CN211800909U - Micro-fluidic detection chip - Google Patents
Micro-fluidic detection chip Download PDFInfo
- Publication number
- CN211800909U CN211800909U CN202020410437.3U CN202020410437U CN211800909U CN 211800909 U CN211800909 U CN 211800909U CN 202020410437 U CN202020410437 U CN 202020410437U CN 211800909 U CN211800909 U CN 211800909U
- Authority
- CN
- China
- Prior art keywords
- flow channel
- cavity
- liquid inlet
- micro
- inlet hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 75
- 239000007788 liquid Substances 0.000 claims abstract description 146
- 239000002699 waste material Substances 0.000 claims abstract description 45
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 239000012530 fluid Substances 0.000 claims description 22
- 230000002572 peristaltic effect Effects 0.000 claims description 3
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 20
- 239000000126 substance Substances 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000002032 lab-on-a-chip Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本实用新型提供一种微流控检测芯片,包括流道板、微泵、正面遮盖层、背面遮盖层及多个微阀,其中,所述流道板正面设有检测凹腔、废液凹腔及多个加样凹腔,背面设有微泵凹腔,所述加样凹腔底部设有上下贯穿所述流道板的入液孔,所述微泵放置于所述微泵凹腔内,所述微阀与所述入液孔至少有一段形状互补,当所述微阀插入所述入液孔中时,所述加样凹腔内的液体无法通过所述入液孔流向所述流道板背面的流道。本实用新型的微流控检测芯片具有稳定可靠的微流控流道,并配置有微泵及简易可操作的微阀,可方便实现多通道液路的切换,通过微阀与微泵的协调工作,可方便控制样本等试剂流过检测凹腔的体积,可以在较短时间内定量测出样本中的待测物质的浓度。
The utility model provides a microfluidic detection chip, comprising a flow channel plate, a micro pump, a front cover layer, a back cover layer and a plurality of micro valves, wherein the front side of the flow channel plate is provided with a detection cavity and a waste liquid cavity cavity and a plurality of sample feeding cavities, the back is provided with a micro-pump cavity, the bottom of the sample feeding cavity is provided with a liquid inlet hole that penetrates the flow channel plate up and down, and the micro-pump is placed in the micro-pump cavity Inside, the micro-valve and the liquid inlet hole have at least a complementary shape. When the micro-valve is inserted into the liquid inlet hole, the liquid in the sample adding cavity cannot flow to the liquid inlet through the liquid inlet hole. Describe the runners on the back of the runner plate. The microfluidic detection chip of the utility model has a stable and reliable microfluidic flow channel, and is equipped with a micropump and a simple and operable microvalve, which can conveniently realize the switching of multi-channel liquid circuits. It can easily control the volume of reagents such as samples flowing through the detection cavity, and can quantitatively measure the concentration of the substance to be tested in the sample in a relatively short time.
Description
技术领域technical field
本实用新型属于生化检测和微流控领域,涉及一种微流控检测芯片。The utility model belongs to the fields of biochemical detection and microfluidic control, and relates to a microfluidic detection chip.
背景技术Background technique
生化检测是指用生物或者化学的方法来检测目标溶液。微流控芯片技术(microfluidics)又被称为芯片实验室(lab on a chip),它把生物、化学和医学等领域中涉及的样品制备、反应、分离、检测等基本操作单元集成到一块具有微米尺度微通道的芯片上,自动完成反应和分析的全过程。Biochemical detection refers to the detection of target solutions by biological or chemical methods. Microfluidic chip technology (microfluidics), also known as lab on a chip (lab on a chip), integrates basic operating units such as sample preparation, reaction, separation, detection, etc. The entire process of reaction and analysis is automatically completed on a chip with micron-scale microchannels.
如何提供一种可简单操作的微阀结构,以实现微流控检测芯片多个液路之间方便的切换,成为本领域技术人员亟待解决的一个重要技术问题。How to provide a micro-valve structure that can be easily operated to realize convenient switching between multiple liquid paths of a microfluidic detection chip has become an important technical problem to be solved urgently by those skilled in the art.
实用新型内容Utility model content
本实用新型的目的在于提供一种微流控检测芯片,用于解决现有技术中微流控检测芯片的多液路切换不方便的问题。The purpose of the utility model is to provide a microfluidic detection chip, which is used to solve the problem of inconvenient switching of multiple liquid paths in the microfluidic detection chip in the prior art.
为实现上述目的及其他相关目的,本实用新型提供一种微流控检测芯片,包括:In order to achieve the above purpose and other related purposes, the present invention provides a microfluidic detection chip, comprising:
流道板,所述流道板正面设有检测凹腔、废液凹腔及多个加样凹腔,所述流道板背面设有微泵凹腔,其中,所述加样凹腔底部设有上下贯穿所述流道板的入液孔,所述检测凹腔与所述加样凹腔之间设有上下贯穿所述流道板的流道连接孔,所述检测凹腔与所述流道连接孔之间通过设于所述流道板正面的流道连通,所述流道连接孔与所述入液孔之间通过设于所述流道板背面的流道连通,所述微泵凹腔的底面设有上下贯穿所述流道板的废液输出孔与废液输入孔,所述废液输出孔与所述检测凹腔连通,所述废液输入孔与所述废液凹腔连通;A flow channel plate, the front of the flow channel plate is provided with a detection cavity, a waste liquid cavity and a plurality of sample addition cavity, the back of the flow channel plate is provided with a micro pump cavity, wherein the bottom of the sample addition cavity is There is a liquid inlet hole that penetrates the flow channel plate up and down, and a flow channel connection hole that penetrates the flow channel plate up and down is arranged between the detection cavity and the sample addition cavity. The flow channel connection holes are communicated through the flow channel provided on the front of the flow channel plate, and the flow channel connection hole and the liquid inlet hole are communicated through the flow channel provided on the back of the flow channel plate. The bottom surface of the micropump cavity is provided with a waste liquid output hole and a waste liquid input hole that penetrate the flow channel plate up and down, the waste liquid output hole is communicated with the detection cavity, and the waste liquid input hole is connected with the waste liquid input hole. The waste liquid cavity is connected;
微泵,放置于所述微泵凹腔内,所述微泵正面设有流体入口及流体出口,所述流体入口与所述废液输出孔连通,所述流体出口与所述废液输入孔连通;A micro-pump, placed in the micro-pump cavity, the front of the micro-pump is provided with a fluid inlet and a fluid outlet, the fluid inlet communicates with the waste liquid output hole, and the fluid outlet and the waste liquid input hole connected;
正面遮盖层,位于所述流道板正面,并覆盖所述检测凹腔、所述流道连接孔、所述废液输出孔、所述废液输入孔及所述流道板正面的流道;The front cover layer is located on the front of the flow channel plate and covers the detection cavity, the flow channel connection hole, the waste liquid output hole, the waste liquid input hole and the flow channel on the front side of the flow channel plate ;
背面遮盖层,位于所述流道板背面,并覆盖所述入液孔、所述流道连接孔及所述流道板背面的流道;The back cover layer is located on the back of the flow channel plate and covers the liquid inlet hole, the flow channel connection hole and the flow channel on the back of the flow channel plate;
多个微阀,所述微阀与所述入液孔至少有一段形状互补,当所述微阀插入所述入液孔中时,所述加样凹腔内的液体无法通过所述入液孔流向所述流道板背面的流道。A plurality of micro-valves, the micro-valve and the liquid inlet hole have at least a section of complementary shape, when the micro-valve is inserted into the liquid inlet hole, the liquid in the sample adding cavity cannot pass through the liquid inlet The holes flow to the flow channels on the back of the flow plate.
可选地,所述入液孔及所述微阀均具有一段自上而下向内倾斜的倾斜侧壁,当所述微阀插入所述入液孔中时,所述入液孔的倾斜侧壁与所述微阀的倾斜侧壁紧贴。Optionally, both the liquid inlet hole and the micro-valve have a section of inclined sidewall that slopes inward from top to bottom. When the micro-valve is inserted into the liquid inlet hole, the inclination of the liquid inlet hole is The side walls are in close contact with the inclined side walls of the microvalve.
可选地,所述入液孔及所述微阀具有倾斜侧壁的一段的横截面均呈圆形或均呈多边形。Optionally, the cross-sections of the liquid inlet hole and a section of the micro-valve with inclined side walls are both circular or polygonal.
可选地,所述入液孔的侧壁垂直,所述微阀插入所述入液孔中的部分的侧壁垂直。Optionally, the side wall of the liquid inlet hole is vertical, and the side wall of the part of the microvalve inserted into the liquid inlet hole is vertical.
可选地,所述入液孔的横截面及所述微阀插入所述入液孔中的部分的横截面均呈圆形或均呈多边形。Optionally, the cross section of the liquid inlet hole and the cross section of the part of the microvalve inserted into the liquid inlet hole are both circular or polygonal.
可选地,当所述微阀插入所述入液孔中且轴线重合时,所述微阀的外壁与所述入液孔的内壁之间的距离小于0.02mm。Optionally, when the microvalve is inserted into the liquid inlet hole and the axes are coincident, the distance between the outer wall of the microvalve and the inner wall of the liquid inlet hole is less than 0.02 mm.
可选地,所述微泵包括热泡微泵、注射泵、蠕动泵及压电泵中的任意一种。Optionally, the micropump includes any one of a thermal bubble micropump, a syringe pump, a peristaltic pump and a piezoelectric pump.
可选地,所述正面遮盖层包括压力膜,所述背面遮盖层包括压力膜。Optionally, the front cover layer includes a pressure film, and the back cover layer includes a pressure film.
如上所述,本实用新型的微流控检测芯片具有稳定可靠的微流控流道,并配置有微泵及简易可操作的微阀,可方便实现多通道液路的切换,通过微阀与微泵的协调工作,可方便控制样本等试剂流过检测凹腔的体积,可以在较短时间内定量测出样本中的待测物质的浓度。As mentioned above, the microfluidic detection chip of the present invention has a stable and reliable microfluidic flow channel, and is equipped with a micropump and a simple and operable microvalve, which can easily realize the switching of multi-channel liquid circuits. The coordinated work of the micropump can easily control the volume of the sample and other reagents flowing through the detection cavity, and can quantitatively measure the concentration of the substance to be tested in the sample in a relatively short period of time.
附图说明Description of drawings
图1显示为所述流道板的俯视图。Figure 1 shows a top view of the flow channel plate.
图2显示为所述流道板的仰视图。Figure 2 shows a bottom view of the flow plate.
图3显示为用于检测信号的硅片的示意图。Figure 3 shows a schematic diagram of a silicon wafer used to detect signals.
图4显示为所述微泵的立体结构图。FIG. 4 is a three-dimensional structural view of the micropump.
图5显示为所述正面遮盖层的结构示意图。FIG. 5 is a schematic diagram showing the structure of the front cover layer.
图6显示为所述背面遮盖层的结构示意图。FIG. 6 is a schematic diagram showing the structure of the back cover layer.
图7显示为所述微阀的立体结构示意图。FIG. 7 is a schematic diagram of the three-dimensional structure of the microvalve.
图8显示为所述微流控检测芯片的组装对位方式。FIG. 8 shows an assembly alignment method of the microfluidic detection chip.
图9显示为所述微流控检测芯片组装完成后的结构示意图。FIG. 9 is a schematic diagram showing the structure of the microfluidic detection chip after the assembly is completed.
图10及图11分别显示为组装好的所述微流控检测芯片的两个剖面图。FIG. 10 and FIG. 11 are respectively two cross-sectional views of the assembled microfluidic detection chip.
图12显示为所述流道板具有所述加样凹腔及所述入液孔的部位的剖面图。FIG. 12 is a cross-sectional view of the portion where the flow channel plate has the sample adding cavity and the liquid inlet hole.
图13显示为所述微阀位于所述入液孔上方但未插入所述入液孔中时的剖面图。Figure 13 shows a cross-sectional view of the microvalve when the microvalve is above the inlet hole but not inserted into the inlet hole.
图14显示为所述微阀插入所述入液孔中时的剖面图。Figure 14 shows a cross-sectional view of the microvalve when inserted into the liquid inlet hole.
图15及图16显示为所述入液孔的侧壁呈垂直状态,所述微阀插入所述入液孔中的部分的侧壁亦垂直的示意图。15 and 16 are schematic diagrams showing that the side wall of the liquid inlet hole is in a vertical state, and the side wall of the part of the microvalve inserted into the liquid inlet hole is also vertical.
元件标号说明Component label description
1 流道板1 runner plate
101 检测凹腔101 Detect cavity
102 废液凹腔102 Waste liquid cavity
103 加样凹腔103 Filling cavity
104 微泵凹腔104 Micro pump cavity
105 入液孔105 Inlet hole
106 流道连接孔106 runner connection hole
107 流道107 runner
108 流道108 runner
109 废液输出孔109 Waste liquid output hole
110 废液输入孔110 Waste liquid input hole
111 流道111 runner
2 微泵2 Micropumps
201 流体入口201 Fluid Inlet
202 流体出口202 Fluid Outlet
3 正面遮盖层3 Front cover
301 开口301 Opening
4 背面遮盖层4 Back cover
5 微阀5 Microvalve
6 硅片6 silicon wafers
具体实施方式Detailed ways
以下通过特定的具体实例说明本实用新型的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本实用新型的其他优点与功效。本实用新型还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本实用新型的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图16。需要说明的是,本实施例中所提供的图示仅以示意方式说明本实用新型的基本构想,遂图式中仅显示与本实用新型中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 16. It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, and only the components related to the present invention are shown in the drawings instead of the number of components in the actual implementation, In the drawing of shape and size, the type, quantity and proportion of each component can be arbitrarily changed in actual implementation, and the component layout may also be more complicated.
实施例一Example 1
本实施例中提供一种微流控检测芯片,包括流道板1、微泵2、正面遮盖层3、背面遮盖层4及多个微阀5。This embodiment provides a microfluidic detection chip, including a
请参阅图1及图2,其中,图1显示为所述流道板1的俯视图,图2显示为所述流道板1的仰视图。所述流道板1正面设有检测凹腔101、废液凹腔102及多个加样凹腔103,所述流道板1背面设有微泵凹腔104,其中,所述加样凹腔103底部设有上下贯穿所述流道板1的入液孔105,所述检测凹腔101与所述加样凹腔103之间设有上下贯穿所述流道板1的流道连接孔106,所述检测凹腔101与所述流道连接孔106之间通过设于所述流道板1正面的流道107连通,所述流道连接孔106与所述入液孔105之间通过设于所述流道板1背面的流道108连通,所述微泵凹腔104的底面设有上下贯穿所述流道板1的废液输出孔109与废液输入孔110,所述废液输出孔109与所述检测凹腔101连通,所述废液输入孔110与所述废液凹腔102连通。Please refer to FIGS. 1 and 2 , wherein FIG. 1 is a top view of the
具体的,所述流道板1的所述检测凹腔101可用于检测未知溶液中被检物质的浓度,例如用于检测信号的硅片6(如图3所示)可放置于所述流道板1的所述检测凹腔101中以完成所需检测。Specifically, the
作为示例,所述废液输出孔109与所述检测凹腔101之间通过一段设有所述流道板1正面的流道111连通。各所述流道连接孔106可通过独立的流道与所述检测凹腔101连接,也可以通过最终汇合的流道与所述检测凹腔101连接。图1显示的为各所述流道连接孔106通过最终汇合的流道107与所述检测凹腔101连接的情形As an example, the waste
作为示例,所述流道板1的材质包括但不限于亚克力。As an example, the material of the
作为示例,所述流道板1的尺寸为80mm*60mm*10mm,所述加样凹腔103的尺寸为10mm*10mm*3mm,各流道的宽高是1mm*0.2mm,所述废液凹腔102的尺寸是15mm*15mm*3mm,所述检测凹腔101中放置的硅片6大小是5.2mm*5.2mm*0.5mm。As an example, the size of the
需要指出的是,对于不同反应体系,加样凹腔的个数不限于3个,可根据加样凹腔的个数以及被检测溶液的体积来调整所述流道板及其中各腔体、流道的具体大小,此处不应过分限制本实用新型的保护范围。It should be pointed out that for different reaction systems, the number of sample addition cavities is not limited to 3, and the flow channel plate and each cavity in it can be adjusted according to the number of sample addition cavities and the volume of the tested solution. The specific size of the flow channel should not unduly limit the protection scope of the present invention.
请参阅图4,显示为所述微泵2的立体结构图。所述微泵2放置于所述流道板1背面的所述微泵凹腔104内以驱动流体,所述微泵2正面设有流体入口201及流体出口202,所述流体入口201与所述流道板1的所述废液输出孔109连通,用以接收来自所述检测凹腔101流出的废液,所述流体出口202与所述流道板1的所述废液输入孔110连通,用以将废液泵入所述废液凹腔102。Please refer to FIG. 4 , which is a three-dimensional structural diagram of the
作为示例,所述微泵2包括但不限于热泡微泵、注射泵、蠕动泵及压电泵中的任意一种。本实施例中,所述微泵2以热泡微泵为例,热泡微泵的流体入口和流体出口的尺寸半径为0.5mm,两口中心距离为4.58mm。在其它实施例,流体出入口的尺寸与距离也可以根据需要进行调整,此处不应过分限制本实用新型的保护范围。As an example, the
请参阅图5,显示为所述正面遮盖层3的结构示意图,所述正面遮盖层3位于所述流道板1正面,并覆盖所述检测凹腔101、所述流道连接孔106、所述废液输出孔109、所述废液输入孔110及所述流道板1正面的流道。Please refer to FIG. 5 , which is a schematic structural diagram of the
作为示例,所述正面遮盖层3包括但不限于压力膜。As an example, the
作为示例,所述正面遮盖层3为一整片,且所述正面遮盖层3与所述废液凹腔102及所述加样凹腔103相对的位置设有开口301。As an example, the
在其它实施例中,所述正面遮盖层3也可以为多片,例如覆盖所述检测凹腔101的部分可为单独一片,以便于预先组装好所述微流控检测芯片的其它部分,在特定时刻再于所述检测凹腔101中放入用于检测信号的硅片或其它载片,此处不应过分限制本实用新型的保护范围。In other embodiments, the
请参阅图6,显示为所述背面遮盖层4的结构示意图,所述背面遮盖层4位于所述流道板1背面,并覆盖所述入液孔105、所述流道连接孔106及所述流道板1背面的流道。Please refer to FIG. 6 , which is a schematic structural diagram of the
作为示例,所述背面遮盖层4包括但不限于压力膜。As an example, the
作为示例,所述背面遮盖层4为一整片。As an example, the
请参阅图7,显示为所述微阀5的立体结构示意图。所述微阀5与所述入液孔105至少有一段形状互补,当所述微阀5插入所述入液孔105中时,所述加样凹腔103内的液体无法通过所述入液孔105流向所述流道板1背面的流道,从而可实现多通道液路切换。所述微阀5的操作可采用手动、或机械臂等方式,此处不应过分限制本实用新型的保护范围。Please refer to FIG. 7 , which is a schematic three-dimensional structure diagram of the
作为示例,所述微阀5的材质包括但不限于亚克力及聚二甲基硅氧烷(PDMS)中的任意一种。As an example, the material of the
请参阅图8,显示为所述微流控检测芯片的组装对位方式。Please refer to FIG. 8 , which shows an assembly alignment method of the microfluidic detection chip.
作为示例,在所述微流控检测芯片的组装的过程中,可首先将所述微泵2通过AB胶或其它粘接剂(例如双面胶、热固化胶、UV胶等)粘接到所述微泵凹腔104内(其中,所述微泵2的流体入口201与所述微泵凹腔104底部的废液输出孔109连通,所述微泵2的所述流体出口202与所述微泵凹腔104底部的废液输入孔110连通),并将修饰过抗体的硅片6放置于所述检测凹腔101内(所述硅片亦可通过粘接剂粘接于所述检测凹腔底部),然后把压力膜(正面遮盖层3及背面遮盖层4)通过压力挤压与所述流道板1的正面及背面连接。As an example, in the process of assembling the microfluidic detection chip, the
请参阅图9,显示为所述微流控检测芯片组装完成后的结构示意图,其中,一个微阀5处于释放状态使相应的液路开启,其它微阀放置于对应的入液孔中使对应的液路切断。Please refer to FIG. 9 , which is a schematic structural diagram of the microfluidic detection chip after the assembly is completed, wherein one
请参阅图10及图11,分别显示为组装好的所述微流控检测芯片的两个剖面图。Please refer to FIG. 10 and FIG. 11 , which are respectively two cross-sectional views of the assembled microfluidic detection chip.
请参阅图12至图14,其中,图12显示为所述流道板1具有所述加样凹腔103及所述入液孔105的部位的剖面图,图13显示为所述微阀5位于所述入液孔105上方但未插入所述入液孔105中时的剖面图,图14显示为所述微阀5插入所述入液孔105中时的剖面图。Please refer to FIGS. 12 to 14 , wherein, FIG. 12 is a cross-sectional view of the portion of the
作为示例,所述入液孔105及所述微阀5均具有一段自上而下向内倾斜的倾斜侧壁,即所述入液孔105及所述微阀5相接触的部位呈锥形,当所述微阀5插入所述入液孔105中时,所述入液孔105的倾斜侧壁与所述微阀5的倾斜侧壁紧贴。As an example, the
作为示例,当所述微阀5插入所述入液孔105中时,所述微阀5的底面可以到达所述流道板1底面所在平面,也可以未到达所述流道板1底面所在平面。如图14所示,显示为当所述微阀5插入所述入液孔105中时,所述微阀5的底面未到达所述流道板1底面所在平面的情形,更有利于向下施压使得所述微阀5与所述入液孔的侧壁紧密接触。As an example, when the
作为示例,所述入液孔105及所述微阀5具有倾斜侧壁的一段的横截面均呈圆形或均呈多边形,相应的,所述微阀5的对应部位呈圆台状或棱台状。As an example, the cross-section of the
请参阅图15及图16,在另一实施例中,所述入液孔105的侧壁也可以呈垂直状态,所述微阀5插入所述入液孔105中的部分的侧壁亦垂直。Please refer to FIG. 15 and FIG. 16. In another embodiment, the side wall of the
作为示例,如图16所示,在所述入液孔105侧壁垂直的情形下,当所述微阀5插入所述入液孔105中且轴线重合时,所述微阀5的外壁与所述入液孔105的内壁之间的距离小于0.02mm,也就是说所述微阀5的尺寸略微小于所述入液口105的尺寸,使得所述微阀5能够放入所述入液口105的同时,又能依靠所述入液口105处的流阻大小差异达到一个微阀的效果。As an example, as shown in FIG. 16 , when the side wall of the
需要指出的是,图16呈现的是当所述微阀5插入所述入液孔105中时,所述微阀5的底面与所述背面遮盖层4接触的情形,在其它实施例中,当所述微阀5插入所述入液孔105中时,所述微阀5的底面也可以不与所述背面遮盖层4接触。It should be noted that FIG. 16 shows the situation in which the bottom surface of the
作为示例,所述入液孔105的横截面及所述微阀5插入所述入液孔105中的部分的横截面均呈圆形或均呈多边形,相应的,所述微阀5的对应部位呈圆柱状或棱柱状。As an example, the cross section of the
需要指出的是,在其它实施例中,所述微阀5与所述入液孔105的轮廓也可以呈其它形状,只需要满足形状互补使得当所述微阀5插入所述入液孔105中时可以切断液路即可,此处不应过分限制本实用新型的保护范围。It should be noted that, in other embodiments, the contours of the
本实施例的微流控检测芯片具有稳定可靠的微流控流道,并配置有微泵及简易可操作的微阀,可方便实现多通道液路的切换,通过微阀与微泵的协调工作,可方便控制样本等试剂流过检测凹腔的体积,可以在较短时间内定量测出样本中的待测物质的浓度。The microfluidic detection chip of this embodiment has a stable and reliable microfluidic flow channel, and is equipped with a micropump and a simple and operable microvalve, which can easily realize the switching of multi-channel liquid circuits. Through the coordination of the microvalve and the micropump It can easily control the volume of the sample and other reagents flowing through the detection cavity, and can quantitatively measure the concentration of the substance to be tested in the sample in a relatively short time.
实施例二
本实施例利用实施例一中所述的微流控检测芯片进行小分子样本检测。In this embodiment, the microfluidic detection chip described in
请参见图9及图10,所述微流控检测芯片从右到左依次有三个入液凹腔、三个用于切换液路的锥形微阀、流道、放置了已经修饰好一抗硅片的反应凹腔、热泡微泵和废液凹腔。Please refer to Fig. 9 and Fig. 10, the microfluidic detection chip has three liquid inlet cavities, three conical microvalves for switching liquid paths, flow channels, and a modified primary antibody is placed in order from right to left. Silicon wafer reaction cavity, thermal bubble micropump and waste liquid cavity.
在三个入液凹腔中分别加入过量的被测样本、被标记的二抗以及清洗液。第一步用锥形的亚克力微阀把容置有二抗和清洗液的入液凹腔的入液口堵住,打开热泡微泵直到走过计算好的被测样本体积,关闭热泡微泵。第二步用同样的用亚克力微阀堵住容置有被测样本和被标记的二抗的入液凹腔的入液口,打开热泡微泵,清洗多余被测样本,关闭热泡微泵。第三步继续用亚克力微阀堵上容置有被测样本和清洗液的入液凹腔的入液口,打开热泡微泵直到走过计算好的二抗试剂体积,关闭热泡微泵。第四步重复第二步的操作,唯一区别在于这次是清洗多余的二抗试剂。最后第五步将完成反应后的微流控检测芯片放到专门读取荧光强度的仪器下读取荧光值,每个不同的荧光值对应着一个相应的样本浓度。Add excess test sample, labeled secondary antibody, and washing solution to the three liquid inlet cavities, respectively. The first step is to block the liquid inlet of the liquid inlet cavity containing the secondary antibody and cleaning solution with a conical acrylic microvalve, turn on the thermal bubble micropump until the calculated sample volume to be tested is passed, and close the thermal bubble micropump. The second step is to use the same acrylic microvalve to block the liquid inlet of the liquid inlet cavity containing the tested sample and the labeled secondary antibody, turn on the thermal bubble micropump, clean the excess test sample, and close the thermal bubble micropump. Pump. Step 3: Continue to use the acrylic micro-valve to block the liquid inlet of the liquid inlet cavity containing the sample to be tested and the cleaning solution, turn on the hot-bubble micro-pump until the calculated volume of the secondary antibody reagent is passed, and turn off the hot-bubble micro-pump . The fourth step is to repeat the operation of the second step, the only difference is that this time is to wash the excess secondary antibody reagent. Finally, in the fifth step, place the microfluidic detection chip after the reaction is completed under an instrument specially designed to read the fluorescence intensity to read the fluorescence value, and each different fluorescence value corresponds to a corresponding sample concentration.
实施例三
本实施例利用实施例一中所述的微流控检测芯片进行夹心酶联免疫法样品检测。In this example, the microfluidic detection chip described in Example 1 is used to detect samples by sandwich enzyme-linked immunosorbent assay.
本实施例中所需微流控检测芯片与图9所示微流控检测芯片大致相同,只是所需入液凹腔的数目由三个变为四个。The microfluidic detection chip required in this embodiment is roughly the same as the microfluidic detection chip shown in FIG. 9 , except that the number of required liquid inlet cavities is changed from three to four.
具体检测过程如下:在四个入液凹腔中分别加入抗原,即样本试剂、与一抗配对的抗体B试剂、二抗试剂和清洗液。按照实施例二的操作,依次通过样本试剂、清洗液、抗体B试剂、清洗液、二抗试剂、清洗液。然后将微流控检测芯片放到专门读取荧光强度的仪器下读取荧光值,得到相应的样本浓度。The specific detection process is as follows: antigens, namely sample reagent, antibody B reagent paired with primary antibody, secondary antibody reagent and cleaning solution, are respectively added into the four liquid inlet cavities. According to the operation of Example 2, the sample reagent, the cleaning solution, the antibody B reagent, the cleaning solution, the secondary antibody reagent, and the cleaning solution are sequentially passed through. Then, place the microfluidic detection chip under an instrument specially designed to read the fluorescence intensity to read the fluorescence value to obtain the corresponding sample concentration.
实施例四
本实施例利用实施例一中所述的微流控检测芯片进行化学发光免疫分析法样品检测。In this embodiment, the microfluidic detection chip described in
本实施例中所需微流控检测芯片与图9所示微流控检测芯片大致相同,只是所需入液凹腔的数目由三个变为五个。The microfluidic detection chip required in this embodiment is roughly the same as the microfluidic detection chip shown in FIG. 9 , except that the number of required liquid inlet cavities is changed from three to five.
具体检测过程如下:在五个入液凹腔种分别加入抗原,即样本试剂、与一抗配对的抗体B试剂、二抗试剂、发光底物试剂和清洗液。按照实施例二的操作,依次通过样本试剂、清洗液、抗体B试剂、清洗液、二抗试剂、清洗液、发光底物试剂,静置反应一定时间。然后将微流控检测芯片放到专门读取荧光强度的仪器下读取荧光值,得到相应的样本浓度。The specific detection process is as follows: antigens, namely sample reagents, antibody B reagents paired with primary antibodies, secondary antibody reagents, luminescent substrate reagents and cleaning solutions, are respectively added to the five liquid inlet cavities. According to the operation of Example 2, the sample reagent, the cleaning solution, the antibody B reagent, the cleaning solution, the secondary antibody reagent, the cleaning solution, and the luminescent substrate reagent are sequentially passed through, and the reaction is allowed to stand for a certain period of time. Then, place the microfluidic detection chip under an instrument specially designed to read the fluorescence intensity to read the fluorescence value to obtain the corresponding sample concentration.
综上所述,本实用新型的微流控检测芯片具有稳定可靠的微流控流道,并配置有微泵及简易可操作的微阀,可方便实现多通道液路的切换,通过微阀与微泵的协调工作,可方便控制样本等试剂流过检测凹腔的体积,可以在较短时间内定量测出样本中的待测物质的浓度。所以,本实用新型有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the microfluidic detection chip of the present invention has a stable and reliable microfluidic flow channel, and is equipped with a micropump and a simple and operable microvalve, which can easily realize the switching of multi-channel liquid circuits. The coordinated work with the micropump can conveniently control the volume of the sample and other reagents flowing through the detection cavity, and can quantitatively measure the concentration of the substance to be tested in the sample in a relatively short period of time. Therefore, the utility model effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed by the present invention should still be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020410437.3U CN211800909U (en) | 2020-03-26 | 2020-03-26 | Micro-fluidic detection chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020410437.3U CN211800909U (en) | 2020-03-26 | 2020-03-26 | Micro-fluidic detection chip |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211800909U true CN211800909U (en) | 2020-10-30 |
Family
ID=73147875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020410437.3U Active CN211800909U (en) | 2020-03-26 | 2020-03-26 | Micro-fluidic detection chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211800909U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113441194A (en) * | 2020-03-26 | 2021-09-28 | 上海新微技术研发中心有限公司 | Micro-fluidic detection chip |
-
2020
- 2020-03-26 CN CN202020410437.3U patent/CN211800909U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113441194A (en) * | 2020-03-26 | 2021-09-28 | 上海新微技术研发中心有限公司 | Micro-fluidic detection chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108745429B (en) | Multichannel rapid detection microfluid detection chip | |
US10159978B2 (en) | Flow control in microfluidic systems | |
US10953398B2 (en) | Fluid mixing and delivery in microfluidic systems | |
US7241421B2 (en) | Miniaturized fluid delivery and analysis system | |
KR101653701B1 (en) | Microfluidic distributing device | |
KR101162817B1 (en) | Microanalysis measuring apparatus and microanalysis measuring method using the same | |
US8309039B2 (en) | Valve structure for consistent valve operation of a miniaturized fluid delivery and analysis system | |
CN113275046B (en) | Detection chip, use method thereof and detection device | |
CN111282605A (en) | A microfluidic chip and method of using the same | |
US10246675B2 (en) | Biochemical cartridge, and biochemical cartridge and cartridge holder set | |
US20110020182A1 (en) | Microfluidic cartridge with solution reservoir-pump chamber | |
WO2007080850A1 (en) | Passive one-way valve and micro fluid device | |
CN108043481B (en) | Multi-index detection micro-fluidic chip and application method thereof | |
KR100824209B1 (en) | Manual Microfluidic Cleaning Device Using Capillary Force | |
CN211800909U (en) | Micro-fluidic detection chip | |
CN210752733U (en) | Micro-fluidic integrated chip that detects | |
CN113441194A (en) | Micro-fluidic detection chip | |
CN110736844A (en) | detection method of cardiac troponin | |
Attia et al. | Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques | |
CN211586658U (en) | Microfluid chip | |
CN215655207U (en) | Micro-fluidic chip | |
CN211385058U (en) | Chaotic convection mixing device | |
CN111729696A (en) | A Microfluidic Detection Chip Using Immune Electrodes | |
JP2006284451A (en) | Micro total analysis system for analyzing target material in specimen | |
JP5951219B2 (en) | Microchip with built-in liquid reagent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241218 Address after: Room 1002, 10th Floor, Building 1, No. 1355 Chengbei Road, Jiading District, Shanghai, 201800 Patentee after: Shanghai Ao Rui Technology Co.,Ltd. Country or region after: China Address before: 201800 Building 1, No. 235, Chengbei Road, Jiading District, Shanghai Patentee before: Shanghai Industrial UTechnology Research Institute Country or region before: China |
|
TR01 | Transfer of patent right |