CN221764498U - MEMS device and electronic device - Google Patents
MEMS device and electronic device Download PDFInfo
- Publication number
- CN221764498U CN221764498U CN202322957019.2U CN202322957019U CN221764498U CN 221764498 U CN221764498 U CN 221764498U CN 202322957019 U CN202322957019 U CN 202322957019U CN 221764498 U CN221764498 U CN 221764498U
- Authority
- CN
- China
- Prior art keywords
- mass
- substrate
- mems device
- elastic
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 90
- 238000001514 detection method Methods 0.000 claims description 52
- 238000004873 anchoring Methods 0.000 claims description 45
- 230000008878 coupling Effects 0.000 claims description 45
- 238000010168 coupling process Methods 0.000 claims description 45
- 238000005859 coupling reaction Methods 0.000 claims description 45
- 230000001133 acceleration Effects 0.000 description 33
- 238000006073 displacement reaction Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 244000126211 Hericium coralloides Species 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0009—Structural features, others than packages, for protecting a device against environmental influences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5656—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Micromachines (AREA)
Abstract
Description
技术领域Technical Field
本公开涉及一种具有改进的检测性能的MEMS设备,特别是一种具有改进的检测性能的惯性传感器。The present disclosure relates to a MEMS device with improved detection performance, and in particular to an inertial sensor with improved detection performance.
背景技术Background Art
众所周知,MEMS(“微机电系统”)类型的惯性传感器,诸如加速度计和陀螺仪,由于尺寸小和检测灵敏度高而得到广泛应用。As is known, MEMS (“Micro Electro Mechanical System”) type inertial sensors, such as accelerometers and gyroscopes, are widely used due to their small size and high detection sensitivity.
MEMS惯性传感器被集成到诸如可穿戴设备、智能电话、笔记本计算机等之类的各种电子设备中。MEMS inertial sensors are integrated into various electronic devices such as wearable devices, smart phones, notebook computers, etc.
这类惯性传感器的常见应用包括:冲击监测,例如检测车祸或人可能摔倒在地上;检测用户的手势,诸如智能电话的屏幕的旋转或者特定类型的用户触摸;以及用作骨传导性检测器,例如用作真正无线立体声(TWS)耳机中的麦克风。Common applications for this type of inertial sensor include: impact monitoring, such as detecting a car accident or a person who may fall to the ground; detecting user gestures, such as the rotation of a smartphone's screen or specific types of user touches; and use as a bone conduction detector, such as as a microphone in a true wireless stereo (TWS) headset.
具体参考MEMS加速度计,低G加速度计目前已知被用于检测低加速度,例如具有等于16g或32g的满刻度范围(FSR),而高G传感器被用于检测高加速度,例如具有等于128g的满刻度范围。With specific reference to MEMS accelerometers, low-G accelerometers are currently known to detect low accelerations, for example having a full scale range (FSR) equal to 16g or 32g, while high-G sensors are used to detect high accelerations, for example having a full scale range equal to 128g.
还已知FSR与测量灵敏度(即,每单位被施加的加速度的惯性传感器的可移动检测结构的位移)彼此成反比。因此,高G传感器具有高的FSR但低的灵敏度,并且低G传感器具有低的FSR但高的灵敏度。It is also known that FSR and measurement sensitivity (i.e., displacement of the movable detection structure of the inertial sensor per unit of applied acceleration) are inversely proportional to each other. Thus, a high-G sensor has a high FSR but low sensitivity, and a low-G sensor has a low FSR but high sensitivity.
根据一种方法,彼此分离的两个可移动检测结构被集成在同一MEMS设备中,以便检测低加速度和高加速度两者。According to one approach, two movable detection structures separated from each other are integrated in the same MEMS device in order to detect both low and high accelerations.
然而,在同一MEMS设备中同时存在两个不同的可移动检测结构造成劣势,诸如需要更多数目的焊盘以及所需控制电路装置(例如,专用ASIC、PCB或CPU等)的更高复杂度,以及更一般地,集成面积较大,电子设备的便携性较低并且制造成本较高。However, the simultaneous presence of two different movable detection structures in the same MEMS device results in disadvantages, such as the need for a greater number of pads and a higher complexity of the required control circuitry (e.g., a dedicated ASIC, PCB or CPU, etc.), and more generally, a larger integration area, lower portability of the electronic device and higher manufacturing costs.
实用新型内容Utility Model Content
根据本公开,因此提供了一种MEMS设备和电子设备。According to the present disclosure, a MEMS device and an electronic device are thus provided.
根据第一方面,提供一种MEMS设备。MEMS设备包括衬底;可移动结构,被悬挂在衬底上,以及锚定控制结构。可移动结构包括第一质量块、第二质量块、第一弹性组和第二弹性组。第一弹性组机械地耦合在第一质量块与第二质量块之间,第一弹性组沿着第一方向是柔顺的,第一质量块被配置为沿着第一方向相对于衬底移动。第二弹性组机械地耦合在衬底与可移动结构之间,第二弹性组沿着第一方向是柔顺的。锚定控制结构被固定到衬底,电容性地耦合到第二质量块,并且被配置为沿着第一方向在第二质量块上施加静电力。锚定控制结构被配置为:控制MEMS设备处于第一操作状态,其中第二质量块沿着第一方向相对于衬底自由移动,以及控制MEMS设备处于第二操作状态,其中锚定控制结构在第二质量块上施加使得能够将第二质量块锚定到锚定结构的拉入静电力,从而防止第二质量块响应于第一质量块的移动而相对于衬底移动。According to a first aspect, a MEMS device is provided. The MEMS device includes a substrate; a movable structure suspended on the substrate, and an anchoring control structure. The movable structure includes a first mass, a second mass, a first elastic group, and a second elastic group. The first elastic group is mechanically coupled between the first mass and the second mass, the first elastic group is compliant along a first direction, and the first mass is configured to move relative to the substrate along the first direction. The second elastic group is mechanically coupled between the substrate and the movable structure, and the second elastic group is compliant along the first direction. The anchoring control structure is fixed to the substrate, capacitively coupled to the second mass, and configured to apply an electrostatic force on the second mass along the first direction. The anchoring control structure is configured to: control the MEMS device to be in a first operating state, in which the second mass is free to move relative to the substrate along the first direction, and control the MEMS device to be in a second operating state, in which the anchoring control structure applies a pulling electrostatic force on the second mass that enables the second mass to be anchored to the anchoring structure, thereby preventing the second mass from moving relative to the substrate in response to the movement of the first mass.
在一些实施例中,锚定控制结构包括止挡件,止挡件被固定到衬底,止挡件在静止时在第一操作状态下沿着第一方向在与第二质量块相距第一距离处延伸,并且在第二操作状态下与第二质量块接触。In some embodiments, the anchor control structure includes a stopper fixed to the substrate, the stopper extending along a first direction at a first distance from the second proof-mass in a first operational state when at rest, and in contact with the second proof-mass in a second operational state.
在一些实施例中,锚定控制结构进一步包括控制电极,控制电极被固定到衬底,并且在静止时在第一操作状态下沿着第一方向在与第二质量块相距第二距离处延伸。In some embodiments, the anchor control structure further includes a control electrode fixed to the substrate and extending, when stationary, in the first operational state along the first direction at a second distance from the second proof-mass.
在一些实施例中,第一距离小于第二距离。In some embodiments, the first distance is less than the second distance.
在一些实施例中,锚定控制结构包括控制电极,第二质量块具有外壁和通腔,通腔具有内壁,控制电极被布置在通腔内部,面向内壁,止挡件面向第二质量块的外壁。In some embodiments, the anchor control structure includes a control electrode, the second mass has an outer wall and a through cavity, the through cavity has an inner wall, the control electrode is arranged inside the through cavity and faces the inner wall, and the stopper faces the outer wall of the second mass.
在一些实施例中,第二弹性组被耦合到第一质量块,使得在第一操作状态下,第一质量块通过第二弹性组被耦合到衬底,并且在第二操作状态下,第一质量块通过第一弹性组和第二弹性组被耦合到衬底,第一弹性组和第二弹性组被机械地并行布置在第一可移动质量块与衬底之间。In some embodiments, the second elastic group is coupled to the first mass block such that in a first operating state, the first mass block is coupled to the substrate via the second elastic group, and in a second operating state, the first mass block is coupled to the substrate via the first elastic group and the second elastic group, the first elastic group and the second elastic group being mechanically arranged in parallel between the first movable mass block and the substrate.
在一些实施例中,第二弹性组被耦合到第二质量块,使得在第一操作状态下,第一质量块通过第一弹性组和第二弹性组被耦合到衬底,第一弹性组和第二弹性组被机械地串行布置在第一可移动质量块与衬底之间,并且在第二操作状态下,第一质量块通过第一弹性组被耦合到衬底。In some embodiments, the second elastic group is coupled to the second mass block, so that in a first operating state, the first mass block is coupled to the substrate through the first elastic group and the second elastic group, the first elastic group and the second elastic group are mechanically arranged in series between the first movable mass block and the substrate, and in a second operating state, the first mass block is coupled to the substrate through the first elastic group.
在一些实施例中,可移动结构进一步包括第三质量块和第三弹性组,第三弹性组将第一质量块机械地耦合到第三质量块,并且第三弹性组沿着第一方向是柔顺的,第二质量块被布置在第一质量块的第一侧,并且第三质量块被布置在第一质量块的、除了第一侧之外的第二侧,其中锚定控制结构是第一锚定控制结构,MEMS设备进一步包括第二锚定控制结构,第二锚定控制结构被固定到衬底,电容性地耦合到第三质量块,并且被配置为:控制MEMS设备处于第三操作状态,其中第三质量块沿着第一方向相对于衬底自由移动,以及控制MEMS设备处于第四操作状态,其中第二锚定控制结构在第三质量块上施加使得能够将第三质量块锚定到第二锚定结构的拉入静电力,从而防止第三质量块响应于第一质量块的移动而相对于衬底移动。In some embodiments, the movable structure further includes a third mass and a third elastic group, the third elastic group mechanically coupling the first mass to the third mass, and the third elastic group is compliant along the first direction, the second mass is arranged on a first side of the first mass, and the third mass is arranged on a second side of the first mass other than the first side, wherein the anchoring control structure is a first anchoring control structure, and the MEMS device further includes a second anchoring control structure, the second anchoring control structure is fixed to the substrate, capacitively coupled to the third mass, and is configured to: control the MEMS device to be in a third operating state, in which the third mass is free to move relative to the substrate along the first direction, and control the MEMS device to be in a fourth operating state, in which the second anchoring control structure exerts a pulling electrostatic force on the third mass that enables the third mass to be anchored to the second anchoring structure, thereby preventing the third mass from moving relative to the substrate in response to movement of the first mass.
在一些实施例中,MEMS设备进一步包括检测结构,检测结构被配置为检测第一质量块沿着第一方向的移动。In some embodiments, the MEMS device further includes a detection structure configured to detect movement of the first mass along the first direction.
在一些实施例中,第一质量块被配置为响应于MEMS设备的移动而沿着第一方向移动。In some embodiments, the first mass is configured to move along a first direction in response to movement of the MEMS device.
根据第二方面,提供一种电子设备,包括:衬底、包括第一开口的第一质量块、多个第一电极、第一止挡件、第二止挡件和第三质量块。第一质量块包括与第二侧相对的第一侧、横向于第一侧的第三侧、以及与第三侧相对的第四侧。多个第一电极被固定到衬底并且在第一开口中。第二止挡件通过第一质量块与第一止挡件间隔开。第二质量块耦合到第一质量块的第三侧。第三质量块耦合到第一质量块的第四侧,第二质量块通过第三质量块和第一质量块与第二止挡件间隔开。According to a second aspect, an electronic device is provided, comprising: a substrate, a first mass block including a first opening, a plurality of first electrodes, a first stopper, a second stopper, and a third mass block. The first mass block comprises a first side opposite to the second side, a third side transverse to the first side, and a fourth side opposite to the third side. The plurality of first electrodes are fixed to the substrate and in the first opening. The second stopper is spaced apart from the first stopper by the first mass block. The second mass block is coupled to the third side of the first mass block. The third mass block is coupled to the fourth side of the first mass block, and the second mass block is spaced apart from the second stopper by the third mass block and the first mass block.
在一些实施例中,多个第二电极从第一质量块朝向多个第一电极延伸到开口中。In some embodiments, the plurality of second electrodes extend from the first proof-mass into the opening towards the plurality of first electrodes.
在一些实施例中,电子设备包括多个第一弹性元件、多个第二弹性元件、多个第三弹性元件和多个第四弹性元件。多个第一弹性元件从第一质量块的第一侧延伸。多个第二弹性元件从第一质量块的第二侧延伸。多个第三弹性元件从第一质量块的第三侧延伸并且耦合到第二质量块。多个第四弹性元件从第一质量块的第四侧延伸并且耦合到第三质量块。In some embodiments, the electronic device includes a plurality of first elastic elements, a plurality of second elastic elements, a plurality of third elastic elements, and a plurality of fourth elastic elements. The plurality of first elastic elements extend from a first side of a first mass. The plurality of second elastic elements extend from a second side of the first mass. The plurality of third elastic elements extend from a third side of the first mass and are coupled to the second mass. The plurality of fourth elastic elements extend from a fourth side of the first mass and are coupled to the third mass.
在一些实施例中,电子设备包括在第二质量块中的多个第二开口中的每个第二开口中的多个第二电极。In some embodiments, the electronic device includes a plurality of second electrodes in each of the plurality of second openings in the second mass.
在一些实施例中,电子设备包括在第三质量块中的多个第三开口中的每个第三开口中的多个第三电极。In some embodiments, the electronic device includes a plurality of third electrodes in each of the plurality of third openings in the third mass.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更好地理解本公开,现在参考附图,纯粹通过非限制性示例的方式来描述本公开的一些实施例,在附图中:For a better understanding of the present disclosure, some embodiments of the present disclosure will now be described purely by way of non-limiting examples with reference to the accompanying drawings, in which:
图1示出了根据一个实施例的本MEMS设备的俯视图;FIG1 shows a top view of the present MEMS device according to one embodiment;
图1A示出了图1的MEMS设备的放大部分的俯视图;FIG. 1A shows a top view of an enlarged portion of the MEMS device of FIG. 1 ;
图2示出了图1的MEMS设备在操作条件下的俯视图;FIG2 shows a top view of the MEMS device of FIG1 under operating conditions;
图2A示出了图1的MEMS设备的放大部分在图2的操作条件下的俯视图;FIG. 2A illustrates a top view of an enlarged portion of the MEMS device of FIG. 1 under the operating conditions of FIG. 2 ;
图3示出了根据不同实施例的本MEMS设备的俯视图;FIG3 shows a top view of the present MEMS device according to various embodiments;
图4示出了图3的MEMS设备在操作条件下的俯视图;FIG4 shows a top view of the MEMS device of FIG3 under operating conditions;
图5示出了根据另一实施例的本MEMS设备的俯视图;以及FIG5 shows a top view of the present MEMS device according to another embodiment; and
图6示出了图5的MEMS设备在操作条件下的俯视图。FIG. 6 shows a top view of the MEMS device of FIG. 5 in an operating condition.
具体实施方式DETAILED DESCRIPTION
图1示出了在笛卡儿(Cartesian)参考系XYZ中的MEMS设备20,特别是单轴MEMS加速度计,该笛卡儿参考系包括第一轴X、第二轴Y和第三轴Z。FIG. 1 shows a MEMS device 20 , in particular a single-axis MEMS accelerometer, in a Cartesian reference frame XYZ comprising a first X axis, a second Y axis and a third Z axis.
在图1中,仅示出了有助于理解本实施例的元件,而没有示出尽管存在于最终MEMS设备中、但是与本公开无关的元件或组件。In FIG. 1 , only elements helpful for understanding the present embodiment are shown, and elements or components irrelevant to the present disclosure, although existing in a final MEMS device, are not shown.
MEMS设备20由半导体材料(例如硅)主体通过微机械加工技术而形成。The MEMS device 20 is formed from a body of semiconductor material (eg, silicon) by micromachining techniques.
在所示的实施例中,MEMS设备20具有分别平行于第一轴X和第二轴Y的第一对称轴A和第二对称轴B。In the illustrated embodiment, the MEMS device 20 has a first axis of symmetry A and a second axis of symmetry B that are parallel to the first axis X and the second axis Y, respectively.
MEMS设备20包括衬底21、被悬挂在衬底21上的可移动结构22、以及一个或多个弹性支撑元件,在此是四个弹性支撑元件23,所述弹性支撑元件将可移动结构22机械地耦合到衬底21。The MEMS device 20 includes a substrate 21 , a movable structure 22 suspended on the substrate 21 , and one or more elastic support elements, here four elastic support elements 23 , which mechanically couple the movable structure 22 to the substrate 21 .
可移动结构22和弹性支撑元件23从半导体材料(例如硅或多晶硅)的层开始被形成,并且形成在XY平面中具有主延伸的基本上平面的结构。The movable structure 22 and the elastic supporting element 23 are formed starting from a layer of semiconductor material, for example silicon or polysilicon, and form a substantially planar structure having a main extension in the XY plane.
弹性支撑元件23和可移动结构22沿着第三轴Z在与衬底21相距一定距离处延伸。The elastic support element 23 and the movable structure 22 extend along the third axis Z at a distance from the substrate 21 .
弹性支撑元件23是折叠的挠曲件(flexure),并且被配置为允许可移动结构22根据一个或多个自由度移动,在此沿着平行于第二轴Y的检测方向移动。The elastic support element 23 is a folded flexure and is configured to allow the movable structure 22 to move according to one or more degrees of freedom, here along a detection direction parallel to the second axis Y.
详细地,弹性支撑元件23各自在固定到衬底21的相应锚定区域25与可移动结构22之间延伸。In detail, the elastic support elements 23 each extend between a respective anchoring region 25 fixed to the substrate 21 and the movable structure 22 .
可移动结构22包括检测质量块(mass)28、第一控制质量块29A和第二控制质量块29B、以及第一弹性耦合元件30A和第二弹性耦合元件30B,该第一弹性耦合元件30A和第二弹性耦合元件30B分别将第一控制质量块29A和第二控制质量块29B机械地耦合到检测质量块28。The movable structure 22 includes a detection mass 28, a first control mass 29A and a second control mass 29B, and a first elastic coupling element 30A and a second elastic coupling element 30B, which mechanically couple the first control mass 29A and the second control mass 29B to the detection mass 28, respectively.
第一弹性耦合元件30A和第二弹性耦合元件30B是折叠的挠曲件,该挠曲件被配置为沿着一个或多个方向变形,在此平行于第二轴Y变形。The first elastic coupling element 30A and the second elastic coupling element 30B are folded flexures configured to deform along one or more directions, here parallel to the second axis Y.
第一弹性耦合元件30A和第二弹性耦合元件30B可以沿着检测方向具有相等或不同的弹性常数,在此相对于弹性支撑元件23的弹性常数不同并且特别是更大。The first elastic coupling element 30A and the second elastic coupling element 30B can have equal or different spring constants along the detection direction, here different and in particular greater spring constants relative to the elastic supporting element 23 .
弹性支撑元件23从检测质量块28的左侧和右侧延伸,如图1所示。弹性支撑元件23的第一延伸部沿着第一轴X。第一弹性耦合元件30A和第二弹性耦合元件30B从检测质量块28的顶侧和底侧延伸,如图1所示。这些侧可以被称为第一侧和第二侧(左和右)以及第三侧和第四侧(顶和底)。第二弹性耦合元件的第一延伸部沿着第二轴Y。弹性支撑元件23的第一延伸部横向于来自另一支撑元件的相邻第一延伸部。在检测质量块28的每个拐角处,第一弹性支撑元件和第二弹性支撑元件中的每个弹性支撑元件在彼此的横向方向上延伸。The elastic support element 23 extends from the left and right sides of the detection mass 28, as shown in Figure 1. The first extension of the elastic support element 23 is along the first axis X. The first elastic coupling element 30A and the second elastic coupling element 30B extend from the top and bottom sides of the detection mass 28, as shown in Figure 1. These sides can be referred to as the first side and the second side (left and right) and the third side and the fourth side (top and bottom). The first extension of the second elastic coupling element is along the second axis Y. The first extension of the elastic support element 23 is transverse to the adjacent first extension from another support element. At each corner of the detection mass 28, each of the first elastic support element and the second elastic support element extends in a transverse direction to each other.
详细地,第一控制质量块29A在检测质量块28的第一侧延伸,并且第二检测质量块29B在检测质量块28的相对于第一对称轴A与第一侧相对的第二侧延伸。In detail, the first control mass 29A extends on a first side of the proof mass 28 and the second proof mass 29B extends on a second side of the proof mass 28 opposite to the first side with respect to the first axis of symmetry A.
第一弹性耦合元件30A在第一控制质量块29A与检测质量块28之间平行于第二轴Y延伸。第二弹性耦合元件30B在第二控制质量块29B与检测质量块28之间平行于第二轴Y延伸。The first elastic coupling element 30A extends parallel to the second axis Y between the first control mass 29A and the proof mass 28 . The second elastic coupling element 30B extends parallel to the second axis Y between the second control mass 29B and the proof mass 28 .
MEMS设备20进一步包括第一控制电极33A和第二控制电极33B,该第一控制电极33A和第二控制电极33B被固定到衬底21,并且分别电容性地耦合到第一控制质量块29A和第二控制质量块29B。MEMS device 20 further includes first and second control electrodes 33A, 33B fixed to substrate 21 and capacitively coupled to first and second control masses 29A, 29B, respectively.
第一控制电极33A和第二控制电极33B由半导体材料(例如硅或多晶硅)形成。The first control electrode 33A and the second control electrode 33B are formed of a semiconductor material (eg, silicon or polysilicon).
第一控制电极33A和第二控制电极33B被配置为分别引起第一控制质量块29A和第二控制质量块29B沿着检测方向的位移。The first control electrode 33A and the second control electrode 33B are configured to cause a displacement of the first control mass 29A and the second control mass 29B, respectively, along a detection direction.
详细地,三个第一通腔(through-cavity)35A沿着第三轴Z贯穿第一控制质量块29A的厚度延伸穿过第一控制质量块29A,并且三个第二通腔35B沿着第三轴Z贯穿第二控制质量块29B的厚度延伸穿过第二控制质量块29B。In detail, three first through-cavities 35A extend through the first control mass 29A along the third axis Z through the thickness of the first control mass 29A, and three second through-cavities 35B extend through the second control mass 29B along the third axis Z through the thickness of the second control mass 29B.
对于相应的通腔35A、35B中的每个通腔,第一控制质量块29A和第二控制质量块29B具有第一内壁36和第二内壁37,如在针对第一通腔35A的图1A的放大视图中详细所示。For each of the respective through cavities 35A, 35B, the first and second control masses 29A, 29B have a first inner wall 36 and a second inner wall 37, as shown in detail in the enlarged view of FIG. 1A for the first through cavity 35A.
对于第一通腔35A和第二通腔35B中的每个通腔,第一内壁36平行于第二轴Y被布置在相对于第二内壁37距检测质量块28较小的距离处。换句话说,第一内壁36朝向可移动结构22的中心被布置,并且第二内壁37朝向可移动结构22的外侧被布置。For each of the first through cavity 35A and the second through cavity 35B, the first inner wall 36 is arranged parallel to the second axis Y at a smaller distance from the detection mass 28 than the second inner wall 37. In other words, the first inner wall 36 is arranged toward the center of the movable structure 22, and the second inner wall 37 is arranged toward the outside of the movable structure 22.
在该实施例中,参考第一通腔35A,第一内壁36和第二内壁37在第一通腔35A的沿着第二轴Y彼此相对的两侧平行于第一轴X延伸。In this embodiment, referring to the first through cavity 35A, the first inner wall 36 and the second inner wall 37 extend parallel to the first axis X on both sides of the first through cavity 35A that are opposite to each other along the second axis Y.
第一控制电极33A各自被布置在相应的第一通腔35A内部。第二控制电极33B各自被布置在相应的第二通腔35B内部。The first control electrodes 33A are each arranged inside the corresponding first through-cavity 35A. The second control electrodes 33B are each arranged inside the corresponding second through-cavity 35B.
详细地,为了简单起见,再次参考第一控制质量块29A,第一控制电极33A平行于第二轴Y在与第一内壁36相距距离d1且与第二内壁37相距距离d2处延伸。In detail, for simplicity, referring again to the first control mass 29A, the first control electrode 33A extends parallel to the second axis Y at a distance d1 from the first inner wall 36 and at a distance d2 from the second inner wall 37 .
距离d1,例如包括在1.8m与5m之间,小于距离d2。The distance d 1 , for example comprised between 1.8 m and 5 m, is smaller than the distance d 2 .
例如,距离d1可以大于MEMS设备20的冲程值,即,大于可移动结构22可以在使用中平行于第二轴Y经历的最大位移。For example, the distance d1 may be greater than the stroke value of the MEMS device 20, ie, greater than the maximum displacement parallel to the second axis Y that the movable structure 22 may undergo in use.
例如,距离d2可以等于距离d1加上一因子,根据具体应用,可以根据MEMS设备20的冲程值来选择该因子。For example, the distance d2 may be equal to the distance d1 plus a factor, which may be selected according to the stroke value of the MEMS device 20 depending on the specific application.
MEMS设备20进一步包括第一止挡件40A和第二止挡件40B,该第一止挡件40A和第二止挡件40B被固定到衬底21,并且平行于第二轴Y在分别与第一控制质量块29A和第二控制质量块29B相距一定距离处延伸。第一止挡件和第二止挡件是固定的锚定结构。The MEMS device 20 further comprises a first stopper 40A and a second stopper 40B fixed to the substrate 21 and extending parallel to the second axis Y at a distance from the first control mass 29A and the second control mass 29B, respectively. The first stopper and the second stopper are fixed anchoring structures.
详细地,参考图1A的放大部分,第一止挡件40A具有面向第一控制质量块29A的外壁43的壁42。In detail, referring to the enlarged portion of FIG. 1A , the first stopper 40A has a wall 42 facing an outer wall 43 of the first control mass 29A.
第一控制质量块29A的外壁43平行于第二轴Y在与第一止挡件40A的壁42相距距离d3处延伸。The outer wall 43 of the first control mass 29A extends parallel to the second axis Y at a distance d3 from the wall 42 of the first stop 40A.
相对于第一通腔35A的第一内壁36与相应的第一控制电极33A之间的距离d1,第一控制质量块29A与第一止挡件40A之间的距离d3可相同或不同,特别是在此距离d3更小。Relative to the distance d 1 between the first inner wall 36 of the first through cavity 35A and the corresponding first control electrode 33A, the distance d 3 between the first control mass 29A and the first stopper 40A may be the same as or different from the distance d 1 between the first inner wall 36 of the first through cavity 35A and the corresponding first control electrode 33A, and in particular, the distance d 3 is smaller.
距离d3可以大于或等于MEMS设备20的冲程值。在该实施例中,距离d3等于MEMS设备20的冲程值,并且因此限定了其冲程值。The distance d3 may be greater than or equal to the stroke value of the MEMS device 20. In this embodiment, the distance d3 is equal to the stroke value of the MEMS device 20, and thus defines its stroke value.
第一止挡件40A具有沿着第一轴X的尺寸,该尺寸与检测质量块28沿着相同的第一轴的尺寸基本上相同。The first stop 40A has a dimension along the first axis X that is substantially the same as a dimension of the proof mass 28 along the same first axis.
虽然未被详细示出,但是已经对第一止挡件40A和第一控制电极33A描述的内容也适用于第二止挡件40B和第二控制电极33B。Although not shown in detail, what has been described with respect to the first stopper 40A and the first control electrode 33A also applies to the second stopper 40B and the second control electrode 33B.
MEMS设备20还包括仅在图1中示意性地呈现的第一电压施加装置45A和第二电压施加装置45B,该第一电压施加装置45A和第二电压施加装置45B分别包括第一导电迹线46A和第二导电迹线46B,该第一导电迹线46A和第二导电迹线46B在衬底21上延伸,并且为了简单起见,在图1中用虚线表示。The MEMS device 20 also includes a first voltage applying device 45A and a second voltage applying device 45B, which are only schematically presented in Figure 1. The first voltage applying device 45A and the second voltage applying device 45B respectively include a first conductive trace 46A and a second conductive trace 46B, which extend on the substrate 21 and are represented by dotted lines in Figure 1 for simplicity.
例如,第一电压施加装置45A和第二电压施加装置45B可以进一步包括接触垫和接合线,并且被配置为分别向第一控制电极33A和第二控制电极33B提供控制电压。For example, the first voltage applying device 45A and the second voltage applying device 45B may further include contact pads and bonding wires, and be configured to provide control voltages to the first control electrode 33A and the second control electrode 33B, respectively.
MEMS设备20进一步包括检测结构50,该检测结构50是电容类型的,并且被配置为检测检测质量块28沿着检测方向的移动。The MEMS device 20 further comprises a detection structure 50 which is of the capacitive type and is configured to detect a movement of the proof mass 28 along a detection direction.
在所示的实施例中,检测结构50包括梳齿类型的第一检测电容器51A和第二检测电容器51B。In the illustrated embodiment, the detection structure 50 includes a first detection capacitor 51A and a second detection capacitor 51B of a comb-tooth type.
详细地,第一检测电容器51A和第二检测电容器51B各自包括被固定到衬底21的多个定子电极53A、53B以及与检测质量块28集成的多个转子电极54A、54B。定子电极53A、53B与相应的转子电极54A、54B相互交错。In detail, the first detection capacitor 51A and the second detection capacitor 51B each include a plurality of stator electrodes 53A, 53B fixed to the substrate 21 and a plurality of rotor electrodes 54A, 54B integrated with the detection mass 28. The stator electrodes 53A, 53B are interleaved with the corresponding rotor electrodes 54A, 54B.
在所示的实施例中,腔60平行于第三轴Z贯穿检测质量块28的厚度延伸穿过检测质量块28。实际上,在所示的实施例中,检测质量块28具有框架形状。定子电极53A、53B被布置在腔60内部,并且转子电极54A、54B由检测质量块28的突起形成,该突起朝向腔60的内部延伸。In the embodiment shown, the cavity 60 extends through the proof mass 28 through the thickness of the proof mass 28 parallel to the third axis Z. In fact, in the embodiment shown, the proof mass 28 has a frame shape. The stator electrodes 53A, 53B are arranged inside the cavity 60, and the rotor electrodes 54A, 54B are formed by protrusions of the proof mass 28, which extend toward the interior of the cavity 60.
在使用中,MEMS设备20被配置为检测同一MEMS设备20沿着检测方向(在此平行于第二轴Y)的加速度。In use, the MEMS device 20 is configured to detect acceleration of the same MEMS device 20 along a detection direction (here parallel to the second axis Y).
MEMS设备20可以被控制在灵敏操作状态或低加速度操作状态下、以及在高频带操作状态或高加速度操作状态下,该灵敏操作状态或低加速度操作状态可以被用于检测低加速度值,例如高达16g或32g,该高频带操作状态或高加速度操作状态可以被用于检测高加速度值,例如高达128g,其中g表示等于约9.81m/s2的地球重力加速度值。The MEMS device 20 can be controlled in a sensitive operating state or a low acceleration operating state, and in a high-band operating state or a high acceleration operating state, wherein the sensitive operating state or the low acceleration operating state can be used to detect low acceleration values, such as up to 16g or 32g, and the high-band operating state or the high acceleration operating state can be used to detect high acceleration values, such as up to 128g, where g represents the earth's gravity acceleration value equal to approximately 9.81m/ s2 .
在灵敏操作状态下,零电压被施加到第一控制电极33A和第二控制电极33B。因此,在灵敏操作状态下,MEMS设备20在平衡或静止(对于零加速度值)时具有图1所示的配置。In the sensitive operating state, zero voltage is applied to the first control electrode 33 A and the second control electrode 33 B. Thus, in the sensitive operating state, the MEMS device 20 has the configuration shown in FIG. 1 when in equilibrium or at rest (for zero acceleration value).
在灵敏操作状态下,当MEMS设备20受到沿着检测方向的加速度时,平行于检测方向的惯性力被施加在可移动结构22上。惯性力引起可移动结构22相对于平衡位置的位移。In the sensitive operation state, when the MEMS device 20 is subjected to acceleration along the detection direction, an inertial force parallel to the detection direction is exerted on the movable structure 22. The inertial force causes a displacement of the movable structure 22 relative to the equilibrium position.
响应于从平衡位置的位移,弹性回程力(return force)作用于可移动结构22上。弹性回程力相对于惯性力具有相反的方向。In response to the displacement from the equilibrium position, an elastic return force acts on the movable structure 22. The elastic return force has an opposite direction with respect to the inertial force.
在灵敏操作状态下,弹性回程力通过弹性支撑元件23被施加到可移动结构22上。因此,弹性回程力的模量是弹性支撑元件23的弹性常数k1的函数。In the sensitive operating state, the elastic return force is applied to the movable structure 22 through the elastic support element 23. Therefore, the modulus of the elastic return force is a function of the elastic constant k1 of the elastic support element 23.
实际上,在灵敏操作状态下,可移动结构22作为单个主体沿着检测方向移动。In fact, in the sensitive operating state, the movable structure 22 moves along the detection direction as a single body.
作为第一近似法,通过忽略第一弹性耦合元件30A和第二弹性耦合元件30B的质量,可移动结构22具有等于M+2m的总质量,其中M是检测质量块28的质量,并且m是第一控制质量块29A和第二控制质量块29B的质量值。因此,MEMS设备20在灵敏操作状态下具有由给出的谐振频率f1。As a first approximation, by neglecting the mass of the first elastic coupling element 30A and the second elastic coupling element 30B, the movable structure 22 has a total mass equal to M+2m, where M is the mass of the detection mass 28, and m is the mass value of the first control mass 29A and the second control mass 29B. Therefore, the MEMS device 20 has a mass of The resonant frequency f 1 is given.
图2示出了在高频带操作状态下处于平衡或静止(对于零加速度值)的MEMS设备20。FIG. 2 shows the MEMS device 20 at equilibrium or at rest (for a zero acceleration value) in a high-band operating state.
在高频带操作状态下,电压Vp通过第一电压施加装置45A和第二电压施加装置45B被施加到第一控制电极33A和第二控制电极33B。In the high-frequency band operation state, the voltage Vp is applied to the first control electrode 33A and the second control electrode 33B through the first voltage applying device 45A and the second voltage applying device 45B.
在下文中,将参考第一控制质量块29A、第一控制电极33A、第一止挡件40A和第一弹性耦合元件30A来描述MEMS设备20在高频带操作状态下的操作。然而,将要被描述的内容也适用于第二控制质量块29B、第二控制电极33B、第二止挡件40B和第二弹性耦合元件30B。Hereinafter, the operation of the MEMS device 20 in the high-frequency band operation state will be described with reference to the first control mass 29A, the first control electrode 33A, the first stopper 40A, and the first elastic coupling element 30A. However, what will be described is also applicable to the second control mass 29B, the second control electrode 33B, the second stopper 40B, and the second elastic coupling element 30B.
电压Vp大于或等于第一控制电极33A与第一可移动质量块29A的相应第一内壁36之间的拉入(pull-in)电压。The voltage Vp is greater than or equal to a pull-in voltage between the first control electrode 33A and the corresponding first inner wall 36 of the first movable mass 29A.
实际上,第一控制质量块29A和第一控制电极33A在高频带操作状态下处于拉入条件。In practice, the first control mass 29A and the first control electrode 33A are in a pull-in condition in the high-band operation state.
电压Vp在第一可移动质量块29A的第一内壁36与第一控制电极33A之间产生吸引静电力(图2的箭头Fc1)。由于第一控制电极33A被固定到衬底21,因此电压Vp引起第一控制质量块29A朝向第一控制电极33A的位移。Voltage Vp generates an attractive electrostatic force (arrow Fc1 of FIG. 2) between first inner wall 36 of first movable mass 29A and first control electrode 33A. Since first control electrode 33A is fixed to substrate 21, voltage Vp causes displacement of first control mass 29A toward first control electrode 33A.
如在图2A中详细示出的,在平衡时,在高频带操作状态下,相对于第一操作状态,第一通腔35A的第一内壁36处于比图1A所示的距离d1更小的距离d′1处。As shown in detail in FIG. 2A , at equilibrium, in the high-band operating state, relative to the first operating state, the first inner wall 36 of the first through cavity 35A is at a distance d′ 1 smaller than the distance d 1 shown in FIG. 1A .
再次参考图2,电压Vp还引起第二可移动质量块29B,特别是相应的第一内壁36,朝向第二控制电极33B移动(由图2的箭头Fc2指示的静电力)。Referring again to FIG. 2 , the voltage V p also causes the second movable mass 29B, and in particular the corresponding first inner wall 36 , to move towards the second control electrode 33B (electrostatic force indicated by arrow F c2 of FIG. 2 ).
详细地,在所示的实施例中,静电力Fc1和静电力Fc2在模量上相等并且具有相反的方向;因此,在平衡时,在没有外部加速度的情况下,弹性支撑元件23保持不变形,并且检测质量块28不经历相对于静止位置的位移。In detail, in the embodiment shown, the electrostatic forces F c1 and F c2 are equal in modulus and have opposite directions; therefore, in equilibrium, in the absence of external acceleration, the elastic support element 23 remains unchanged and the detection mass 28 does not experience a displacement relative to the rest position.
在平衡时,第一弹性耦合元件30A在第一控制质量块29A上施加弹性回程力(图2中向上)。然而,由于电压Vp等于或大于拉入电压,因此第一控制质量块29A上的弹性回程力低于由第一控制电极33A施加在第一控制质量块29A上的静电吸引力Fc1。In equilibrium, first elastic coupling element 30A exerts an elastic return force (upward in FIG. 2 ) on first control mass 29A. However, since voltage Vp is equal to or greater than the pull-in voltage, the elastic return force on first control mass 29A is lower than the electrostatic attraction force Fc1 exerted on first control mass 29A by first control electrode 33A.
因此,在高频带操作状态下,在没有外部加速度的情况下,分别指向第一止挡件40A和第二止挡件40B的合力作用在第一控制质量块29A和第二控制质量块29B上。合力保持第一控制质量块29A和第二控制质量块29B分别与第一止挡件40A和第二止挡件40B接触。Therefore, in the high-band operation state, in the absence of external acceleration, the combined forces directed toward the first stopper 40A and the second stopper 40B, respectively, act on the first control mass 29A and the second control mass 29B. The combined force keeps the first control mass 29A and the second control mass 29B in contact with the first stopper 40A and the second stopper 40B, respectively.
实际上,在高频带操作状态下,第一控制质量块29A和第二控制质量块29B形成检测质量块28的衬底21的进一步锚定元件。In practice, in the high-band operating state, the first control mass 29A and the second control mass 29B form further anchoring elements of the substrate 21 of the proof mass 28 .
此外,电压Vp使得能够即使当MEMS设备20经历沿着检测方向的加速度时,也使第一控制质量块29A和第一控制电极33A维持在拉入条件下,并且使第二控制质量块29B和第二控制电极33B维持在拉入条件下。Furthermore, voltage Vp enables first control mass 29A and first control electrode 33A to be maintained in a pull-in condition and second control mass 29B and second control electrode 33B to be maintained in a pull-in condition even when MEMS device 20 experiences acceleration along the detection direction.
因此,当MEMS设备20经历这类加速度时,被施加到可移动结构22的对应惯性力仅引起检测质量块28移动。Thus, when MEMS device 20 experiences such accelerations, the corresponding inertial forces applied to movable structure 22 cause only proof mass 28 to move.
实际上,即使在存在加速度的情况下,第一控制质量块29A和第二控制质量块29B也保持被固定到第一止挡件40A和第二止挡件40B,并且检测质量块28相对于第一控制质量块29A和第二控制质量块29B移动。Indeed, even in the presence of acceleration, first and second control masses 29A, 29B remain fixed to first and second stops 40A, 40B, and proof mass 28 moves relative to first and second control masses 29A, 29B.
例如,MEMS设备20可以被配置为在存在加速度的情况下沿着检测方向操作,该加速度低于或等于最大预期加速度值(例如根据特定应用在设计步骤期间可确定)。通过示例的方式,参考第一控制电极33A和第一控制质量块29A,当MEMS设备20在使用中受到等于最大预期加速度值的加速度时,检测质量块28沿着检测方向相对于衬底21经历最大位移。因此,电压Vp可以被选择为使得由第一控制电极33A施加在第一控制质量块29A上的对应拉入力大于由第一弹性耦合元件30A响应于检测质量块28的最大位移而施加在第一控制质量块29A上的弹性回程力与由第一控制质量块29A响应于MEMS设备20的最大预期加速度值而经受的表观力(apparent force)的和。For example, the MEMS device 20 may be configured to operate along the detection direction in the presence of an acceleration that is less than or equal to a maximum expected acceleration value (e.g., determinable during a design step depending on the particular application). By way of example, referring to the first control electrode 33A and the first control mass 29A, when the MEMS device 20 is subjected to an acceleration equal to the maximum expected acceleration value in use, the detection mass 28 experiences a maximum displacement relative to the substrate 21 along the detection direction. Thus, the voltage Vp may be selected such that the corresponding pull-in force exerted by the first control electrode 33A on the first control mass 29A is greater than the sum of the elastic return force exerted by the first elastic coupling element 30A on the first control mass 29A in response to the maximum displacement of the detection mass 28 and the apparent force experienced by the first control mass 29A in response to the maximum expected acceleration value of the MEMS device 20.
由此可知,在高频带操作状态下,在存在加速度的情况下,检测质量块28经历弹性回程力,该弹性回程力不仅是弹性支撑元件23的弹性常数k1的函数,而且是第一弹性耦合元件30A和第二弹性耦合元件30B的弹性常数k2的函数。It can be seen from this that under the high-frequency band operating state, in the presence of acceleration, the detection mass 28 experiences an elastic return force, which is not only a function of the elastic constant k1 of the elastic support element 23, but also a function of the elastic constant k2 of the first elastic coupling element 30A and the second elastic coupling element 30B.
在高频带操作状态下,第一弹性耦合元件30A和第二弹性耦合元件30B与弹性支撑元件23被机械地并行布置在检测质量块28与衬底21之间。In the high-band operation state, the first elastic coupling element 30A and the second elastic coupling element 30B are mechanically arranged in parallel with the elastic supporting element 23 between the detection mass 28 and the substrate 21 .
因此,在高频带操作状态下,MEMS设备20,特别是检测质量块28,具有等效弹性常数keq,该等效弹性常数keq是弹性常数k1、k2的和的函数。Therefore, in the high-band operation state, the MEMS device 20 , in particular the proof mass 28 , has an equivalent elastic constant ke eq , which is a function of the sum of the elastic constants k 1 , k 2 .
作为第一近似法,通过在此也忽略第一弹性耦合元件30A和第二弹性耦合元件30B的质量,可移动结构22具有等于M的总质量,即对应于唯一的检测质量块28。As a first approximation, by also neglecting here the masses of the first elastic coupling element 30A and the second elastic coupling element 30B, the movable structure 22 has a total mass equal to M, ie corresponding to a single proof mass 28 .
因此,MEMS设备20在高频带操作状态下具有由 给出的谐振频率f2。Therefore, the MEMS device 20 has the following characteristics in the high-frequency band operation state: The resonant frequency f 2 is given.
通过在设计步骤期间适当地选择弹性常数k1、k2的值和质量M、m的值,可以调整MEMS设备20的谐振频率f1、f2的值,并且因此可以调整MEMS设备20在第一操作状态和第二操作状态下的检测属性。By appropriately selecting the values of the spring constants k 1 , k 2 and the masses M, m during the design step, the values of the resonance frequencies fi 2 of the MEMS device 20 and thus the detection properties of the MEMS device 20 in the first and second operating states may be adjusted.
在所示的实施例中,谐振频率f2大于谐振频率f1。In the illustrated embodiment, the resonance frequency f2 is greater than the resonance frequency f1 .
因此,在灵敏操作状态下,相对于高频带操作状态,MEMS设备20具有更高的检测灵敏度。在高频带操作状态下,相对于灵敏操作状态,MEMS设备20具有更大的满刻度范围。Therefore, in the sensitive operation state, the MEMS device 20 has a higher detection sensitivity than in the high-band operation state. In the high-band operation state, the MEMS device 20 has a larger full-scale range than in the sensitive operation state.
因此,MEMS设备20可以被用于检测低加速度值和高加速度值两者。Thus, the MEMS device 20 can be used to detect both low and high acceleration values.
此外,参考图1A,在MEMS设备20中,在静止时,第一控制质量块29A与第一止挡件40A之间的距离d3小于第一内壁36与第一控制电极33A之间的距离d1,这一事实引起第一控制质量块29A在拉入条件下被锚定到第一止挡件40A并且不与第一控制电极33A碰撞。这使得能够避免第一壁36与第一电极33A之间的短路。1A , in the MEMS device 20 , at rest, the distance d 3 between the first control mass 29A and the first stopper 40A is smaller than the distance d 1 between the first inner wall 36 and the first control electrode 33A, which causes the first control mass 29A to be anchored to the first stopper 40A in the pull-in condition and not collide with the first control electrode 33A. This makes it possible to avoid a short circuit between the first wall 36 and the first electrode 33A.
图3示出了本MEMS设备的不同实施例,在此由120指示。MEMS设备120具有类似于图1的MEMS设备20的结构的一般结构;因此,共同的元件由相同的附图标记指示,并且不被进一步描述。Figure 3 shows a different embodiment of the present MEMS device, here indicated by 120. MEMS device 120 has a general structure similar to that of MEMS device 20 of Figure 1; therefore, common elements are indicated by the same reference numerals and are not further described.
详细地,MEMS设备120包括衬底21、可移动结构122和弹性支撑元件,特别是第一弹性支撑元件123A和第二弹性支撑元件123B,该第一弹性支撑元件123A和第二弹性支撑元件123B将可移动结构122机械地耦合到衬底21。In detail, the MEMS device 120 includes a substrate 21 , a movable structure 122 , and elastic support elements, in particular, first and second elastic support elements 123A and 123B that mechanically couple the movable structure 122 to the substrate 21 .
同样在该实施例中,可移动结构122包括检测质量块28、第一控制质量块29A和第二控制质量块29B以及第一弹性耦合元件30A和第二弹性耦合元件30B。Also in this embodiment, the movable structure 122 includes a detection mass 28, first and second control masses 29A and 29B, and first and second elastic coupling elements 30A and 30B.
在MEMS设备120中,第一弹性支撑元件123A和第二弹性支撑元件123B分别耦合到第一控制质量块29A和第二控制质量块29B。In MEMS device 120, first and second elastic support elements 123A, 123B are coupled to first and second control masses 29A, 29B, respectively.
详细地,第一弹性支撑元件123A各自在相应的锚定区域25A与第一控制质量块29A之间延伸,并且第二弹性支撑元件123B各自在相应的锚定区域25B与第二控制质量块29B之间延伸。In detail, the first elastic support elements 123A each extend between a corresponding anchoring region 25A and the first control mass 29A, and the second elastic support elements 123B each extend between a corresponding anchoring region 25B and the second control mass 29B.
实际上,在图3的MEMS设备120中,第一弹性支撑元件123A和第二弹性支撑元件123B分别与第一弹性耦合元件30A和第二弹性耦合元件30B被机械地串行布置在检测质量块28与衬底21之间。In fact, in the MEMS device 120 of FIG. 3 , the first elastic support element 123A and the second elastic support element 123B are mechanically arranged in series with the first elastic coupling element 30A and the second elastic coupling element 30B, respectively, between the detection mass 28 and the substrate 21 .
MEMS设备120进一步包括第一控制电极33A和第二控制电极33B、第一止挡件40A和第二止挡件40B以及检测结构50。The MEMS device 120 further includes first and second control electrodes 33A and 33B, first and second stoppers 40A and 40B, and a detection structure 50 .
MEMS设备120还包括电压施加装置,该电压施加装置在此未被示出,该电压施加装置允许将电压施加到第一控制电极33A和第二控制电极33B,如参考图1所论述的。The MEMS device 120 further comprises voltage applying means, not shown here, which allow a voltage to be applied to the first control electrode 33A and the second control electrode 33B, as discussed with reference to FIG. 1 .
类似于已经针对图1的MEMS设备20讨论的,MEMS设备120也具有被配置为检测低加速度值的灵敏操作状态、以及被配置为检测高加速度值的高频带操作状态。Similar to what has been discussed with respect to the MEMS device 20 of FIG. 1 , the MEMS device 120 also has a sensitive operating state configured to detect low acceleration values, and a high-band operating state configured to detect high acceleration values.
在灵敏操作状态下(图3),在第一控制电极33A和第二控制电极33B与第一第二控制质量块29A和第二控制质量块29B之间施加低于拉入电压的电压,特别是零电压。In the sensitive operating state ( FIG. 3 ), a voltage lower than the pull-in voltage, in particular a zero voltage, is applied between the first and second control electrodes 33A, 33B and the first and second control masses 29A, 29B.
在第一操作状态中,MEMS设备20,特别是检测质量块28,具有等效弹性常数keq=k1·k2/(k1+k2)。In the first operating state, the MEMS device 20, in particular the proof mass 28, has an equivalent spring constant keq = k1 · k2 /( k1 + k2 ).
作为第一近似法,通过忽略第一弹性耦合元件30A和第二弹性耦合元件30B的质量,可移动结构122在此也具有等于M+2m的总质量。因此,在灵敏操作状态下,MEMS设备120具有由 给出的谐振频率f1。As a first approximation, by neglecting the mass of the first elastic coupling element 30A and the second elastic coupling element 30B, the movable structure 122 also has a total mass equal to M+2m. Therefore, in the sensitive operating state, the MEMS device 120 has a mass of The resonant frequency f 1 is given.
在高频带操作状态下(图4),电压Vp被施加在第一控制电极33A与第一控制质量块29A之间以及第二控制电极33B与第二控制质量块29B之间,类似于已经参考图2被讨论的。In the high-band operating state ( FIG. 4 ), voltage Vp is applied between first control electrode 33A and first control mass 29A and between second control electrode 33B and second control mass 29B, similar to what has been discussed with reference to FIG. 2 .
在存在加速度的情况下,第一控制质量块29A和第二控制质量块29B保持分别与第一止挡件40A和第二止挡件40B接触;并且检测质量块28相对于平衡位置移动。实际上,在此同样,在拉入条件下,第一质量块29A和第二质量块29B被分别静电地固定到第一止挡件40A和第二止挡件40B。In the presence of acceleration, the first control mass 29A and the second control mass 29B remain in contact with the first stop 40A and the second stop 40B, respectively; and the proof mass 28 moves relative to the equilibrium position. In fact, here too, in the pull-in condition, the first mass 29A and the second mass 29B are electrostatically fixed to the first stop 40A and the second stop 40B, respectively.
因此,在存在外部加速度的情况下,只有第一弹性耦合元件30A和第二弹性耦合元件30B在检测质量块28上施加弹性回程力。Thus, in the presence of an external acceleration, only the first elastic coupling element 30A and the second elastic coupling element 30B exert an elastic return force on the proof mass 28 .
实际上,MEMS设备120的等效弹性常数keq等于第一弹性耦合元件30A和第二弹性耦合元件30B的弹性常数k2。In fact, the equivalent spring constant keq of the MEMS device 120 is equal to the spring constant k2 of the first elastic coupling element 30A and the second elastic coupling element 30B.
因此,MEMS设备120在高频带操作状态下具有由给出的谐振频率f2。Therefore, the MEMS device 120 has the following characteristics in the high-frequency band operation state: The resonant frequency f 2 is given.
实际上,MEMS设备120也可以具有高的灵敏度和高的满刻度范围二者。In fact, the MEMS device 120 may also have both high sensitivity and high full-scale range.
图5示出了本MEMS设备的另一实施例,在此由220指示。MEMS设备220具有类似于图1的MEMS设备20的结构的一般结构;因此,共同的元件由相同的附图标记指示,并且不被进一步描述。Figure 5 shows another embodiment of the present MEMS device, here indicated by 220. MEMS device 220 has a general structure similar to that of MEMS device 20 of Figure 1; therefore, common elements are indicated by the same reference numerals and are not further described.
详细地,MEMS设备220包括衬底21、可移动结构222和弹性支撑元件23。In detail, the MEMS device 220 includes a substrate 21 , a movable structure 222 , and an elastic supporting element 23 .
在该实施例中,可移动结构222由检测质量块28、控制质量块229以及一个或多个弹性耦合元件(在此是两个弹性耦合元件230)形成。In this embodiment, the movable structure 222 is formed by a detection mass 28 , a control mass 229 and one or more elastic coupling elements, here two elastic coupling elements 230 .
控制质量块229和弹性耦合元件230分别等同于MEMS设备20的第一控制质量块29A和第一弹性耦合元件30A。The control mass 229 and the elastic coupling element 230 are respectively equivalent to the first control mass 29A and the first elastic coupling element 30A of the MEMS device 20 .
MEMS设备220进一步包括多个控制电极233以及止挡件240,该控制电极233和止挡件240分别等同于图1的MEMS设备20的第一控制电极33A和第一止挡件40A。The MEMS device 220 further includes a plurality of control electrodes 233 and a stopper 240 , which are respectively equivalent to the first control electrode 33A and the first stopper 40A of the MEMS device 20 of FIG. 1 .
实际上,相对于图1的MEMS设备20,MEMS设备220不具有第二控制质量块、第二弹性耦合元件、第二止挡件和第二控制电极。In fact, with respect to the MEMS device 20 of FIG. 1 , the MEMS device 220 does not have a second control mass, a second elastic coupling element, a second stopper and a second control electrode.
换句话说,MEMS设备220平行于第一X轴不对称。In other words, the MEMS device 220 is asymmetric parallel to the first X-axis.
MEMS设备220的操作类似于图1的MEMS设备20和图3的MEMS设备120的操作,并且因此将不被进一步详细描述。The operation of the MEMS device 220 is similar to the operation of the MEMS device 20 of FIG. 1 and the MEMS device 120 of FIG. 3 , and therefore will not be described in further detail.
图6示出了处于高频带操作状态的MEMS设备220,其中控制电极233和控制质量块229处于拉入条件下。FIG. 6 shows the MEMS device 220 in a high-band operating state, wherein the control electrode 233 and the control mass 229 are in a pull-in condition.
因此,在灵敏操作状态下(图5),MEMS设备220的等效弹性常数是弹性支撑元件23的弹性常数的函数。在高频带操作状态下(图6),MEMS设备220的等效弹性常数是弹性支撑元件23和弹性耦合元件230二者的弹性常数的函数。Therefore, in the sensitive operating state ( FIG. 5 ), the equivalent spring constant of the MEMS device 220 is a function of the spring constant of the elastic support element 23. In the high-band operating state ( FIG. 6 ), the equivalent spring constant of the MEMS device 220 is a function of the spring constants of both the elastic support element 23 and the elastic coupling element 230.
因此,MEMS设备220也具有高的检测通用性,并且可以检测高的加速度值和低的加速度值二者。Therefore, the MEMS device 220 also has high detection versatility and can detect both high and low acceleration values.
此外,MEMS设备220具有低的管芯面积占用,并且因此可以具有低的制造成本。Furthermore, the MEMS device 220 has a low die area footprint and thus may have a low manufacturing cost.
最后,清楚的是,在不偏离本公开的范围的情况下,可以对本文所描述并图示的MEMS设备20、120、220进行修改和变化,如在所附的权利要求中所限定的。Finally, it is clear that modifications and variations may be made to the MEMS device 20 , 120 , 220 described and illustrated herein without departing from the scope of the present disclosure, as defined in the appended claims.
例如,弹性支撑元件、锚定区域、止挡件、弹性耦合元件、控制质量块的通腔等可以在数目和形状上与已经在本文描述并图示的不同。For example, elastic support elements, anchoring areas, stops, elastic coupling elements, through cavities for the control mass, etc. may differ in number and shape from what has been described and illustrated herein.
例如,弹性支撑元件和弹性耦合元件可以是不同类型的挠曲件,例如线性挠曲件。For example, the elastic support element and the elastic coupling element may be different types of flexures, such as linear flexures.
检测结构50可以包括不同数目的检测电容器和/或检测电容器可以是不同类型的,例如平行板电容器。The detection structure 50 may include a different number of detection capacitors and/or the detection capacitors may be of different types, such as parallel plate capacitors.
另选地,MEMS设备可以基于除电容性原理之外的检测原理。例如,检测结构50可以被配置为根据压电或压阻检测原理来检测检测质量块28的移动。Alternatively, the MEMS device may be based on detection principles other than the capacitive principle.For example, the detection structure 50 may be configured to detect movement of the proof mass 28 according to a piezoelectric or piezoresistive detection principle.
例如,控制电极可以被用于在多于两个的多个操作状态下控制MEMS设备。例如,可以将除了零之外的且低于拉入电压的电压施加到控制电极,这允许弹性支撑元件的弹性常数和/或弹性耦合元件的弹性常数由于已知的静电软化现象而被修改。For example, the control electrode can be used to control the MEMS device in more than two operating states. For example, a voltage other than zero and lower than the pull-in voltage can be applied to the control electrode, which allows the spring constant of the elastic support element and/or the spring constant of the elastic coupling element to be modified due to the known electrostatic softening phenomenon.
附加地或另选地,参考MEMS设备20、120,根据具体应用,可以将彼此不同的电压施加到第一控制电极和第二控制电极。例如,拉入电压可以仅被施加到第一控制电极或第二控制电极。Additionally or alternatively, referring to the MEMS devices 20, 120, different voltages may be applied to the first control electrode and the second control electrode depending on the specific application. For example, the pull-in voltage may be applied only to the first control electrode or the second control electrode.
例如,本MEMS设备可以是双轴或三轴加速度计。在这种情况下,可移动结构可以被配置为沿着一个或多个方向移动。另选地,MEMS设备可以包括多个可移动结构,这些可移动结构被适当地配置为各自检测沿着相应轴的加速度。For example, the present MEMS device may be a dual-axis or tri-axis accelerometer. In this case, the movable structure may be configured to move along one or more directions. Alternatively, the MEMS device may include a plurality of movable structures that are appropriately configured to each detect acceleration along a corresponding axis.
此外,MEMS设备可以是除了加速度计之外的惯性传感器,例如陀螺仪或不同类型的MEMS传感器,其被配置为基于可移动结构的移动来检测物理量。Furthermore, the MEMS device may be an inertial sensor other than an accelerometer, such as a gyroscope or a different type of MEMS sensor configured to detect a physical quantity based on the movement of the movable structure.
最后,所描述的实施例可以被组合以形成另外的解决方案。Finally, the described embodiments may be combined to form further solutions.
一种MEMS设备(20;120;220)可以被概括为包括:衬底(21);可移动结构(22;122;222),被悬挂在衬底上,并且包括第一质量块(28);第二质量块(29A、29B;229);以及第一弹性组(30A、30B;230),机械地耦合在第一质量块与第二质量块之间,第一弹性组沿着第一方向(Y)是柔顺的(compliant),第一质量块被配置为沿着第一方向相对于衬底移动;第二弹性组(23;123A、123B),机械地耦合在衬底与可移动结构之间,第二弹性组沿着第一方向是柔顺的;以及锚定控制结构(33A、40A、33B、40B;233、240),被固定到衬底,电容性地耦合到第二质量块(29A、29B;129),并且被配置为沿着第一方向在第二质量块上施加静电力,其中锚定控制结构被配置为:控制MEMS设备处于第一操作状态,其中第二质量块沿着第一方向相对于衬底自由移动,以及控制MEMS设备处于第二操作状态,其中锚定控制结构在第二质量块上施加使得能够将第二质量块锚定到锚定结构的拉入静电力,从而防止第二质量块响应第一质量块的移动而相对于衬底移动。A MEMS device (20; 120; 220) can be summarized as including: a substrate (21); a movable structure (22; 122; 222) suspended from the substrate and including a first mass (28); a second mass (29A, 29B; 229); and a first elastic group (30A, 30B; 230) mechanically coupled between the first mass and the second mass, the first elastic group being compliant along a first direction (Y), the first mass being configured to move relative to the substrate along the first direction; and a second elastic group (23; 123A, 123B) mechanically coupled between the substrate and the movable structure, the second elastic group being compliant along the first direction. is compliant; and an anchoring control structure (33A, 40A, 33B, 40B; 233, 240) is fixed to the substrate, capacitively coupled to the second mass (29A, 29B; 129), and is configured to apply an electrostatic force on the second mass along a first direction, wherein the anchoring control structure is configured to: control the MEMS device to be in a first operating state, wherein the second mass is free to move relative to the substrate along the first direction, and control the MEMS device to be in a second operating state, wherein the anchoring control structure applies a pulling electrostatic force on the second mass that enables the second mass to be anchored to the anchoring structure, thereby preventing the second mass from moving relative to the substrate in response to movement of the first mass.
锚定控制结构可以包括止挡件(40A、40B;240),该止挡件被固定到衬底,止挡件在静止时在第一操作状态下沿着第一方向在与第二质量块相距第一距离(d3)处延伸,并且在第二操作状态下与第二质量块接触。The anchor control structure may include a stopper (40A, 40B; 240) fixed to the substrate, the stopper extending at a first distance ( d3 ) from the second mass in a first operational state along a first direction when at rest and in contact with the second mass in a second operational state.
锚定控制结构可以进一步包括控制电极(33A、33B;233),该控制电极被固定到衬底(21),并且在静止时在第一操作状态下沿着第一方向在与第二质量块(29A、29B)相距第二距离(d1)处延伸。The anchor control structure may further include a control electrode (33A, 33B; 233) fixed to the substrate (21) and extending in a first direction at a second distance ( d1 ) from the second mass (29A, 29B) in a first operational state when at rest.
第一距离可以小于第二距离。The first distance may be smaller than the second distance.
锚定控制结构可以包括控制电极(33A、33B;233),第二质量块具有外壁(43)和通腔(35A、35B),该通腔具有内壁(36),控制电极被布置在通腔内部,面向内壁,止挡件面向第二质量块的外壁。The anchoring control structure may include a control electrode (33A, 33B; 233), the second mass having an outer wall (43) and a through cavity (35A, 35B), the through cavity having an inner wall (36), the control electrode being arranged inside the through cavity, facing the inner wall, and the stopper facing the outer wall of the second mass.
第二弹性组(23)可以耦合到第一质量块(28),使得在第一操作状态下,第一质量块通过第二弹性组耦合到衬底,并且在第二操作状态下,第一质量块通过第一弹性组和第二弹性组耦合到衬底,第一弹性组和第二弹性组被机械地并行布置在第一可移动质量块与衬底之间。The second elastic group (23) can be coupled to the first mass block (28) so that in a first operating state, the first mass block is coupled to the substrate via the second elastic group, and in a second operating state, the first mass block is coupled to the substrate via the first elastic group and the second elastic group, and the first elastic group and the second elastic group are mechanically arranged in parallel between the first movable mass block and the substrate.
第二弹性组(123A、123B)可以耦合到第二质量块(29A、29B),使得在第一操作状态下,第一质量块通过第一弹性组和第二弹性组耦合到衬底,第一弹性组和第二弹性组被机械地串行布置在第一可移动质量块与衬底之间,并且在第二操作状态下,第一质量块通过第一弹性组耦合到衬底。The second elastic group (123A, 123B) can be coupled to the second mass block (29A, 29B), so that in a first operating state, the first mass block is coupled to the substrate through the first elastic group and the second elastic group, the first elastic group and the second elastic group are mechanically arranged in series between the first movable mass block and the substrate, and in a second operating state, the first mass block is coupled to the substrate through the first elastic group.
该可移动结构可以进一步包括第三质量块(29B)和第三弹性组(30B),该第三弹性组将第一质量块(28)机械地耦合到第三质量块,并且该第三弹性组沿着第一方向是柔顺的,第二质量块被布置在第一质量块的第一侧,第三质量块被布置在第一质量块的、除了第一侧之外的第二侧,其中锚定控制结构是第一锚定控制结构(33A、40A),该MEMS设备可以进一步包括第二锚定控制结构(33B、40B),该第二锚定控制结构(33B、40B)被固定到衬底,电容性地耦合到第三质量块(29B),并且被配置为:控制MEMS设备处于第三操作状态,其中第三质量块沿着第一方向相对于衬底自由移动,以及控制MEMS设备处于第四操作状态,其中第二锚定控制结构在第三质量块上施加使得能够将第三质量块锚定到第二锚定结构的拉入静电力,从而防止第三质量块响应于第一质量块的移动而相对于衬底移动。The movable structure may further include a third mass (29B) and a third elastic group (30B), the third elastic group mechanically coupling the first mass (28) to the third mass, and the third elastic group is compliant along the first direction, the second mass is arranged on a first side of the first mass, and the third mass is arranged on a second side of the first mass other than the first side, wherein the anchoring control structure is a first anchoring control structure (33A, 40A), the MEMS device may further include a second anchoring control structure (33B, 40B), the second anchoring control structure (33B, 40B) is fixed to the substrate, capacitively coupled to the third mass (29B), and is configured to: control the MEMS device to be in a third operating state, wherein the third mass is free to move relative to the substrate along the first direction, and control the MEMS device to be in a fourth operating state, wherein the second anchoring control structure exerts a pulling electrostatic force on the third mass that enables the third mass to be anchored to the second anchoring structure, thereby preventing the third mass from moving relative to the substrate in response to movement of the first mass.
该MEMS设备可以进一步包括检测结构(50),该检测结构(50)被配置为检测第一质量块(28)沿着第一方向(Y)的移动。The MEMS device may further include a detection structure (50) configured to detect movement of the first mass (28) along the first direction (Y).
第一质量块(28)可以被配置为响应于MEMS设备的移动而沿着第一方向移动。The first mass (28) may be configured to move along a first direction in response to movement of the MEMS device.
一种用于控制MEMS设备(20;120;220)可以被概括为包括:衬底(21);可移动结构(22;122;222),被悬挂在衬底上,并且包括第一质量块(28)、第二质量块(29A、29B;229)和第一弹性组(30A、30B;230),该第一弹性组机械地耦合在第一质量块与第二质量块之间,第一弹性组沿着第一方向(Y)是柔顺的,并且第一质量块被配置为沿着第一方向相对于衬底移动;第二弹性组(23;123A、123B),机械地耦合在衬底与可移动结构之间,第二弹性组沿着第一方向是柔顺的;以及锚定控制结构(33A、40A、33B、40B;233、240),该锚定控制结构固定到衬底,电容性地耦合到第二质量块(29A、29B;129),并且被配置为沿着第一方向在第二质量块上施加静电力,锚定控制结构和第二质量块具有拉入电压,其中该方法包括:在锚定控制结构与第二质量块之间施加为零的电压或者低于拉入电压的电压,使得MEMS设备处于第一操作状态,其中第二质量块沿着第一方向相对于衬底自由移动;以及在锚定控制结构与第二质量块之间施加等于或大于拉入电压的电压,使得MEMS设备处于第二操作状态,其中锚定控制结构在第二质量块上施加使得能够将第二质量块锚定到锚定结构的拉入静电力,从而防止第二质量块响应于第一质量块的移动而相对于衬底移动。A method for controlling a MEMS device (20; 120; 220) can be summarized as comprising: a substrate (21); a movable structure (22; 122; 222) suspended from the substrate and comprising a first mass (28), a second mass (29A, 29B; 229) and a first elastic group (30A, 30B; 230), the first elastic group being mechanically coupled between the first mass and the second mass, the first elastic group being compliant along a first direction (Y), and the first mass being configured to move relative to the substrate along the first direction; a second elastic group (23; 123A, 123B) being mechanically coupled between the substrate and the movable structure, the second elastic group being compliant along the first direction; and an anchor control structure (33A, 40A, 33B, 40B; 233, 240), the anchor control structure The method comprises: applying a zero voltage or a voltage lower than the pull-in voltage between the anchoring control structure and the second mass so that the MEMS device is in a first operating state in which the second mass is free to move relative to the substrate along the first direction; and applying a voltage equal to or greater than the pull-in voltage between the anchoring control structure and the second mass so that the MEMS device is in a second operating state in which the anchoring control structure applies a pull-in electrostatic force on the second mass that enables the second mass to be anchored to the anchoring structure, thereby preventing the second mass from moving relative to the substrate in response to movement of the first mass.
该可移动结构可以进一步包括第三质量块(29B)和第三弹性组(30B),该第三弹性组将第一质量块(28)机械地耦合到第三质量块,并且该第三弹性组沿着第一方向是柔顺的,第二质量块被布置在第一质量块的第一侧,第三质量块被布置在第一质量块的、除了第一侧之外的第二侧,其中锚定控制结构是第一锚定控制结构(33A、40A),该MEMS设备可以进一步包括第二锚定控制结构(33B、40B),该第二锚定控制结构被固定到衬底,电容性地耦合到第三质量块(29B),并且被配置为沿着第一方向在第二质量块上施加静电力,第二锚定控制结构和第二质量块具有第二拉入电压,其中该方法可以进一步包括:在第二锚定控制结构与第三质量块之间施加为零的电压或者低于第二拉入电压的电压,使得MEMS设备处于第三操作状态,其中第三质量块沿着第一方向相对于衬底自由移动;以及在第二锚定控制结构与第三质量块之间施加等于或大于第二拉入电压的电压,使得MEMS设备处于第四操作状态,其中第二锚定控制结构在第三质量块上施加使得能够将第三质量块锚定到第二锚定结构的拉入静电力,从而防止第三质量块响应于第一质量块的移动而相对于衬底移动。The movable structure may further include a third mass (29B) and a third elastic group (30B), the third elastic group mechanically coupling the first mass (28) to the third mass, and the third elastic group is compliant along the first direction, the second mass is arranged on a first side of the first mass, and the third mass is arranged on a second side of the first mass other than the first side, wherein the anchoring control structure is a first anchoring control structure (33A, 40A), and the MEMS device may further include a second anchoring control structure (33B, 40B), the second anchoring control structure is fixed to the substrate, capacitively coupled to the third mass (29B), and is configured to apply static force on the second mass along the first direction. power, the second anchoring control structure and the second mass have a second pull-in voltage, wherein the method may further include: applying a voltage of zero or a voltage lower than the second pull-in voltage between the second anchoring control structure and the third mass, so that the MEMS device is in a third operating state, wherein the third mass is free to move relative to the substrate along the first direction; and applying a voltage equal to or greater than the second pull-in voltage between the second anchoring control structure and the third mass, so that the MEMS device is in a fourth operating state, wherein the second anchoring control structure applies a pull-in electrostatic force on the third mass that enables the third mass to be anchored to the second anchoring structure, thereby preventing the third mass from moving relative to the substrate in response to movement of the first mass.
上述各种实施例可以被组合以提供另外的实施例。如果需要采用各种专利、申请和出版物的概念来提供另外的实施例,可以对实施例的各方面进行修改。The various embodiments described above can be combined to provide further embodiments. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide further embodiments.
根据以上详细描述,可以对实施例进行这些和其他改变。一般而言,在所附的权利要求中,所使用的术语不应被解释为将权利要求限制于在说明书和权利要求中公开的具体实施例,而是应被解释为包括所有可能的实施例以及这些权利要求所享有的等同物的全部范围。因此,权利要求不受本公开的限制。These and other changes can be made to the embodiments in light of the above detailed description. In general, in the appended claims, the terms used should not be interpreted as limiting the claims to the specific embodiments disclosed in the specification and claims, but should be interpreted as including all possible embodiments and the full range of equivalents to which these claims are entitled. Therefore, the claims are not limited by the present disclosure.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102022000022782 | 2022-11-04 | ||
US18/496,653 US20240151741A1 (en) | 2022-11-04 | 2023-10-27 | Mems device having improved detection performances |
US18/496,653 | 2023-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221764498U true CN221764498U (en) | 2024-09-24 |
Family
ID=90891612
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311446195.8A Pending CN117990092A (en) | 2022-11-04 | 2023-11-02 | MEMS device with improved detection performance |
CN202322957019.2U Active CN221764498U (en) | 2022-11-04 | 2023-11-02 | MEMS device and electronic device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311446195.8A Pending CN117990092A (en) | 2022-11-04 | 2023-11-02 | MEMS device with improved detection performance |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN117990092A (en) |
-
2023
- 2023-11-02 CN CN202311446195.8A patent/CN117990092A/en active Pending
- 2023-11-02 CN CN202322957019.2U patent/CN221764498U/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN117990092A (en) | 2024-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107270883B (en) | Micromechanical detection structure of a MEMS multi-axis gyroscope with reduced drift of corresponding electrical parameters | |
US10168154B2 (en) | Integrated microelectromechanical gyroscope with improved driving structure | |
CN110058051B (en) | Z-axis micro-electromechanical detection structure with drift reduction function | |
US6910379B2 (en) | Out-of-plane compensation suspension for an accelerometer | |
KR20120043056A (en) | Micromachined inertial sensor devices | |
CN107003333B9 (en) | MEMS sensor and semiconductor package | |
JP2002131331A (en) | Semiconductor dynamical quantity sensor | |
CN212568844U (en) | MEMS inertial sensor and electronic device | |
WO2008021144A2 (en) | Mems comb drive actuators and method of manufacture | |
GB2579057A (en) | Accelerometer | |
WO2013047933A1 (en) | Mems resonant accelerometer | |
US11835541B2 (en) | MEMS accelerometric sensor having high accuracy and low sensitivity to temperature and aging | |
US10544037B2 (en) | Integrated semiconductor device and manufacturing method | |
CN221764498U (en) | MEMS device and electronic device | |
Rödjegård et al. | Capacitive slanted-beam three-axis accelerometer: I. Modelling and design | |
RU2377575C2 (en) | Frequency micro-mechanical accelerometre | |
KR100464309B1 (en) | Micro-accelerometer for detecting acceleration and manufacturing method thereof | |
US20240151741A1 (en) | Mems device having improved detection performances | |
Briffa et al. | Area minimization of a three-axis separate mass capacitive accelerometer using the ThELMA process | |
CN111908419B (en) | Sandwich type MEMS device structure | |
Wu et al. | A Miniaturized MEMS Accelerometer with Anti-Spring Mechanism for Enhancing Sensitivity | |
SG194332A1 (en) | Accelerometers and methods of fabricating thereof | |
KR20200043816A (en) | Mems accelerometer and manufacturing method thereof | |
CN117948955A (en) | Microelectromechanical gyroscope with angular velocity detection along a vertical axis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |