publication date
WO2001057167A3 (de) 2002-02-14
EP1252284A2 (de) 2002-10-30
US20030032575A1 (en) 2003-02-13
WO2001057167A2 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
EP1171557A2 (de) Reinigungsmittel für harte oberflächen
WO1996029389A1 (de) Verfahren zur herstellung eines pulverförmigen wasch- oder reinigungsmittels
EP1257627A1 (de) Tensidmischung mit fettalkoholalkoxylaten aus pflanzlichen rohstoffen
WO2000065011A1 (de) Reinigungsmittel für harte oberflächen
DE10044473A1 (de) Waschmitteltabletten
EP1214389B1 (de) Tensidmischungen
EP1171559A1 (de) Reinigungsmittel für harte oberflächen
DE10005017A1 (de) Duftstofftabletten
WO2001027238A1 (de) Waschmitteltabletten
DE10044496A1 (de) Waschmitteltabletten
WO2002044314A1 (de) Mehrphasiges wasch- und reinigungsmittel mit bleiche
WO2001018164A1 (de) Waschmittel
DE60212676T2 (de) Verfahren zur herstellung von waschmittelgranulaten
DE10126706B4 (de) Handgeschirrspülmittelformkörper mit hohem Tensidgehalt
EP1212400B1 (de) Waschmitteltabletten
WO2000065013A1 (de) Reinigungsmittel fur harte oberflächen
EP1171560A1 (de) Reinigungsmittel für harte oberflächen
DE10118270A1 (de) Wasch- und Reinigungsmittelformittelkörper mit verbesserten Zerfallseigenschaften
WO2000071654A1 (de) Verfahren zur herstellung von tensidgranulaten
DE19928923A1 (de) Schaumkontrollierte feste Waschmittel
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
EP1212401A1 (de) Waschmitteltabletten
DE19939804A1 (de) Schaumkontrollierte feste Waschmittel
WO2001027237A1 (de) Waschmitteltabletten
DE19801085A1 (de) Homogene Tensidgranulate für die Herstellung von stückigen Wasch- und Reinigungsmitteln

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8139 Disposal/non-payment of the annual fee