The medical human intracanal scaffold
Technical field
This utility model relates to a kind of medical human intracanal scaffold, is used to expand and support human lumen roads such as narrow blood vessel, esophagus, bile duct, intestinal or urethra, belongs to the technical field that medical device is made.
Background technology
Blood vessel embolism, the esophageal carcinoma, prostatic hyperplasia and Biliary Calculi are common tube chamber obstructive diseases in the life, can adopt the open operation treatment clinically, not only the operation technique difficulty is big, and there are some insoluble problems, many as complication, dangerous big, relapse rate is high, this just needs a kind of more easy, safe and effective procedure to solve above difficult point, and the intervention that utilizes inner support is a kind of efficient ways.Intracanal scaffold is a kind of apparatus commonly used, has different shape, and tubulose is modal.Existing body cavities mostly is latticed with inner support or the spiral filament, behind the implant into body, is used for expanding and supporting human lumen roads such as narrow blood vessel, esophagus, biliary tract, intestinal and urinary catheter, the releasing tract blocks, and keeps tract unimpeded, easy and simple to handle, curative effect is reliable, and complication is few.Yet also there are some defectives in existing support, for example, non-blood vessel intracanal scaffold commonly used adopts a material braiding more, is the tubular mesh shape, and such support has the overlapping point of metal material, make the mobile performance variation of body fluid, and the radial support power deficiency of support, adjustable range is less.Shortcomings such as intravascular stent commonly used also more exists the radial support power of support less, and axial flexible performance is relatively poor.Therefore to the design of the medical human intracanal scaffold that satisfies requirements of operation be manufactured with further requirement.
Summary of the invention
Technical problem: goal of the invention of the present utility model just is to change the deficiency of the medical human intracanal scaffold of present use, provide a kind of structural design exquisite, having radial support power can adjust, axially compliance is good, the metal coverage rate is low, the overlapping point of no metal material, advantage such as the blood flow performance is good, medical human intracanal scaffold with tubulose network structure.
Technical scheme: medical human intracanal scaffold of the present utility model, be to form by the metal tube etching, network structure in a tubular form, it is characterized in that this intracanal scaffold is made of the circular basic structure of a plurality of sinusoidal wave forms along its axial distribution, between every two adjacent circular basic structures of sinusoidal wave form, connect by the sinusoidal wave form connector.
In the above-mentioned body cavities inner support, the sinusoidal wave trough of the circular basic structure of sinusoidal wave form that the sinusoidal wave crest of the circular basic structure of each sinusoidal wave form is adjacent is corresponding.The circular basic structure of sinusoidal wave form is vertical mutually with the axis direction of sinusoidal wave form connector, and the point of contact of circular basic structure of sinusoidal wave form and sinusoidal wave form connector is selected between the crest and trough of the circular basic structure of described sinusoidal wave form.
In the above-mentioned body cavities inner support, between every adjacent two circular basic structures of sinusoidal wave form, the sinusoidal wave form connector is equidistant distribution, and this spacing is the integral multiple of the sinusoidal wave wavelength of the circular basic structure of sinusoidal wave form, and this integer is 1 or 2 or 3 etc.Spacing between adjacent two circular basic structures of sinusoidal wave form is 2~4 double-lengths of its sinusoidal wave amplitude.
In the above-mentioned body cavities inner support, the integral width of sinusoidal wave form connector should be less than or equal to half of wavelength of the sine wave of the circular basic structure of sinusoidal wave form, its sinusoidal wave half-wavelength should be less than or equal to half of spacing of adjacent two circular basic structures of sinusoidal wave form, and its muscle width should be less than or equal to the muscle width of the circular basic structure of sinusoidal wave form.
This utility model is when expansion that is used for the angiostenosis position and supporting role, its external diameter is 1~20mm, length overall is 5~150mm, wall thickness is 0.02~0.4mm, the number of the sine wave period of the circular basic structure of sinusoidal wave form is 6~36, its integral width is 0.5~10mm, and its muscle width is 0.06~0.6mm.When the expansion of this utility model non-blood vessel tract narrow positions in being used for human body and supporting role, its external diameter is 6~25mm, length overall is 50~140mm, wall thickness is 0.1~0.5mm, the number of the sine wave period of the circular basic structure of sinusoidal wave form is 6~30, its integral width is 1.0~10mm, and its muscle width is 0.15~0.7mm.Broadening formation can be made in end of the present utility model, and its surfaces externally and internally can cover metal film, oxidation film, polymeric membrane or slow releasing pharmaceutical film.
The material of etching metal tube of the present utility model can be Nitinol, rustless steel, titanium alloy and simple metal tantalum or gold etc., wherein, adopting this utility model of Nitinol pipe etching is the self-expanding cribbing, and adopting this utility model of stainless steel tube, titanium alloy tube, tantalum metal tube or golden metal tube etching is balloon expandable stent.
Beneficial effect: compare with existing body cavities inner support, the utlity model has many advantages:
(1) the circular basic structure and the connector of support are sinusoidal wave form, are convenient to each other during distortion coordinate, and improve the magnification of deformation of timbering front and back, reduce the size of support auxiliary installation device, the fitting operation of support when being convenient to perform the operation.
(2) support sinusoidal wave form connector is vertical mutually with the direction of propagation of the sine wave fluctuation of the circular basic structure of sinusoidal wave form, when support was subjected to axial load, the elastic recovery of sinusoidal wave form connector self can effectively stop the circular basic structure of support to be extruded into together mutually.
(3) by the sinusoidal wave amplitude that changes the circular basic structure of support sinusoidal wave form, the spacing between adjacent two circular basic structures of sinusoidal wave form, and change along the number of the circular basic structure of sinusoidal wave form of support axial distribution, thereby the radial support power of adjustable support obtains the support with ideal radial support power;
(4) connector of support is designed to sinusoidal wave form, so support has good axial compliance, not only is convenient to place in crooked, complicated tract, and reduces stimulation to the tract inner membrance;
(5) the metal coverage rate of support is lower, surfacing, structure continuously, easily polishing, can overcome thrombosis, calculus.
(6) the overlapping point of no metal material, frictional resistance is little, and the blood flow performance is good, is specially adapted to biliary tract and blood vessel.
Description of drawings
Fig. 1 is the expansion sketch map of this utility model embodiment 1 support.
Fig. 2 is the expansion sketch map of this utility model embodiment 2 supports.
Fig. 3 is this utility model radial section structural representation.
Reference numeral wherein is: the circular basic structure of 1-sinusoidal wave form, 2-sinusoidal wave form connector, the muscle width of the circular basic structure 1 of 3-sinusoidal wave form, the 4-junction point, the muscle width of 5-sinusoidal wave form connector 2, the sinusoidal wave amplitude of 6-sinusoidal wave form connector 2, the sinusoidal wave amplitude of the circular basic structure 1 of 7-sinusoidal wave form, the wavelength of the sine wave of the circular basic structure 1 of 8-sinusoidal wave form, the integral width of the circular basic structure 1 of 9-sinusoidal wave form, the half-wavelength of the sine wave of 10-sinusoidal wave form connector 2, the integral width of 11-sinusoidal wave form connector 2, the spacing between adjacent two the circular basic structures of sinusoidal wave form of 12-[1], the 13-spacing, the external diameter of 14-support, the wall thickness of 15-support, the length overall of 16-support.
Specific embodiments
Below, with embodiment this utility model is further described in conjunction with the accompanying drawings.
Embodiment 1
Referring to Fig. 1, a kind of medical blood vessel support, be to form by superelastic nickel titanium alloy tube etching, network structure in a tubular form, by constituting along the circular basic structure 1 of a plurality of sinusoidal wave forms of its axial distribution, between every adjacent circular basic structure 1 of two sinusoidal wave forms, connect by sinusoidal wave form connector 2.The sinusoidal wave trough of the circular basic structure of sinusoidal wave form that the sinusoidal wave crest of the circular basic structure of each sinusoidal wave form is adjacent is corresponding.The circular basic structure 1 of sinusoidal wave form is vertical mutually with the direction of propagation of the sine wave fluctuation of sinusoidal wave form connector 2.The circular basic structure 1 of sinusoidal wave form is selected in the crest of the circular basic structure 1 of described sinusoidal wave form and the centre position of trough with the junction point 4 of sinusoidal wave form connector 2.Between every circular basic structure 1 of adjacent two sinusoidal wave forms, sinusoidal wave form connector 2 is equidistant distribution, 2 times of the sinusoidal wave wavelength 8 that this spacing 13 is the circular basic structure 1 of sinusoidal wave form.Spacing 12 between the circular basic structure 1 of adjacent two sinusoidal wave forms is 2.5 double-lengths of its sinusoidal wave amplitude 7.The integral width 11 of sinusoidal wave form connector 2 is less than half of the sinusoidal wave wavelength 8 of the circular basic structure 1 of sinusoidal wave form, its sinusoidal wave half-wavelength 10 equals half of spacing 12 of adjacent two circular basic structures 1 of sinusoidal wave form, and its muscle width 5 is less than the muscle width 3 of the circular basic structure 1 of sinusoidal wave form.
The external diameter 14 of present embodiment support is 2.45mm, length overall 16 is 19.771mm, wall thickness 15 is 0.1mm, spreading width is 7.694mm, the number of the sine wave period of the circular basic structure 1 of sinusoidal wave form is 6, its integral width 9 is 1.771mm, its muscle width 3 is 0.12mm, the sinusoidal wave amplitude 7 of the circular basic structure 1 of sinusoidal wave form is 0.885mm, its wavelength 8 is 1.282mm, spacing 12 between the circular basic structure 1 of adjacent two sinusoidal wave forms is 2mm, the integral width 11 of sinusoidal wave form connector 2 is 0.588mm, and its muscle width 5 is 0.1mm, and its sinusoidal wave amplitude 6 is 0.294mm, its half-wavelength 10 is 1mm, and the spacing 13 between adjacent two sinusoidal wave form connectors 2 is 2.565mm.
Present embodiment is a self-expanding formula intravascular stent, during operation this utility model is constrained in the conduit, after being implanted to the angiostenosis position, remove about beam guide tube, this utility model expands voluntarily because of having good super-elasticity, plays expansion and supporting role to narrow blood vessel, reaches therapeutic purposes.
Broadening formation also can be made in this intracanal scaffold end.This intracanal scaffold surfaces externally and internally also can cover metal film, oxidation film, polymeric membrane or slow releasing pharmaceutical film.The material of the metal tube of this intracanal scaffold of etching is rustless steel or titanium alloy or simple metal tantalum or gold also.
Embodiment 2
Referring to Fig. 2, a kind of medical blood vessel support, be to form by superelastic nickel titanium alloy tube etching, network structure in a tubular form, constitute by the circular basic structure of a plurality of sinusoidal wave forms [1] along its axial distribution, between every adjacent two circular basic structures of sinusoidal wave form [1], connect by sinusoidal wave form connector [2].Between every adjacent two circular basic structures of sinusoidal wave form [1], sinusoidal wave form connector [2] is equidistant distribution, and this spacing [13] is 1.282mm, is 1 double-length of the sinusoidal wave wavelength [8] of the circular basic structure of sinusoidal wave form [1].Other structure of present embodiment 2 supports is identical with embodiment 1 with size characteristic.