[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN2874476Y - Terahertz time domain spectral instrument based on optical rectification - Google Patents

Terahertz time domain spectral instrument based on optical rectification Download PDF

Info

Publication number
CN2874476Y
CN2874476Y CN 200620025319 CN200620025319U CN2874476Y CN 2874476 Y CN2874476 Y CN 2874476Y CN 200620025319 CN200620025319 CN 200620025319 CN 200620025319 U CN200620025319 U CN 200620025319U CN 2874476 Y CN2874476 Y CN 2874476Y
Authority
CN
China
Prior art keywords
terahertz
plano
convex lens
domain
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200620025319
Other languages
Chinese (zh)
Inventor
邢岐荣
郎利影
柴路
王清月
李术新
田震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 200620025319 priority Critical patent/CN2874476Y/en
Application granted granted Critical
Publication of CN2874476Y publication Critical patent/CN2874476Y/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种基于光学整流的太赫兹时域光谱仪,属于太赫兹时域光谱装置的改进。该光谱仪包括飞秒脉冲激光器,置于真空系统中的太赫兹发射器,太赫兹探测器,及计算机控制的数据采集与处理系统。本实用新型的优点是:利用由计算机控制的数据采集与处理系统,测量可透性物质的太赫兹时域电场信号,并显示于计算机屏幕,便于数据分析;可获得可透性物质的时域光谱,光谱分辨精度达到0.03~0.001;真空系统将太赫兹发射、探测部分纳入其中,避免了空气中水对太赫兹吸收的影响,提高了物质光谱的测量精度;在泵浦光路上安装透镜用以改变泵泵浦光的功率密度,以此控制太赫兹波的辐射效率。

Figure 200620025319

The utility model discloses a terahertz time-domain spectrometer based on optical rectification, which belongs to the improvement of the terahertz time-domain spectrometer. The spectrometer includes a femtosecond pulse laser, a terahertz emitter placed in a vacuum system, a terahertz detector, and a computer-controlled data acquisition and processing system. The utility model has the advantages of: using the computer-controlled data acquisition and processing system to measure the terahertz time-domain electric field signal of the permeable material and display it on the computer screen, which is convenient for data analysis; the time-domain signal of the permeable material can be obtained. Spectrum, the spectral resolution accuracy reaches 0.03-0.001; the vacuum system incorporates the terahertz emission and detection part, avoiding the influence of water in the air on the terahertz absorption, and improving the measurement accuracy of the material spectrum; installing a lens on the pump optical path To change the power density of the pumping light to control the radiation efficiency of the terahertz wave.

Figure 200620025319

Description

基于光学整流的太赫兹时域光谱仪Terahertz time-domain spectrometer based on optical rectification

技术领域technical field

本实用新型涉及一种基于光学整流的太赫兹时域光谱仪,属于太赫兹时域光谱装置的改进。The utility model relates to a terahertz time-domain spectrometer based on optical rectification, which belongs to the improvement of the terahertz time-domain spectrometer.

背景技术Background technique

太赫兹(THz,1THz=1012Hz)频段是指频率从0.1THz到10THz、介于毫米波与红外光之间的电磁辐射区域。长期以来对于太赫兹辐射脉冲的产生和探测缺乏有效的方法,致使人们对于该波段电磁辐射性质的了解非常有限,以至于该波段被称为电磁波谱中的THz空隙,也是电磁波谱中有待进行全面研究的最后一个频率窗口。The terahertz (THz, 1THz=10 12 Hz) frequency band refers to the electromagnetic radiation region with a frequency from 0.1 THz to 10 THz, between millimeter waves and infrared light. For a long time, there has been a lack of effective methods for the generation and detection of terahertz radiation pulses, resulting in very limited understanding of the nature of electromagnetic radiation in this band, so that this band is called the THz gap in the electromagnetic spectrum, and it is also an area that needs to be fully investigated in the electromagnetic spectrum. The last frequency window studied.

由相干的飞秒激光脉冲通过光学整流效应产生的太赫兹波具有很高的时间和空间相干性。现行的太赫兹时域光谱技术(THz-TDS)是20世纪80年代由AT&T,Bell实验室和IBM公司共同发展起来的一种非常有效的电磁辐射相位相干测试技术;我们创造的THz小波变换时域光谱技术(THz-WTDS)可以直接测量振荡电磁场的振幅和相位及频谱在时域的分布特性,这一特点使得太赫兹科学技术在研究材料的瞬态相干动力学问题时具有极大的优势。THz时域光谱技术具有很高的探测信噪比和较宽的探测带宽,可广泛用于多种样品特征谱的探测。Terahertz waves generated by coherent femtosecond laser pulses through the optical rectification effect have high temporal and spatial coherence. The current terahertz time-domain spectroscopy (THz-TDS) is a very effective electromagnetic radiation phase coherence test technology jointly developed by AT&T, Bell Laboratories and IBM in the 1980s; the THz wavelet transform we created Domain Spectroscopy (THz-WTDS) can directly measure the amplitude and phase of the oscillating electromagnetic field and the distribution characteristics of the frequency spectrum in the time domain. This feature makes THz science and technology have great advantages in the study of transient coherent dynamics of materials. . THz time-domain spectroscopy technology has a high detection signal-to-noise ratio and a wide detection bandwidth, and can be widely used in the detection of characteristic spectra of various samples.

发明内容Contents of the invention

本实用新型的目的在于提供一种基于光学整流的太赫兹时域光谱仪,该光谱仪测量可透性物质的太赫兹时域光谱,该光谱仪的频率范围为0.5~2.5THz,光谱分辨精度为0.03~0.0001。The purpose of this utility model is to provide a terahertz time-domain spectrometer based on optical rectification, which measures the terahertz time-domain spectrum of permeable substances. 0.0001.

本实用新型是通过下述技术方案加以实现的,一种基于光学整流的太赫兹时域光谱仪,其特征在于,该光谱仪包括飞秒脉冲激光器1,设置在脉冲激光器输出端的分束器2和光学延迟装置3,设置在真空系统中的太赫兹发射器10-1、太赫兹探测器10-5;和数据采集及处理系统11;在分束器2与太赫兹发射器10-1之间依次设置斩波器6、平面反射镜7和平凸透镜9,在赫兹发射器10-1之后设置离轴抛物面发射镜10-2;由飞秒脉冲激光器1、分束器2、斩波器6、平面反射镜7、平凸透镜9和太赫兹发射器10-1构成泵浦光路;在光学延迟装置3与太赫兹探测器10-5之间依次设置平面反射镜4、5及平凸透镜8和离轴抛物面发射镜10-4,在太赫兹发射器10-1与太赫兹探测器10-5之间设置泵浦光滤波器10-3;由飞秒脉冲激光器1、分束器2、光学延迟装置3、平面反射镜4、5及平凸透镜8、离轴抛物面镜10-4和太赫兹探测器10-5构成探测光路;所述的数据采集及处理系统11依次包括平面发射镜11-1,平凸透镜11-2,四分之一波片11-3,渥拉斯顿棱镜11-4,平衡探测器11-5,锁相放大器11-6,计算机11-7。The utility model is realized through the following technical scheme, a terahertz time-domain spectrometer based on optical rectification, characterized in that the spectrometer includes a femtosecond pulsed laser 1, a beam splitter 2 arranged at the output end of the pulsed laser and an optical A delay device 3, a terahertz emitter 10-1 and a terahertz detector 10-5 arranged in the vacuum system; and a data acquisition and processing system 11; sequentially between the beam splitter 2 and the terahertz emitter 10-1 A chopper 6, a plane reflector 7, and a plano-convex lens 9 are arranged, and an off-axis parabolic emitter 10-2 is arranged behind the Hertz emitter 10-1; a femtosecond pulse laser 1, a beam splitter 2, a chopper 6, and a plane Reflector 7, plano-convex lens 9 and terahertz emitter 10-1 constitute the pumping optical path; between optical delay device 3 and terahertz detector 10-5, planar reflectors 4, 5, plano-convex lens 8 and off-axis A parabolic mirror 10-4, a pumping optical filter 10-3 is arranged between the terahertz emitter 10-1 and the terahertz detector 10-5; a femtosecond pulse laser 1, a beam splitter 2, and an optical delay device 3. Plane reflectors 4, 5, plano-convex lenses 8, off-axis parabolic mirrors 10-4 and terahertz detectors 10-5 constitute the detection optical path; the data acquisition and processing system 11 includes planar reflectors 11-1 in turn, Plano-convex lens 11-2, quarter wave plate 11-3, Wollaston prism 11-4, balanced detector 11-5, lock-in amplifier 11-6, computer 11-7.

本实用新型的优点是:利用由计算机控制的数据采集与处理系统,测量可透性物质的太赫兹时域电场信号,并显示于计算机屏幕,便于数据分析;可获得透射性物质的时域光谱,光谱分辨精度达为0.03~0.001;真空系统将太赫兹发射、探测部分纳入其中,避免了空气中水对太赫兹吸收的影响,提高了可透性物质光谱的测量精度;在泵浦光路上安装透镜用以改变泵泵浦光的功率密度,以此控制太赫兹波的辐射效率。The utility model has the advantages of: using the computer-controlled data acquisition and processing system to measure the terahertz time-domain electric field signal of the permeable material and display it on the computer screen, which is convenient for data analysis; the time-domain spectrum of the permeable material can be obtained , the spectral resolution accuracy is 0.03-0.001; the vacuum system incorporates the terahertz emission and detection part, which avoids the influence of water in the air on the terahertz absorption, and improves the measurement accuracy of the spectrum of permeable substances; in the pump light path A lens is installed to change the power density of the pumping light to control the radiation efficiency of the terahertz wave.

附图说明Description of drawings

图1为本实用新型的结构框图。Fig. 1 is a structural block diagram of the utility model.

图中,1-飞秒脉冲激光器,2-分束器,3-光学延迟装置,3-1、3-2-平面发射镜,4、5、7-平面反射镜,6-斩波器,8、9-平凸透镜,10-太赫兹发射和探测主体,10-1-太赫兹发射器,10-2、10-4-离轴抛物面反射镜,10-3-泵浦光滤波器,10-5-太赫兹探测器,11-数据采集及处理系统,11-1-平面发射镜,11-2-平凸透镜,11-3-四分之一波片,11-4-渥拉斯顿棱镜,11-5-平衡探测器,11-6-锁相放大器,11-7-计算机。In the figure, 1-femtosecond pulsed laser, 2-beam splitter, 3-optical delay device, 3-1, 3-2-plane mirror, 4, 5, 7-plane mirror, 6-chopper, 8, 9-plano-convex lens, 10-terahertz emission and detection body, 10-1-terahertz emitter, 10-2, 10-4-off-axis parabolic reflector, 10-3-pump light filter, 10 -5-terahertz detector, 11-data acquisition and processing system, 11-1-plane mirror, 11-2-plano-convex lens, 11-3-quarter wave plate, 11-4-Wollaston Prism, 11-5-balance detector, 11-6-lock-in amplifier, 11-7-computer.

具体实施方式Detailed ways

下面结合附图对实用新型作进一步的描述。Below in conjunction with accompanying drawing, utility model is described further.

本实用新型以高重复率飞秒激光脉冲作为激励源,飞秒脉冲光源可以是掺钛蓝宝石自锁模飞秒脉冲激光器1或飞秒激光放大器,输出的脉冲重复频率大于1KHz,脉冲宽度小于100飞秒,波长为820nm的线偏振光,其偏振方向与装置底板平行。飞秒激光经分束器2被分为两束:一束光为70%,另一束光为30%,分别作为泵浦光和探测光。泵浦光经过1050Hz斩波器6,然后由平凸透镜9聚焦到太赫兹发射器10-1上,根据光学整流原理产生太赫兹辐射波。其中平凸透镜9放在沿泵浦光束方向可移动的高精度平台上,通过移动平凸透镜9,改变泵浦光照射到太赫兹发射器上的光斑尺寸。产生的太赫兹辐射波经过10-2、10-4两个离轴抛物面反射镜构成的4f系统,聚焦在太赫兹探测器10-5上。为了避免剩余的泵浦光对太赫兹辐射波探测的影响,需要在10-2、10-4两个离轴抛物面反射镜之间设置泵浦光滤波器10-3。计算机11-7控制马达驱动的光学延迟线的精度为0.1μm。太赫兹辐射波和探测光束被共线的耦合到太赫兹探测晶体10-5上。利用线性电光效应,对太赫兹波的电场进行电光采样,以探测被测THz波的时域信号。平衡探测器11-5可以消除外源性噪声。在没有附加被测THz信号的情况下,旋转1/4波片11-3,使平衡探测器输出为零,如此可以预偏置平衡探测器处于线性区。太赫兹发射和探测主体10置于真空系统,真空系统避免了空气中水对太赫兹吸收的影响,提高了物质光谱的测量精度。所探测到的THz波时域信号可以采用THz时域光谱技术获得被测物质频谱信号,也可以用小波变换技术处理,获得物质特征譜的时域分布特性。The utility model uses a high repetition rate femtosecond laser pulse as an excitation source, and the femtosecond pulse light source can be a titanium-doped sapphire self-mode-locked femtosecond pulse laser 1 or a femtosecond laser amplifier, the output pulse repetition frequency is greater than 1KHz, and the pulse width is less than 100 Femtosecond, linearly polarized light with a wavelength of 820nm, whose polarization direction is parallel to the bottom plate of the device. The femtosecond laser is divided into two beams by the beam splitter 2: one beam is 70% light, and the other beam is 30% light, which are respectively used as pump light and probe light. The pump light passes through the 1050Hz chopper 6, and then is focused by the plano-convex lens 9 onto the terahertz emitter 10-1, and generates terahertz radiation waves according to the principle of optical rectification. The plano-convex lens 9 is placed on a high-precision platform movable along the direction of the pump beam, and the spot size of the pump light irradiated on the terahertz emitter is changed by moving the plano-convex lens 9 . The generated terahertz radiation waves pass through the 4f system composed of two off-axis parabolic mirrors 10-2 and 10-4, and focus on the terahertz detector 10-5. In order to avoid the influence of the remaining pump light on the detection of terahertz radiation waves, a pump light filter 10-3 needs to be arranged between the two off-axis parabolic mirrors 10-2 and 10-4. The computer 11-7 controls the motor-driven optical delay line with an accuracy of 0.1 μm. The terahertz radiation wave and the detection beam are collinearly coupled to the terahertz detection crystal 10-5. Using the linear electro-optic effect, electro-optic sampling is performed on the electric field of the terahertz wave to detect the time-domain signal of the measured THz wave. Balance the detector 11-5 to eliminate exogenous noise. In the case of no additional THz signal to be measured, the 1/4 wave plate 11-3 is rotated to make the output of the balanced detector zero, so that the balanced detector can be pre-biased in the linear region. The terahertz emission and detection body 10 is placed in a vacuum system, which avoids the influence of water in the air on terahertz absorption, and improves the measurement accuracy of material spectra. The detected THz wave time-domain signal can be obtained by using THz time-domain spectroscopy technology to obtain the spectrum signal of the measured material, and can also be processed by wavelet transform technology to obtain the time-domain distribution characteristics of the material characteristic spectrum.

Claims (1)

1. terahertz time-domain spectroscopy instrument based on optical rectification, it is characterized in that, this spectrometer comprises femtosecond pulse laser (1), be arranged on the beam splitter (2) and the optical delay device (3) of pulsed laser output terminal, be arranged on terahertz transmitter (10-1), terahertz detector (10-5) in the vacuum system; And data acquisition and disposal system (11); Between beam splitter (2) and terahertz transmitter (10-1), set gradually chopper (6), plane mirror (7) and plano-convex lens (9), off-axis parabolic mirror (10-2) is set afterwards at hertz transmitter (10-1); Constitute the pumping light path by femtosecond pulse laser (1), beam splitter (2), chopper (6), plane mirror (7), plano-convex lens (9) and terahertz transmitter (10-1); Between optical delay device (3) and terahertz detector (10-5), set gradually plane mirror (4), (5) and plano-convex lens (8) and off-axis parabolic mirror (10-4), between terahertz transmitter (10-1) and terahertz detector (10-5), pump light wave filter (10-3) is set; Constitute the detection light path by femtosecond pulse laser (1), beam splitter (2), optical delay device (3), plane mirror (4), (5) and plano-convex lens (8), off-axis parabolic mirror (10-4) and terahertz detector (10-5); Described data acquisition and disposal system (11) comprise planar transmit mirror (11-1) successively, plano-convex lens (11-2), quarter-wave plate (11-3), wollaston prism (11-4), balance detection device (11-5), lock-in amplifier (11-6), computing machine (11-7).
CN 200620025319 2006-02-10 2006-02-10 Terahertz time domain spectral instrument based on optical rectification Expired - Fee Related CN2874476Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200620025319 CN2874476Y (en) 2006-02-10 2006-02-10 Terahertz time domain spectral instrument based on optical rectification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200620025319 CN2874476Y (en) 2006-02-10 2006-02-10 Terahertz time domain spectral instrument based on optical rectification

Publications (1)

Publication Number Publication Date
CN2874476Y true CN2874476Y (en) 2007-02-28

Family

ID=37781074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200620025319 Expired - Fee Related CN2874476Y (en) 2006-02-10 2006-02-10 Terahertz time domain spectral instrument based on optical rectification

Country Status (1)

Country Link
CN (1) CN2874476Y (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109098A1 (en) * 2008-03-05 2009-09-11 清华大学 Phase contrast imaging method and apparatus
CN101782432A (en) * 2010-03-16 2010-07-21 中国科学院苏州纳米技术与纳米仿生研究所 Universal photoelectric test system for tera-hertz spectra
CN101551273B (en) * 2009-05-22 2010-11-17 中国科学院上海技术物理研究所 A system for automatically measuring the spectral characteristics of samples in the terahertz band
CN102331403A (en) * 2011-09-02 2012-01-25 东南大学 Characterization method and test device for near-field terahertz THz time domain spectrum
CN102016548B (en) * 2008-04-30 2012-09-05 浜松光子学株式会社 Total reflection terahertz wave measurement device
CN102901717A (en) * 2012-06-12 2013-01-30 中国科学院安徽光学精密机械研究所 Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device
CN103090972A (en) * 2013-01-14 2013-05-08 天津大学 Compact type full spectrum optical measuring head device used for reflection difference spectral measurement
CN103147744A (en) * 2013-03-05 2013-06-12 中国石油大学(北京) Spectral measurement device of horizontal well fluid flowing parameter
CN104677497A (en) * 2015-02-13 2015-06-03 上海理工大学 Detection device and method for properties of terahertz waves
CN105241840A (en) * 2015-09-17 2016-01-13 谢文科 Detection method for full-ingredient granules Chinese herbal medicine flos rosae chinensis based on terahertz spectrum technology
CN105738315A (en) * 2016-04-07 2016-07-06 绍兴文理学院 Terahertz device for real-time monitoring of biomolecule composition and content and measuring method thereof
CN106872800A (en) * 2017-02-15 2017-06-20 上海理工大学 The terahertz time-domain electric field detecting system of graphene quantum dot Fluorescence Increasing
WO2017156653A1 (en) * 2016-03-15 2017-09-21 上海理工大学 Remote hazardous gas detection device based on terahertz waves
WO2017197776A1 (en) * 2016-04-18 2017-11-23 深圳市太赫兹科技创新研究院 Terahertz time-domain spectroscopy system
CN108037471A (en) * 2017-11-08 2018-05-15 中国科学院上海光学精密机械研究所 The measuring device and measuring method in the magnetic field that high-density plasma produces
CN108254071A (en) * 2018-01-08 2018-07-06 华东师范大学 A kind of direct detecting system of highly sensitive Terahertz of room temperature
CN108680500A (en) * 2018-03-30 2018-10-19 莆田学院 A kind of the terahertz time-domain spectroscopy instrument device and analysis method of miniaturization
CN108844913A (en) * 2018-04-26 2018-11-20 中国工程物理研究院计量测试中心 A kind of terahertz time-domain spectroscopy system and operating method
CN108981915A (en) * 2018-06-05 2018-12-11 北京航空航天大学 High field Terahertz spin transmitter and spectrometer
CN109870423A (en) * 2019-03-07 2019-06-11 中国科学技术大学 Terahertz time-domain spectroscopy measurement system and method
CN110854653A (en) * 2018-08-20 2020-02-28 苏州曼德特光电技术有限公司 Broadband terahertz light source based on nonlinear optical rectification process
CN112697275A (en) * 2021-01-05 2021-04-23 华北电力大学 Terahertz time-domain waveform measuring platform and method based on ICCD matrix
CN115219420A (en) * 2022-06-09 2022-10-21 云南大学 Novel femtosecond time domain micro-nano space resolution multifunctional magnetooptic instrument
CN115561202A (en) * 2022-09-19 2023-01-03 重庆大学 Method and device for quickly measuring methanol in insulating oil

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109098A1 (en) * 2008-03-05 2009-09-11 清华大学 Phase contrast imaging method and apparatus
US8039803B2 (en) 2008-03-05 2011-10-18 Tsinghua University, Et Al. Phase contrast imaging method and apparatus
CN102016548B (en) * 2008-04-30 2012-09-05 浜松光子学株式会社 Total reflection terahertz wave measurement device
US8415625B2 (en) 2008-04-30 2013-04-09 Hamamatsu Photonics K.K. Total reflection terahertz wave measurement device
CN101551273B (en) * 2009-05-22 2010-11-17 中国科学院上海技术物理研究所 A system for automatically measuring the spectral characteristics of samples in the terahertz band
CN101782432B (en) * 2010-03-16 2011-04-06 中国科学院苏州纳米技术与纳米仿生研究所 Universal photoelectric test system for tera-hertz spectra
CN101782432A (en) * 2010-03-16 2010-07-21 中国科学院苏州纳米技术与纳米仿生研究所 Universal photoelectric test system for tera-hertz spectra
CN102331403A (en) * 2011-09-02 2012-01-25 东南大学 Characterization method and test device for near-field terahertz THz time domain spectrum
CN102901717A (en) * 2012-06-12 2013-01-30 中国科学院安徽光学精密机械研究所 Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device
CN102901717B (en) * 2012-06-12 2014-10-29 中国科学院安徽光学精密机械研究所 Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device
CN103090972A (en) * 2013-01-14 2013-05-08 天津大学 Compact type full spectrum optical measuring head device used for reflection difference spectral measurement
CN103147744A (en) * 2013-03-05 2013-06-12 中国石油大学(北京) Spectral measurement device of horizontal well fluid flowing parameter
CN103147744B (en) * 2013-03-05 2015-05-20 中国石油大学(北京) Spectral measurement device of horizontal well fluid flowing parameter
CN104677497B (en) * 2015-02-13 2017-01-11 上海理工大学 Detection device and method for properties of terahertz waves
CN104677497A (en) * 2015-02-13 2015-06-03 上海理工大学 Detection device and method for properties of terahertz waves
CN105241840A (en) * 2015-09-17 2016-01-13 谢文科 Detection method for full-ingredient granules Chinese herbal medicine flos rosae chinensis based on terahertz spectrum technology
WO2017156653A1 (en) * 2016-03-15 2017-09-21 上海理工大学 Remote hazardous gas detection device based on terahertz waves
CN105738315A (en) * 2016-04-07 2016-07-06 绍兴文理学院 Terahertz device for real-time monitoring of biomolecule composition and content and measuring method thereof
WO2017197776A1 (en) * 2016-04-18 2017-11-23 深圳市太赫兹科技创新研究院 Terahertz time-domain spectroscopy system
US10408679B2 (en) 2016-04-18 2019-09-10 Shenzhen Institute Of Terahertz Technology And Innovation Terahertz time-domain spectroscopy system
CN106872800B (en) * 2017-02-15 2019-04-30 上海理工大学 The terahertz time-domain electric field detection system of graphene quantum dot fluorescence enhancement
CN106872800A (en) * 2017-02-15 2017-06-20 上海理工大学 The terahertz time-domain electric field detecting system of graphene quantum dot Fluorescence Increasing
CN108037471B (en) * 2017-11-08 2020-11-10 中国科学院上海光学精密机械研究所 Measuring device and measuring method for magnetic field generated by high-density plasma
CN108037471A (en) * 2017-11-08 2018-05-15 中国科学院上海光学精密机械研究所 The measuring device and measuring method in the magnetic field that high-density plasma produces
CN108254071A (en) * 2018-01-08 2018-07-06 华东师范大学 A kind of direct detecting system of highly sensitive Terahertz of room temperature
CN108680500A (en) * 2018-03-30 2018-10-19 莆田学院 A kind of the terahertz time-domain spectroscopy instrument device and analysis method of miniaturization
CN108844913A (en) * 2018-04-26 2018-11-20 中国工程物理研究院计量测试中心 A kind of terahertz time-domain spectroscopy system and operating method
CN108981915A (en) * 2018-06-05 2018-12-11 北京航空航天大学 High field Terahertz spin transmitter and spectrometer
CN110854653A (en) * 2018-08-20 2020-02-28 苏州曼德特光电技术有限公司 Broadband terahertz light source based on nonlinear optical rectification process
CN109870423A (en) * 2019-03-07 2019-06-11 中国科学技术大学 Terahertz time-domain spectroscopy measurement system and method
CN112697275A (en) * 2021-01-05 2021-04-23 华北电力大学 Terahertz time-domain waveform measuring platform and method based on ICCD matrix
CN112697275B (en) * 2021-01-05 2023-09-01 华北电力大学 Terahertz time-domain waveform measurement platform and method based on ICCD matrix
CN115219420A (en) * 2022-06-09 2022-10-21 云南大学 Novel femtosecond time domain micro-nano space resolution multifunctional magnetooptic instrument
CN115561202A (en) * 2022-09-19 2023-01-03 重庆大学 Method and device for quickly measuring methanol in insulating oil
CN115561202B (en) * 2022-09-19 2024-09-24 重庆大学 Method and device for rapidly measuring methanol in insulating oil

Similar Documents

Publication Publication Date Title
CN2874476Y (en) Terahertz time domain spectral instrument based on optical rectification
CN106441580B (en) The incident terahertz time-domain spectroscopy instrument for surveying transmission and reflection simultaneously of variable-angle
CN102331403B (en) Characterization method and test device for near-field terahertz THz time domain spectrum
CN105738314B (en) A kind of portable Terahertz spectrum detection device and detection method
CN105699317A (en) Terahertz time-domain spectrograph capable of entering at fixed angle and simultaneously detecting transmission and reflection
CN107860742B (en) Reflective terahertz time-domain near-field scanning microscope
CN104568819A (en) All-fiber transmission reflection integrated terahertz time-domain spectroscopy system
CN108872181A (en) A kind of stimlated Raman spectrum system of femtosecond time resolution
CN104236711A (en) Femtosecond CARS (coherent anti-stokes Raman scattering) three-dimensional spectral detection system and method for study on molecular superfast dynamics
CN106769971A (en) A kind of infrared spectroscopy system based on femtosecond pump probe
CN206038529U (en) Terahertz is pumping now terahertz detection time domain spectroscopy system
CN105548083A (en) Double-optical-path terahertz time-domain spectrometer
CN112798556B (en) Non-collinear time-resolved pumping-detecting device and method for infrared and frequency spectrum
CN107167456A (en) Transmission-type differential confocal CARS micro-spectrometer method and devices
CN105738315A (en) Terahertz device for real-time monitoring of biomolecule composition and content and measuring method thereof
CN109994917A (en) A broadband strong field terahertz pulse radiation source generation and detection device
CN106153571B (en) Terahertz pumping-terahertz detection time-domain spectroscopy system
CN113777068A (en) Multi-band cavity enhanced infrared optical comb spectrum gas detection system
CN103323401A (en) Terahertz wave real-time imaging method and device based on optical parameter up-conversion
CN107192670B (en) Measuring device and method for measuring linear absorption and nonlinear absorption of materials
CN111366544B (en) Double-beam non-collinear pumping-detecting system
CN202305396U (en) Near-field Tera Hertz (THz) time-domain spectrum testing device
CN1815187A (en) THz detecting system and method for oscillating mirror rapid scanning electro-optic sampling
CN211927689U (en) A spectral detection device
KR20130065311A (en) Time-domain spectroscope for high-speed and sensitivity measure based on light-bias double frequency modulation

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee