CN212111387U - Water quality detection system based on unmanned aerial vehicle - Google Patents
Water quality detection system based on unmanned aerial vehicle Download PDFInfo
- Publication number
- CN212111387U CN212111387U CN202020937056.0U CN202020937056U CN212111387U CN 212111387 U CN212111387 U CN 212111387U CN 202020937056 U CN202020937056 U CN 202020937056U CN 212111387 U CN212111387 U CN 212111387U
- Authority
- CN
- China
- Prior art keywords
- unmanned aerial
- sampling
- aerial vehicle
- container
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
The utility model belongs to the technical field of water quality testing, concretely relates to water quality testing system based on unmanned aerial vehicle, including unmanned aerial vehicle, sampling module and detection module, detection module and sampling module all carry on unmanned aerial vehicle, still be equipped with on the unmanned aerial vehicle and be used for releasing sampling module to waiting to examine in the water and can retrieve the receiving and releasing device to unmanned aerial vehicle with sampling module from waiting to examine in the water, sampling module is used for gathering the water sample that awaits measuring, and detection module is used for detecting the water sample of sampling, unmanned aerial vehicle has wireless communication module, detection module's detection data passes through wireless communication module and sends to remote terminal. The utility model provides an unmanned aerial vehicle water quality testing system can realize the fixed point quick sampling in large tracts of land waters, carries on the airborne detection module simultaneously, realizes the remote detection to the water quality parameter and the teletransmission of data, has improved the water quality testing efficiency in large tracts of land waters, can establish waters quality of water distribution map, provides more directly perceived accurate detection data.
Description
Technical Field
The utility model belongs to the technical field of water quality testing, concretely relates to water quality testing system based on unmanned aerial vehicle.
Background
Traditional water quality testing equipment can't realize the multiple spot short-term test to target waters on a large scale, and along with the gradual maturity of unmanned aerial vehicle technique, people begin to utilize unmanned aerial vehicle to carry out quick sampling to the water, operations such as detection, but unmanned aerial vehicle water quality sampling test equipment among the prior art has a plurality of defects, one of them is when sampling equipment is put in again, because the hawser receives wind-force, influence such as unrestrained, hawser length can't really reflect the degree of depth that the sampling container submerged the water layer, consequently can't be accurate sample the water of target water layer, it is second that current sampling equipment and check out test set can't carry out sampling simultaneously to the water of a plurality of water layers simultaneously, detection efficiency is low.
SUMMERY OF THE UTILITY MODEL
The utility model aims at providing a water quality testing system based on unmanned aerial vehicle can realize the quick fixed point sampling and the detection in waters on a large scale.
The utility model discloses the technical scheme who takes specifically as follows:
the utility model provides a water quality testing system based on unmanned aerial vehicle, includes unmanned aerial vehicle, sampling module and detection module, detection module and sampling module all carry on unmanned aerial vehicle, still are equipped with on the unmanned aerial vehicle to be used for releasing the sampling module to waiting to examine in the water and can retrieve the receiving and releasing device to unmanned aerial vehicle with the sampling module from waiting to examine the water, the sampling module is used for gathering the water sample that awaits measuring, detection module is used for detecting the water sample of sampling, unmanned aerial vehicle has wireless communication module, detection module's detection data passes through wireless communication module and sends to remote terminal.
The sampling module comprises a sampling container, a liquid inlet and outlet are formed in the sampling container, the liquid inlet and outlet are connected with the pressure-sensitive suction module, and the pressure-sensitive suction module is assembled in a way that when the sampling container is immersed into a water body to a preset depth, the water pressure of the preset depth can trigger the pressure-sensitive suction module to act so that the pressure-sensitive suction module sucks the water body at the preset depth position into the sampling container; the sampling container is a cylindrical container with one closed end and the other open end, the pressure-sensitive suction module comprises a piston which is arranged in the sampling container in a sliding manner along the axial direction of the sampling container, the edge of the piston is provided with a rubber ring which is attached to the inner ring surface of the sampling container, a first elastic element is arranged between the piston and the sampling container, and the first elastic element is assembled in a manner that the elastic force of the first elastic element can drive the piston to slide in a direction away from the closed end of the sampling container; the pressure-sensitive suction module further comprises a pressure-sensitive locking mechanism which is assembled to be capable of locking the piston at a designated position in the sampling container, and when the sampling container is submerged into the water body to a preset depth, the pressure-sensitive locking mechanism can release the piston to enable the piston to slide in a direction away from the closed end of the sampling container under the action of the first elastic element.
The sampling device comprises a sampling container, a piston, an end plate, a wedge-shaped spring bolt, a sliding seat, a plunger and a sampling container, wherein one side of the piston, which faces the open end of the sampling container, is connected with the piston rod, the end plate is arranged at one end, which is far away from the piston, of the piston rod, the end plate is provided with the locking bolt parallel to the piston rod, the side of the sampling container is provided with the locking seat fixedly connected with the sampling container, the locking seat is provided with a pin hole for the locking bolt to pass through, the locking seat is internally provided with the wedge-shaped spring bolt, the wedge-shaped spring bolt radially protrudes to the inner side of the pin hole along the pin hole, the locking bolt is provided with a wedge-shaped clamping groove matched with the wedge-shaped spring bolt, the wedge-shaped; the second elastic element is arranged between the sliding seat and the locking seat, the elastic force of the second elastic element acting on the sliding seat is opposite to the pressure direction of water on the end face of the plunger after the sampling container is immersed in the water, when the water pressure on the end face of the plunger is smaller than the elastic force of the second elastic element, the sliding seat drives the wedge-shaped bolt to protrude into the pin hole under the action of the second elastic element, and when the water pressure on the end face of the plunger is larger than the elastic force of the second elastic element, the sliding seat drives the wedge-shaped bolt to move out of the pin hole under the pushing of the plunger.
The wedge-shaped lock tongue is movably connected with the sliding seat, the relative movement direction of the wedge-shaped lock tongue and the sliding seat is parallel to the sliding direction of the sliding seat, a third elastic element is further arranged between the wedge-shaped lock tongue and the sliding seat, the third elastic element is assembled into a structure that the elastic force of the third elastic element can drive the wedge-shaped lock tongue to move towards the center direction of the pin hole relative to the sliding seat, and a limiting component for limiting the displacement of the wedge-shaped lock tongue on the sliding block is further arranged between the lock tongue and the; the wedge-shaped lock tongue is in sliding fit with a guide hole formed in the sliding seat through a guide pillar, and the limiting component comprises a limiting block arranged at one end, far away from the wedge-shaped lock tongue, of the guide pillar and a blocking block connected with one end, far away from the wedge-shaped lock tongue, of the guide hole; the locking seat is further provided with an adjusting bolt, the adjusting bolt is in threaded connection with a threaded hole formed in the locking seat, and one end, located inside the threaded hole, of the adjusting bolt is abutted to the second elastic element.
At least one rodless piston is arranged between the piston and the closed end of the sampling container, and a rubber ring attached to the inner ring surface of the sampling container is arranged on the peripheral surface of the rodless piston; the liquid inlet and outlet ports are at least two, the number of the liquid inlet and outlet ports is equal to the number of the non-inductive pistons plus 1, each liquid inlet and outlet port is arranged on the annular side wall of the sampling container at equal intervals along the axial direction of the sampling container, each liquid inlet and outlet port is connected with a valve body, the valve body comprises a valve shell with a cylindrical inner cavity and a valve rod arranged in the valve shell in a sliding mode, the valve rod is parallel to the axial direction of the sampling container, an annular groove is formed in the valve rod, a radial through flow hole and an axial through flow hole are formed in the valve rod, one end of the radial through flow hole penetrates through the annular groove, the other end of the radial through flow hole extends to the center of the valve rod, and one end; the valve shell is provided with through holes penetrating through the side wall of the valve shell, the number of the through holes is consistent with that of the liquid inlet and outlet ports, the liquid inlet and outlet ports are communicated with the through holes in a one-to-one correspondence manner, and the width of the annular groove in the axial direction of the valve rod is consistent with the distance between the adjacent through holes; the valve rod is fixedly connected with the end plate and penetrates through the end plate; when the piston, the rodless piston and the closed end of the sampling container are closed, one side of the annular groove close to the end plate is flush with the center of one through hole closest to the closed end of the sampling container.
The number of the pressure-sensitive locking mechanisms is consistent with that of the liquid inlet and outlet ports, the pressure-sensitive locking mechanisms are arranged at intervals along the direction parallel to the axis of the sampling container, and the pressure-sensitive locking mechanisms share the same locking pin; the elasticity of the second elastic elements of the pressure-sensitive locking mechanisms arranged from the closed end of the sampling container to the open end of the sampling container is increased in sequence; the closed end of the sampling container is further provided with a balancing weight, the open end of the sampling container is provided with a radial pin used for being connected with a lifting rope, the piston rod is provided with a strip-shaped hole through which the radial pin passes and is in sliding fit with the radial pin, the center of the piston rod is provided with a threading hole, the threading hole penetrates through the inner wall of the strip-shaped hole to the end plate, one end of the lifting rope is connected with the radial pin, the other end of the lifting rope penetrates through the threading hole and is used for being connected with the winding and unwinding device, the winding and unwinding device is a winch installed on an unmanned aerial vehicle.
The detection module comprises a detection container, a water quality detection sensor is arranged in the detection container, and the water quality detection sensor comprises one or more detection units for detecting one or more of the following parameters: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD.
A liquid inlet is formed in the upper part of the detection container, a liquid outlet is formed in the bottom of the detection container, and an electric control valve is arranged on the liquid outlet; also comprises a flow guide device, the flow guide device comprises a flow guide plate arranged at the upper end of the end plate of the sampling module, the top surface of the guide plate is an inclined plane, a guide ring is arranged below the unmanned aerial vehicle, the guide ring and the peripheral surface of the guide plate form sliding insertion fit, an annular guide groove is arranged on the outer side wall of the guide ring, the bottom wall of the annular diversion trench is obliquely arranged, the lower end of the annular diversion trench is communicated with the liquid inlet of the detection container, the upper end of the annular diversion trench is provided with a cover plate, the upper end of the guide ring is arranged at an interval with the bottom surface of the cover plate, the center of the guide plate is provided with a pipe column which protrudes upwards, the center hole of the pipe column penetrates through the plate surface of the guide plate, the center hole of the pipe column is coaxial with the threading hole on the piston rod of the sampling module, when the upper end of the pipe column is abutted against the bottom surface of the cover plate, the top surface of the guide plate protrudes to the upper end surface of the guide ring, and the bottom surface of the guide plate is positioned in the guide ring; a line passing hole for a lifting rope to pass through is formed in the cover plate at a position corresponding to the central hole of the pipe column; the upper end of the cover plate is provided with a connecting bracket for connecting an unmanned aerial vehicle body; the cover plate is provided with an exhaust hole.
The liquid inlet is positioned at the upper end of the side wall of the detection container, the inner side of the liquid inlet is provided with a gate plate for opening and closing the liquid inlet, the gate plate is movably matched with the inner wall of the detection container along the height direction of the detection container, the electric control valve comprises a valve plate arranged at the inner side of the liquid outlet, the edge of the valve plate is in blocking connection with the edge of the inner side of the liquid outlet, the top surface of the valve plate is in a conical surface shape, the valve plate is connected with a valve plate driving element arranged below the detection container, the valve plate driving element is a linear motor or an electromagnetic clutch, the valve plate is fixedly connected with the gate plate through a connecting rod; the detection container below still is equipped with the induced duct that the level set up, the both ends of induced duct are equipped with loudspeaker column structure, leakage fluid dram and induced duct middle part intercommunication, valve plate drive component installs in the induced duct bottom, and valve plate drive component's telescopic link passes the induced duct and with the valve plate rigid coupling.
Including belt cleaning device, belt cleaning device includes the clear water tank that sets up on the unmanned aerial vehicle, clear water tank passes through the shower nozzle intercommunication that sets up on pipeline and the apron bottom surface, is equipped with the scavenging pump on the pipeline.
The utility model discloses the technological effect who gains does: the utility model provides an unmanned aerial vehicle water quality testing system can realize the fixed point quick sampling in large tracts of land waters, carries on the airborne detection module simultaneously, realizes the remote detection to the water quality parameter and the teletransmission of data, has improved the water quality testing efficiency in large tracts of land waters, can establish waters quality of water distribution map, provides more directly perceived accurate detection data.
Drawings
Fig. 1 is a perspective view of a water quality detecting system based on an unmanned aerial vehicle according to an embodiment of the present invention;
fig. 2 is a top view of the water quality detecting system based on the unmanned aerial vehicle provided by the embodiment of the present invention;
fig. 3 is an exploded view of the water quality detecting system based on the unmanned aerial vehicle provided by the embodiment of the present invention, in which the unmanned aerial vehicle is hidden;
FIG. 4 is a cross-sectional view A-A of FIG. 3;
FIG. 5 is a cross-sectional view B-B of FIG. 4;
fig. 6 is a schematic diagram of a locked state of the pressure sensitive locking mechanism according to the embodiment of the present invention;
fig. 7 is a schematic diagram of an unlocked state of the pressure sensitive locking mechanism according to an embodiment of the present invention;
fig. 8 is a schematic view of a wedge-shaped locking assembly of the pressure-sensitive locking mechanism according to an embodiment of the present invention;
fig. 9 is a perspective view of a water quality detecting system according to an embodiment of the present invention, in which a sampling module is in a recovery state;
fig. 10 is a perspective view of a water quality detecting system according to an embodiment of the present invention; in the figure, a sampling module is in a state of waiting for recovery;
FIG. 11 is a sectional view of the water quality detecting system shown in FIG. 10 in a state;
fig. 12 is a cross-sectional view C-C of fig. 11.
Detailed Description
In order to make the objects and advantages of the present invention more apparent, the present invention will be described in detail with reference to the following embodiments. It is to be understood that the following text is only intended to describe one or several particular embodiments of the invention, and does not strictly limit the scope of the claims specifically claimed.
Example 1
As shown in fig. 1 and 2, a water quality detection system based on unmanned aerial vehicle, including unmanned aerial vehicle 10, sampling module 20 and detection module 30, detection module 30 and sampling module 20 all carry on unmanned aerial vehicle 10, still are equipped with on the unmanned aerial vehicle 10 and are used for releasing sampling module 20 to the water body that awaits measuring and can retrieve the receiving and releasing device 40 to unmanned aerial vehicle 10 with sampling module 20 from the water body that awaits measuring in, sampling module 20 is used for gathering the water body sample that awaits measuring, detection module 30 is used for detecting the water body sample of sampling, unmanned aerial vehicle 10 has wireless communication module, detection module 30's detection data passes through wireless communication module and sends to remote terminal. The utility model provides a fixed point quick sampling in large tracts of land waters can be realized to unmanned aerial vehicle 10's water quality testing system, carries on simultaneously and carries on machine detection module 30, realizes the teledetection to the water quality parameter and the teletransmission of data, has improved the water quality testing efficiency in large tracts of land waters, can establish waters quality of water distribution map, provides more directly perceived accurate detection data.
Preferably, as shown in fig. 3 to 12, the sampling module 20 includes a sampling container 21, the sampling container 21 is provided with a liquid inlet and outlet, the liquid inlet and outlet is connected to a pressure-sensitive suction module, and the pressure-sensitive suction module is configured such that when the sampling container 21 is submerged into a water body to a preset depth, a water pressure of the preset depth can trigger the pressure-sensitive suction module to act so that the pressure-sensitive suction module sucks the water body at the preset depth position into the sampling container 21; the sampling container 21 is a cylindrical container with one closed end and the other open end, the pressure-sensitive suction module comprises a piston 211 which is arranged in the sampling container 21 in a sliding manner along the axial direction of the sampling container 21, a rubber ring which is attached to the inner annular surface of the sampling container 21 is arranged at the edge of the piston 211, a first elastic element 2123 is arranged between the piston 211 and the sampling container 21, and the first elastic element 2123 is assembled in a manner that the elastic force of the first elastic element 2123 can drive the piston 211 to slide in a direction away from the closed end of the sampling container 21; the pressure-sensitive suction module further includes a pressure-sensitive locking mechanism which is fitted to be able to lock the piston 211 at a prescribed position in the sampling vessel 21, and which is able to release the piston 211 to slide in a direction away from the closed end of the sampling vessel 21 by the first elastic member 2123 when the sampling vessel 21 is submerged in the body of water to a preset depth. The utility model provides a sampling module 20 can utilize the water pressure automatic triggering suction module action of specific degree of depth, and then the water sample of the specific degree of depth of accurate collection, avoids the sampling depth error that factors such as transmission sampling process apoplexy, unrestrained led to the fact.
Specifically, the piston 211 is connected to a piston rod 212 on a side facing the open end of the sampling container 21, the end of the piston rod 212 far away from the piston 211 is provided with an end plate 213, the end plate 213 is provided with a locking pin 221 parallel to the piston rod 212, a locking seat 22 fixedly connected with the sampling container 21 is arranged beside the sampling container 21, a pin hole for the locking pin 221 to pass through is arranged on the locking seat 22, a wedge-shaped bolt 223 is arranged in the locking seat 22, the wedge-shaped bolt 223 radially protrudes to the inner side of the pin hole along the pin hole, the locking pin 221 is provided with a wedge-shaped slot matched with the wedge-shaped bolt 223, the wedge-shaped bolt 223 is arranged on a sliding seat 222, the sliding base 222 is arranged in the locking base 22 along the pin hole in a sliding manner, a plunger 224 is arranged on the sliding base 222, the axial direction of the plunger 224 is parallel to the sliding direction of the sliding seat 222, and the plunger 224 protrudes to the outside of the locking seat 22 through a pore channel formed on the locking seat 22; a second elastic element 225 is further arranged between the sliding base 222 and the locking base 22, the elastic force of the second elastic element 225 is set to be opposite to the pressure direction of the water body on the end surface of the plunger 224 after the sampling container 21 is submerged in the water body, when the pressure of the water body on the end surface of the plunger 224 is smaller than the elastic force of the second elastic element 225, the sliding base 222 drives the wedge-shaped latch 223 to protrude into the pin hole under the action of the second elastic element 225, and when the pressure of the water body on the end surface of the plunger 224 is larger than the elastic force of the second elastic element 225, the sliding base 222 drives the wedge-shaped latch 223 to move out of the pin hole under the push of the plunger 224. Under normal pressure, wedge spring bolt 223 is protruding inwards in the pinhole under the effect of second elastic element 225, and when wedge draw-in groove and wedge spring bolt 223 just right at this moment, wedge spring bolt 223 is with the chucking of lock pin 221, and then prevents piston 211 upward movement, and when the water pressure that plunger 224 received was greater than second elastic element 225's elasticity, plunger 224 promoted slide 222 and slides, makes wedge spring bolt 223 withdraw from in the pinhole, and lock pin 221 relieved spacing this moment, and piston 211 upward movement and then the water sample of this water layer under the effect of first elastic element 2123.
Further, the wedge-shaped bolt 223 is movably connected with the sliding base 222, the relative movement direction of the wedge-shaped bolt 223 and the sliding base 222 is parallel to the sliding direction of the sliding base 222, a third elastic element 228 is further arranged between the wedge-shaped bolt 223 and the sliding base 222, the third elastic element 228 is assembled such that the elastic force of the third elastic element can drive the wedge-shaped bolt 223 to move towards the center direction of the pin hole relative to the sliding base 222, and a limit member 229 for limiting the displacement amount of the wedge-shaped bolt 223 on the sliding block is further arranged between the bolt and the sliding base 222; the wedge-shaped bolt 223 is in sliding fit with a guide hole arranged on the sliding seat 222 through a guide post 227, and the limit component 229 comprises a limit block arranged at one end of the guide post 227 far away from the wedge-shaped bolt and a limit block arranged at one end of the guide hole far away from the wedge-shaped bolt 223; the wedge-shaped bolt 223 is elastically connected with the sliding base 222 so as to facilitate the resetting of the locking pin 221, the elastic coefficient of the third elastic element 228 is smaller than that of the second elastic element 225, when the locking pin 221 is inserted into the pin hole, the wedge-shaped bolt 223 is pushed to contract under the action of the inclined plane above the wedge-shaped bolt 223, and at the moment, the wedge-shaped bolt 223 compresses the third elastic element 228, so that the sliding base 222 does not need to be pushed to slide, and the resistance when the locking pin 221 is inserted into the pin hole is reduced. The locking seat 22 is further provided with an adjusting bolt 226, the adjusting bolt 226 is in threaded connection with a threaded hole formed in the locking seat 22, one end of the adjusting bolt 226, which is located in the threaded hole, is abutted to the second elastic element 225, the elastic force of the second elastic element 225 can be adjusted by rotating the adjusting bolt 226, and therefore the critical pressure when the plunger 224 pushes the sliding seat 222 is adjusted, so that water bodies with different depths can be sampled according to actual requirements.
Further, at least one rodless piston 214 is arranged between the piston 211 and the closed end of the sampling container 21, and a rubber ring attached to the inner annular surface of the sampling container 21 is arranged on the peripheral surface of the rodless piston 214; the liquid inlet and outlet ports are at least two, the number of the liquid inlet and outlet ports is equal to the number of the non-inductive pistons 211 plus 1, each liquid inlet and outlet port is arranged on the annular side wall of the sampling container 21 at equal intervals along the axial direction of the sampling container 21, each liquid inlet and outlet port is connected with a valve body, the valve body comprises a valve shell 23 with a cylindrical inner cavity and a valve rod 231 arranged in the valve shell 23 in a sliding mode, the valve rod 231 is parallel to the axial direction of the sampling container 21, an annular groove 232 is formed in the valve rod 231, a radial through hole and an axial through hole are formed in the valve rod 231, one end of the radial through hole penetrates through the annular groove 232, the other end of the radial through hole extends to the center of the valve rod 231, and one end of the axial through hole; through holes penetrating through the side wall of the valve casing 23 are formed in the valve casing 23, the number of the through holes is consistent with that of the liquid inlet and outlet ports, the liquid inlet and outlet ports are communicated with the through holes in a one-to-one correspondence mode, and the width of the annular groove 232 in the axial direction of the valve rod 231 is consistent with the distance between the adjacent through holes; the valve rod 231 is fixedly connected with the end plate 213, and the valve rod 231 penetrates through the end plate 213; when the piston 211, the rodless piston 214 and the closed end of the sampling container 21 are closed, the side of the annular groove 232 close to the end plate 213 is flush with the center of a through hole closest to the closed end of the sampling container 21. The utility model provides a sampling module 20 once puts in just can sample the water of a plurality of water layers, and its concrete realization principle is: when the sampling module 20 sinks to the first target water layer, the pressure-sensitive locking mechanism releases the piston 211 for a stroke, so that the joint surface of the bottommost rodless piston 214 and the next-lower-layer rodless piston 214 just reaches the liquid inlet and outlet of the next lower layer, the valve body communicates the liquid inlet and outlet of the bottommost layer with the water body in the process, and other liquid inlet and outlet are closed, so that vacuum is formed between the piston 211 and each rodless piston 214, at the moment, the piston 211 ascends to drive all rodless pistons 214 below to ascend, so that a water body sample is sucked to the position below the bottommost-layer rodless piston 214, and when the joint surface of the bottommost-layer rodless piston 214 and the next-lower-layer rodless piston 214 reaches the liquid inlet and outlet of the next lower layer, the valve body can just seal the liquid inlet and outlet of the bottommost layer and communicate the liquid inlet and outlet with the water body; when the sampling module 20 reaches the second target water layer, the pressure-sensitive locking mechanism releases the piston 211 for a stroke again, so that the abutting surfaces of the second lower rodless piston 214 and the third lower rodless piston 214 just reach the liquid inlet and outlet of the third lower layer, the valve body keeps the liquid inlet and outlet of the second lower layer communicated with the water body, and other liquid inlets and outlets are closed, so that the space between the piston 211 and all rodless pistons 214 except the lowermost layer is vacuum, at the moment, the piston 211 ascends and simultaneously drives all rodless pistons 214 except the lowermost layer to ascend, so that the water body sample is sucked between the second lower rodless piston 214 and the lowermost rodless piston 214, and when the abutting surfaces of the second lower rodless piston 214 and the third lower rodless piston 214 reach the liquid inlet and outlet of the third lower layer, the valve body just can close the liquid inlet and outlet of the second lower layer and the lowermost liquid inlet and outlet and communicate the water body, by circulating in this way, water samples of different water layers can be respectively sucked between each adjacent piston 211 and rodless piston 214.
Specifically, the number of the pressure-sensitive locking mechanisms is consistent with that of the liquid inlet and outlet ports, the pressure-sensitive locking mechanisms are arranged at intervals along the direction parallel to the axis of the sampling container 21, and the pressure-sensitive locking mechanisms share the same locking pin 221; the elasticity of the second elastic element 225 of each pressure-sensitive locking mechanism arranged from the closed end of the sampling container 21 to the open end of the sampling container 21 is increased in sequence; the closed end of the sampling container 21 is further provided with a balancing weight 215, the open end of the sampling container 21 is provided with a radial pin 2122 used for being connected with a lifting rope, the piston rod 212 is provided with a strip-shaped hole 2121 through which the radial pin 2122 penetrates and is in sliding fit with the radial pin 2122, the center of the piston rod 212 is provided with a threading hole, the threading hole penetrates from the inner wall of the strip-shaped hole 2121 to the end plate 213, one end of the lifting rope 41 is connected with the radial pin 2122, the other end of the lifting rope penetrates through the threading hole and is used for being connected with the winding and unwinding device 40, the winding and unwinding device 40 is a winch installed on the unmanned aerial vehicle 10.
Preferably, the detection module 30 includes a detection container 31, a water quality detection sensor 32 is disposed in the detection container 31, and the water quality detection sensor 32 includes one or more detection units for detecting one or more of the following parameters: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD.
A liquid inlet is formed in the upper part of the detection container 31, a liquid outlet is formed in the bottom of the detection container 31, and an electric control valve is arranged on the liquid outlet; still include guiding device, guiding device includes guide plate 61 that end plate 213 upper end of sampling module 20 set up, the top surface of guide plate 61 is the inclined plane, the unmanned aerial vehicle 10 below is equipped with guide ring 62, guide ring 62 constitutes the slip grafting cooperation with guide plate 61 global, is equipped with annular guiding gutter 63 on guide ring 62's the lateral wall, the diapire slope of annular guiding gutter 63 sets up and annular guiding gutter 63's low side with the inlet intercommunication of detection container 31, annular guiding gutter 63 upper end is equipped with a apron 64, guide ring 62's upper end sets up with apron 64 bottom surface interval, guide plate 61's center is equipped with a tubular column 611 that upwards convexly stretches the setting, the centre bore of tubular column 611 runs through guide plate 61 face setting, and the centre bore of tubular column 611 and the coaxial setting of through wires hole on sampling module 20's piston rod 212, when tubular column 611 upper end and apron 64 bottom surface butt the top surface of guide plate 61 convexly stretch to guide ring 62's up end top and guide ring The bottom surface of flow plate 61 is located within guide ring 62; a line passing hole for the lifting rope 41 to pass through is formed in the position, corresponding to the central hole of the pipe column 611, of the cover plate 64; the upper end of the cover plate 64 is provided with a connecting bracket 65 for connecting the unmanned aerial vehicle 10 body; the cover plate 64 is provided with an exhaust hole. The utility model discloses utilize sampling module 20's promotion action to realize the release of water sample among sampling module 20, its principle is: when the pipe column 611 abuts against the bottom surface of the cover plate 64, the flow guide plate 61, the guide ring 62 and the annular flow guide groove 63 form a closed space, the sampling container 21 of the sampling module 20 continues to move upwards along with the continuous lifting of the winch, the piston 211 stops moving upwards under the blocking of the cover plate 64, and then the piston 211 extrudes the water quality sample out of the sampling container 21, and the water quality sample enters the closed space through the through hole in the valve rod 231 and flows into the detection container 31 through the closed space.
Preferably, the liquid inlet is located at the upper end of the side wall of the detection container 31, a gate plate 35 for opening and closing the liquid inlet is arranged on the inner side of the liquid inlet, the gate plate 35 is movably matched with the inner wall of the detection container 31 along the height direction of the detection container 31, the electronic control valve comprises a valve plate 33 arranged on the inner side of the liquid outlet, the edge of the valve plate 33 is in blocking connection with the edge of the inner side of the liquid outlet, the top surface of the valve plate 33 is in a conical surface shape, the valve plate 33 is connected with a valve plate driving element 37 arranged below the detection container 31, the valve plate driving element 37 is a linear motor or an electromagnetic clutch, the valve plate 33 is fixedly connected with the gate plate 35 through a connecting rod 36, the gate plate; an air guiding pipe 34 horizontally arranged is further arranged below the detection container 31, horn-shaped structures are arranged at two ends of the air guiding pipe 34, a liquid outlet is communicated with the middle of the air guiding pipe 34, the valve plate driving element 37 is installed at the bottom of the air guiding pipe 34, and a telescopic rod of the valve plate driving element 37 penetrates through the air guiding pipe 34 and is fixedly connected with the valve plate 33. Induced duct 34 can produce the negative pressure at the leakage fluid dram that detects container 31, can be quick when valve plate 33 is opened take out the quality of water sample in detecting container 31 to the jettisoning can improve detection module 30's circulation detection efficiency to unmanned aerial vehicle 10 afterbody, on the one hand, and on the other hand can avoid the discarded quality of water sample to sputter on the electrical components of fuselage in the jettisoning process.
Further, including belt cleaning device, belt cleaning device includes the clear water tank 50 that sets up on the unmanned aerial vehicle 10, clear water tank 50 is equipped with scavenging pump 51 through the shower nozzle intercommunication that sets up on pipeline and the apron 64 bottom surface on the pipeline.
Example 2
An on-line water quality detection method based on an unmanned aerial vehicle (10) is characterized in that an airborne sampling module (20) carried by the unmanned aerial vehicle (10) is used for sampling a water body, a collected water body sample is detected through an airborne detection module (30), the unmanned aerial vehicle (10) is further provided with a collecting and releasing device (40) which is used for releasing the sampling module (20) into a water body to be detected and recovering the sampling module (20) from the water body to be detected to the unmanned aerial vehicle (10), the unmanned aerial vehicle (10) is provided with a wireless communication module, and the wireless communication module matches a detection result with a GPS coordinate of a water sample collection point and; the method comprises the following steps:
step 1: the method comprises the steps of debugging equipment, installing a sampling module 20 and a detection module 30 on the unmanned aerial vehicle 10, and ensuring that the unmanned aerial vehicle 10 is normally communicated with a remote terminal;
step 2: sampling, wherein an operating hand of the unmanned aerial vehicle 10 controls the unmanned aerial vehicle 10 to fly to the sky above a target water area, and the unmanned aerial vehicle 10 hovers above the target water area; the unmanned aerial vehicle 10 releases the sampling module 20, and the sampling module 20 enters the water body of the target water area to collect samples of the water body; after the sampling module 20 is immersed in the target water area for a preset time, the unmanned aerial vehicle 10 recovers the sampling module 20 to the lower part of the machine body;
and step 3: during detection, the sampling module 20 releases the water body sample to the detection module 30, the detection module 30 detects the water body sample, and sends detection data and the GPS coordinate of the water area where the sample is located to the remote terminal;
and 4, step 4: and (5) repeating the steps 2 and 3 to finish the water quality detection of all the target water areas.
In step 2, before the sampling module 20 is released, the piston 211 is compressed to a position close to or closely attached to the closed end of the sampling container 21 and is locked by the pressure-sensitive locking mechanism, when the sampling module 20 reaches a specified depth of the target water body, the pressure-sensitive locking mechanism automatically releases the piston 211 under the action of water pressure, and the piston 211 moves in a direction away from the closed end of the sampling container 21 under the action of the first elastic element 2123, so that the water body in the target water layer is sucked.
In the step 2, one submergence of the sampling container 21 samples the water bodies of a plurality of different water layers of the target water area.
In the step 2, the sampling device only releases the water body sample of one water layer at a time for detection, after the detection of each water body poplar level is finished, the electric control valve at the bottom of the detection container 31 is opened, the detected water body sample is directly discharged, then the electric control valve is closed, the sampling device releases the water body sample of the next water layer for detection, and the detection of all the samples of different water layers in the same target water area is completed in such a circulating way.
In the step 2, the electric control valve is opened and the gate plate 35 is closed at the same time, so that the detection container 31 is isolated from the annular diversion trench 63, and at this time, in the process of draining the detection container 31, the sampling module 20 releases the next water sample to the annular diversion trench 63 in advance to accelerate the detection rate.
In the step 2, the cleaning device cleans the diversion device and the detection container 31 once every time the detection module 30 detects one sample.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, a plurality of modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention. The structures, devices, and methods of operation of the present invention, not specifically described and illustrated, are generally practiced by those of ordinary skill in the art without specific recitation or limitation.
Claims (10)
1. The utility model provides a water quality testing system based on unmanned aerial vehicle which characterized in that: including unmanned aerial vehicle (10), sampling module (20) and detection module (30), detection module (30) and sampling module (20) are all carried on unmanned aerial vehicle (10), still are equipped with on unmanned aerial vehicle (10) and are used for releasing sampling module (20) to waiting to survey in the water and can retrieve receiving and releasing device (40) to unmanned aerial vehicle (10) with sampling module (20) from waiting to survey in the water, sampling module (20) are used for gathering the water sample that awaits measuring, detection module (30) are used for detecting the water sample of sampling, unmanned aerial vehicle (10) have wireless communication module, the detection data of detection module (30) send to remote terminal through wireless communication module.
2. The unmanned aerial vehicle-based water quality detection system of claim 1, wherein: the sampling module (20) comprises a sampling container (21), a liquid inlet and a liquid outlet are formed in the sampling container (21), the liquid inlet and the liquid outlet are connected with the pressure-sensitive suction module, and the pressure-sensitive suction module is assembled in such a way that when the sampling container (21) is immersed into a water body to a preset depth, the water pressure of the preset depth can trigger the pressure-sensitive suction module to act so as to enable the pressure-sensitive suction module to suck the water body at the preset depth position into the sampling container (21); the sampling container (21) is a cylindrical container with one closed end and the other open end, the pressure-sensitive suction module comprises a piston (211) which is arranged in the sampling container (21) in a sliding manner along the axial direction of the sampling container (21), a rubber ring which is attached to the inner annular surface of the sampling container (21) is arranged at the edge of the piston (211), a first elastic element (2123) is arranged between the piston (211) and the sampling container (21), and the first elastic element (2123) is assembled in a manner that the elastic force of the first elastic element can drive the piston (211) to slide towards the direction far away from the closed end of the sampling container (21); the pressure-sensitive suction module further comprises a pressure-sensitive locking mechanism which is assembled to be capable of locking the piston (211) at a designated position in the sampling container (21), and when the sampling container (21) is submerged in water to a preset depth, the pressure-sensitive locking mechanism can release the piston (211) to enable the piston to slide in a direction away from the closed end of the sampling container (21) under the action of the first elastic element (2123).
3. The unmanned aerial vehicle-based water quality detection system of claim 2, wherein: one side that piston (211) opened the end towards sampling container (21) even has piston rod (212), the one end that piston (211) were kept away from to piston rod (212) is equipped with end plate (213), be equipped with on end plate (213) with parallel lock pin (221) of piston rod (212), sampling container (21) side is equipped with lock seat (22) with sampling container (21) rigid coupling, be equipped with the pinhole that supplies lock pin (221) to pass on lock seat (22), be equipped with wedge spring bolt (223) in lock seat (22), wedge spring bolt (223) are along pinhole radial protrusion to the pinhole inboard, be equipped with the wedge draw-in groove with wedge spring bolt (223) matched with on lock pin (221), wedge spring bolt (223) are installed on a slide (222), slide (222) are along pinhole radial sliding setting in lock seat (22), be equipped with plunger (224) on slide (222), the axial direction of the plunger (224) is parallel to the sliding direction of the sliding seat (222), and the plunger (224) protrudes out of the locking seat (22) through a pore channel formed in the locking seat (22); a second elastic element (225) is further arranged between the sliding seat (222) and the locking seat (22), the elastic force of the second elastic element (225) is assembled to be opposite to the pressure direction of the water body on the end face of the plunger (224) after the sampling container (21) is immersed in the water body, when the pressure of the water body on the end face of the plunger (224) is smaller than the elastic force of the second elastic element (225), the sliding seat (222) drives the wedge-shaped bolt (223) to protrude into the pin hole under the action of the second elastic element (225), and when the pressure of the water body on the end face of the plunger (224) is larger than the elastic force of the second elastic element (225), the sliding seat (222) drives the wedge-shaped bolt (223) to move out of the pin hole under the pushing of the plunger (224).
4. The unmanned aerial vehicle-based water quality detection system of claim 3, wherein: the wedge-shaped bolt (223) is movably connected with the sliding seat (222), the relative movement direction of the wedge-shaped bolt (223) and the sliding seat (222) is parallel to the sliding direction of the sliding seat (222), a third elastic element (228) is further arranged between the wedge-shaped bolt (223) and the sliding seat (222), the third elastic element (228) is assembled to enable the elastic force of the third elastic element to drive the wedge-shaped bolt (223) to move towards the center direction of the pin hole relative to the sliding seat (222), and a limiting component (229) used for limiting the displacement of the wedge-shaped bolt (223) on the sliding block is further arranged between the bolt and the sliding seat (222); the wedge-shaped bolt (223) is in sliding fit with a guide hole formed in the sliding seat (222) through a guide post (227), and the limiting component (229) comprises a limiting block arranged at one end, far away from the wedge-shaped bolt (223), of the guide post (227) and one end, far away from the wedge-shaped bolt (223), of the guide hole in a blocking manner; the locking seat (22) is further provided with an adjusting bolt (226), the adjusting bolt (226) is in threaded connection with a threaded hole formed in the locking seat (22), and one end, located inside the threaded hole, of the adjusting bolt (226) is abutted to the second elastic element (225).
5. The unmanned aerial vehicle-based water quality detection system of claim 3, wherein: at least one rodless piston (214) is arranged between the piston (211) and the closed end of the sampling container (21), and a rubber ring attached to the inner ring surface of the sampling container (21) is arranged on the peripheral surface of the rodless piston (214); the liquid inlet and outlet ports are at least two, the number of the liquid inlet and outlet ports is equal to the number of the non-inductive pistons (211) plus 1, each liquid inlet and outlet port is arranged on the annular side wall of the sampling container (21) at equal intervals along the axial direction of the sampling container (21), each liquid inlet and outlet port is connected with a valve body, the valve body comprises a valve shell (23) with a cylindrical inner cavity and a valve rod (231) arranged in the valve shell (23) in a sliding mode, the valve rod (231) is parallel to the axial direction of the sampling container (21), an annular groove (232) is formed in the valve rod (231), a radial through flow hole and an axial through flow hole are formed in the valve rod (231), one end of the radial through flow hole penetrates through the annular groove (232), the other end of the radial through flow hole extends to the center of the valve rod (231), and one end of the axial through flow; through holes penetrating through the side wall of the valve casing (23) are formed in the valve casing (23), the number of the through holes is consistent with that of the liquid inlet and outlet ports, the liquid inlet and outlet ports are communicated with the through holes in a one-to-one correspondence mode, and the width of the annular groove (232) in the axial direction of the valve rod (231) is consistent with the distance between the adjacent through holes; the valve rod (231) is fixedly connected with the end plate (213), and the valve rod (231) penetrates through the end plate (213); when the piston (211), the rodless piston (214) and the closed end of the sampling container (21) are closed, one side of the annular groove (232) close to the end plate (213) is flush with the center of a through hole closest to the closed end of the sampling container (21).
6. The unmanned aerial vehicle-based water quality detection system of claim 5, wherein: the number of the pressure-sensitive locking mechanisms is consistent with that of the liquid inlet and outlet ports, the pressure-sensitive locking mechanisms are arranged at intervals along the direction parallel to the axis of the sampling container (21), and the pressure-sensitive locking mechanisms share the same locking pin (221); the elasticity of the second elastic elements (225) of the pressure-sensitive locking mechanisms arranged from the closed end of the sampling container (21) to the open end of the sampling container (21) is increased in sequence; the closed end of the sampling container (21) is further provided with a balancing weight (215), the open end of the sampling container (21) is provided with a radial pin (2122) used for being connected with a lifting rope (41), the piston rod (212) is provided with a strip-shaped hole (2121) which is used for allowing the radial pin (2122) to penetrate and is in sliding fit with the radial pin (2122), the center of the piston rod (212) is provided with a threading hole, the threading hole penetrates through the end plate (213) from the inner wall of the strip-shaped hole (2121), one end of the lifting rope (41) is connected with the radial pin (2122), the other end of the lifting rope (41) penetrates through the threading hole and is used for being connected with the winding and unwinding device (40), the winding and unwinding device (40) is a winding machine installed on the unmanned aerial.
7. The unmanned aerial vehicle-based water quality detection system of claim 6, wherein: the detection module (30) comprises a detection container (31), a water quality detection sensor (32) is arranged in the detection container (31), and the water quality detection sensor (32) comprises one or more detection units for detecting one or more of the following parameters: temperature, pH, ORP, conductivity, salinity, dissolved oxygen, turbidity, chlorophyll A concentration, blue-green algae concentration, rhodamine concentration, oil concentration in water, ammonia nitrogen concentration, COD.
8. The unmanned aerial vehicle-based water quality detection system of claim 7, wherein: a liquid inlet is formed in the upper part of the detection container (31), a liquid outlet is formed in the bottom of the detection container (31), and an electric control valve is arranged on the liquid outlet; the device comprises a guide plate (61) arranged at the upper end of an end plate (213) of a sampling module (20), the top surface of the guide plate (61) is an inclined plane, a guide ring (62) is arranged below the unmanned aerial vehicle (10), the guide ring (62) and the peripheral surface of the guide plate (61) form a sliding insertion fit, an annular guide groove (63) is arranged on the outer side wall of the guide ring (62), the bottom wall of the annular guide groove (63) is inclined and the lower end of the annular guide groove (63) is communicated with a liquid inlet of the detection container (31), a cover plate (64) is arranged at the upper end of the annular guide groove (63), the upper end of the guide ring (62) and the bottom surface of the cover plate (64) are arranged at intervals, a tubular column (611) protruding upwards is arranged at the center of the guide plate (61), and the center hole of the tubular column (611) penetrates through the guide plate (61), the central hole of the tubular column (611) is coaxially arranged with the threading hole on the piston rod (212) of the sampling module (20), when the upper end of the tubular column (611) is abutted against the bottom surface of the cover plate (64), the top surface of the guide plate (61) protrudes above the upper end surface of the guide ring (62), and the bottom surface of the guide plate (61) is positioned in the guide ring (62); a line passing hole for the lifting rope (41) to pass through is formed in the position, corresponding to the central hole of the pipe column (611), of the cover plate (64); the upper end of the cover plate (64) is provided with a connecting bracket (65) for connecting the unmanned aerial vehicle (10) body; the cover plate (64) is provided with an exhaust hole.
9. The unmanned aerial vehicle-based water quality detection system of claim 8, wherein: the liquid inlet is positioned at the upper end of the side wall of the detection container (31), a gate plate (35) for opening and closing the liquid inlet is arranged on the inner side of the liquid inlet, the gate plate (35) is movably matched with the inner wall of the detection container (31) along the height direction of the detection container (31), the electric control valve comprises a valve plate (33) arranged on the inner side of the liquid outlet, the edge of the valve plate (33) is in blocking connection with the edge of the inner side of the liquid outlet, the top surface of the valve plate (33) is in a conical surface shape, the valve plate (33) is connected with a valve plate driving element (37) arranged below the detection container (31), the valve plate driving element (37) is a linear motor or an electromagnetic clutch, the valve plate (33) is fixedly connected with the gate plate (35) through a connecting rod (36), the gate plate (35) is opened when the valve plate; the detection container (31) below still is equipped with induced duct (34) that the level set up, the both ends of induced duct (34) are equipped with loudspeaker column structure, drain opening and induced duct (34) middle part intercommunication, valve plate drive element (37) are installed in induced duct (34) bottom, and the telescopic link of valve plate drive element (37) passes induced duct (34) and with valve plate (33) rigid coupling.
10. The unmanned aerial vehicle-based water quality detection system of claim 9, wherein: including belt cleaning device, belt cleaning device includes clear water tank (50) that set up on unmanned aerial vehicle (10), clear water tank (50) are equipped with scavenging pump (51) on the pipeline through the shower nozzle intercommunication that sets up on pipeline and apron (64) bottom surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020937056.0U CN212111387U (en) | 2020-05-28 | 2020-05-28 | Water quality detection system based on unmanned aerial vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020937056.0U CN212111387U (en) | 2020-05-28 | 2020-05-28 | Water quality detection system based on unmanned aerial vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212111387U true CN212111387U (en) | 2020-12-08 |
Family
ID=73613884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020937056.0U Active CN212111387U (en) | 2020-05-28 | 2020-05-28 | Water quality detection system based on unmanned aerial vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212111387U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111443180A (en) * | 2020-05-28 | 2020-07-24 | 安徽中科大赛悟科技有限公司 | Water quality detection system based on unmanned aerial vehicle |
CN113390683A (en) * | 2021-06-23 | 2021-09-14 | 江苏一电航空技术有限公司 | Unmanned aerial vehicle for water quality detection of water storage |
FR3143551A1 (en) * | 2022-12-19 | 2024-06-21 | IFP Energies Nouvelles | Airborne water characterization and sampling system and process |
-
2020
- 2020-05-28 CN CN202020937056.0U patent/CN212111387U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111443180A (en) * | 2020-05-28 | 2020-07-24 | 安徽中科大赛悟科技有限公司 | Water quality detection system based on unmanned aerial vehicle |
CN113390683A (en) * | 2021-06-23 | 2021-09-14 | 江苏一电航空技术有限公司 | Unmanned aerial vehicle for water quality detection of water storage |
FR3143551A1 (en) * | 2022-12-19 | 2024-06-21 | IFP Energies Nouvelles | Airborne water characterization and sampling system and process |
WO2024132529A1 (en) * | 2022-12-19 | 2024-06-27 | IFP Energies Nouvelles | Airborne system and method for characterising and collecting water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111458474B (en) | Water quality online detection method based on unmanned aerial vehicle | |
CN111443180B (en) | Water quality detection system based on unmanned aerial vehicle | |
CN212111387U (en) | Water quality detection system based on unmanned aerial vehicle | |
CN108645668B (en) | Device and method for long-term in-situ sampling and analyzing of pore water | |
CN108535043B (en) | Piston transfer type deep sea sediment pressure maintaining sampler | |
CN212110780U (en) | Airborne water quality sampler | |
CN212111386U (en) | Airborne water quality detection device | |
CN102305729B (en) | Negative pressure extraction type in-situ airtight water sampling technology | |
CN111426519B (en) | Airborne water quality sampler | |
CN113447317B (en) | Seawater sampler | |
CN212110781U (en) | Pressure-sensitive locking mechanism for airborne water sampler | |
CN110736645A (en) | deep sea water body sequence sampling device with through-flow structure | |
CN116736387B (en) | Submarine exploration equipment | |
CN218725601U (en) | Depth-fixed water taking device | |
CN114034517A (en) | Hydraulic drive type high-resolution deep sea sediment pore water in-situ fidelity sampler | |
CN212110767U (en) | Flow guiding device | |
CN212082968U (en) | Multi-stage sampler | |
CN110389053A (en) | The long-term in-situ sampling of the big depth section pore water of bottom sediment and analytical equipment | |
CN103245531A (en) | Micro-disturbance passive ground water sampler | |
CN110967462A (en) | Distributed automatic water quality monitoring device, monitoring ship and monitoring method | |
CN117741085B (en) | Water quality detection device and detection method | |
JP2001183265A (en) | Simultaneous multi-layer water sampler | |
CN211856331U (en) | Water quality detection device for fresh water biotoxicity monitoring system | |
CN211426465U (en) | Distributed automatic water quality monitoring device for rainwater pump station | |
CN218240023U (en) | Put in formula water quality testing appearance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |