CN211749542U - Endoscopic Raman spectrum detection device for intracavity tissue - Google Patents
Endoscopic Raman spectrum detection device for intracavity tissue Download PDFInfo
- Publication number
- CN211749542U CN211749542U CN201921866518.8U CN201921866518U CN211749542U CN 211749542 U CN211749542 U CN 211749542U CN 201921866518 U CN201921866518 U CN 201921866518U CN 211749542 U CN211749542 U CN 211749542U
- Authority
- CN
- China
- Prior art keywords
- probe
- raman
- optical fiber
- fluorescence
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000001237 Raman spectrum Methods 0.000 title claims abstract description 16
- 239000000523 sample Substances 0.000 claims abstract description 111
- 239000013307 optical fiber Substances 0.000 claims abstract description 36
- 238000001069 Raman spectroscopy Methods 0.000 claims description 66
- 230000005284 excitation Effects 0.000 claims description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 239000000560 biocompatible material Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 53
- 238000001574 biopsy Methods 0.000 abstract description 26
- 210000003097 mucus Anatomy 0.000 abstract description 4
- 210000001519 tissue Anatomy 0.000 description 36
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 5
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002189 fluorescence spectrum Methods 0.000 description 5
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 210000001989 nasopharynx Anatomy 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000026062 Tissue disease Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Endoscopes (AREA)
Abstract
本实用新型提供了一种腔内组织内窥拉曼光谱检测装置,包括一手持探头,所述手持探头具有一探头支架和一光纤探头;所述探头支架包括一手持部和一中空的探头导管,所述手持部连接于所述探头导管的一端;所述探头导管的首尾两端均为开口结构,该探头导管对应于所述手持部的一端为入口端,另一端为探测端;所述光纤探头穿过所述入口端,并固定于探头导管内。本实用新型适用于鼻咽内窥镜,不占用鼻咽内窥镜的活检通道,给医生预留出活检通道和抽取腔内粘液的通道,手持探头不仅能与有活检孔的空内窥镜配合使用,而且还能与无活检孔的内窥镜或鼻咽硬镜一起检测鼻咽组织。本实用新型也可适用于口腔镜、子宫镜等,从而满足人体腔内不同部位的观察需要。
The utility model provides an intracavity tissue endoscopic Raman spectrum detection device, which comprises a hand-held probe, the hand-held probe has a probe holder and an optical fiber probe; the probe holder comprises a hand-held part and a hollow probe catheter , the hand-held part is connected to one end of the probe conduit; both ends of the probe conduit are open structures, one end of the probe conduit corresponding to the hand-held part is the inlet end, and the other end is the detection end; the A fiber optic probe is passed through the inlet end and fixed in the probe conduit. The utility model is suitable for a nasopharyngeal endoscope, does not occupy the biopsy channel of the nasopharyngeal endoscope, reserves a biopsy channel and a channel for extracting mucus in the cavity for doctors, and the hand-held probe can not only be used with an empty endoscope with a biopsy hole It can also be used in conjunction with non-biopsy endoscopes or rigid nasopharyngeal endoscopes to detect nasopharyngeal tissue. The utility model can also be applied to oral mirrors, hysteroscopes, etc., so as to meet the observation needs of different parts in the human cavity.
Description
【技术领域】【Technical field】
本实用新型具体涉及一种腔内组织内窥拉曼光谱检测装置。The utility model particularly relates to an endoscopic Raman spectrum detection device for intracavity tissue.
【背景技术】【Background technique】
鼻咽癌是发生在头颈部的恶性肿瘤之一,主要发生在中国的福建省、广东省、香港、东南亚和亚洲的一些国家。因为鼻咽癌早期无明显症状、鼻咽位于头颈部的深处,所以早期的鼻咽癌难以被发现。等到鼻咽癌被确诊,超过70%鼻咽癌患者已经处于中晚期。早期鼻咽癌的生存率超过90%,晚期鼻咽癌患者的生存率低于30.3%。因此,鼻咽癌的早期诊断成为治疗鼻咽癌的关键。常规的诊断方法包括:鼻咽镜检查、磁共振成像(MRI)、计算机断层扫描(CT)、组织活检等等,但是这些方法存在着费用高、时间久、具有二次损伤还有需要依赖于医生的临床经验等缺点,并且很难做到对鼻咽癌的早期诊断。Nasopharyngeal carcinoma is one of the malignant tumors that occur in the head and neck, mainly in China's Fujian Province, Guangdong Province, Hong Kong, Southeast Asia and some countries in Asia. Because nasopharyngeal cancer has no obvious symptoms in the early stage, and the nasopharynx is located deep in the head and neck, early nasopharyngeal cancer is difficult to detect. By the time nasopharyngeal cancer is diagnosed, more than 70% of nasopharyngeal cancer patients are already in the middle and late stages. The survival rate of early stage nasopharyngeal carcinoma is more than 90%, and the survival rate of patients with advanced nasopharyngeal carcinoma is less than 30.3%. Therefore, early diagnosis of nasopharyngeal carcinoma becomes the key to the treatment of nasopharyngeal carcinoma. Conventional diagnostic methods include: nasopharyngoscopy, magnetic resonance imaging (MRI), computed tomography (CT), tissue biopsy, etc., but these methods are expensive, time-consuming, have secondary damage and need to rely on Doctors' clinical experience and other shortcomings, and it is difficult to achieve early diagnosis of nasopharyngeal cancer.
拉曼光谱技术是一种无损的光学检测技术,它通过光与组织之间的相互作用获得组织的拉曼光谱,拉曼光谱能够提供十分重要的生化信息对人体组织的疾病具有诊断意义。因此,进行人体组织拉曼光谱检测研究是对早期无损癌症筛查具有重要意义的。Raman spectroscopy is a non-destructive optical detection technology. It obtains Raman spectra of tissues through the interaction between light and tissues. Raman spectroscopy can provide very important biochemical information and has diagnostic significance for human tissue diseases. Therefore, the research of human tissue Raman spectroscopy is of great significance for early non-destructive cancer screening.
然而传统鼻咽内镜拉曼光谱检测装置,采用的是纤维内镜,其活检孔较大,相对较易装设光学探头,基于活检通道可以进行拉曼光谱进行检测,但纤维内镜易损坏,且采用拉曼光谱检测,光纤探头必须经过内窥镜活检通道进入人体腔内的器械,因占用用于夹取病理检验标本的活检通道,同时也无法通过活检孔抽走腔内粘液,导致在白光下视场模糊无法发现异常组织,即使发现异常组织,黏液也会干扰拉曼信号的检测,降低了信噪比,另外基于内窥镜活检通道的光纤探头,转向角度是依靠内窥镜,由于受限于内窥镜的弯曲角度无法灵活操作,会造成盲区,容易触碰到腔内粘膜,甚至使粘膜破损而出血,测得信号是属于血液信号。目前鼻咽纤维镜已被观察清晰度高的鼻咽电子内镜取代,而鼻咽电子内镜活检孔更小或者无活检通道。对于没有活检孔的鼻咽电子镜,没有活检通道,现有通过活检孔的拉曼探头是无法使用的,因此急需开发一种与电子鼻咽镜密切结合进行鼻咽组织光谱检测的装置。However, the traditional nasopharyngeal endoscope Raman spectroscopy detection device uses a fiber endoscope, which has a large biopsy hole and is relatively easy to install an optical probe. Raman spectroscopy can be detected based on the biopsy channel, but the fiber endoscope is easily damaged. , and using Raman spectroscopy detection, the fiber optic probe must enter the human cavity through the endoscope biopsy channel, because it occupies the biopsy channel used for clamping the pathological test specimen, and at the same time, the intracavitary mucus cannot be removed through the biopsy hole, resulting in Under white light, the field of view is blurred, and abnormal tissue cannot be found. Even if abnormal tissue is found, mucus will interfere with the detection of Raman signals, reducing the signal-to-noise ratio. In addition, the optical fiber probe based on the biopsy channel of the endoscope, the steering angle depends on the endoscope. , Due to the limited bending angle of the endoscope, it cannot be flexibly operated, which will cause a blind spot, and it is easy to touch the mucosa in the cavity, and even cause the mucosa to be damaged and hemorrhage. The measured signal is a blood signal. At present, the nasopharyngeal fiberscope has been replaced by the nasopharyngeal electronic endoscope with high observation clarity, and the biopsy hole of the nasopharyngeal electronic endoscope is smaller or has no biopsy channel. For nasopharyngeal electronic microscopes without biopsy holes, there is no biopsy channel, and the existing Raman probes that pass through the biopsy holes cannot be used. Therefore, it is urgent to develop a device for spectral detection of nasopharyngeal tissue in close combination with electronic nasopharyngoscopes.
【实用新型内容】【Content of utility model】
为克服现有设备存在的缺陷,本实用新型在于提供一种腔内组织内窥拉曼光谱检测装置。In order to overcome the defects of the existing equipment, the utility model provides an endoscopic Raman spectrum detection device for intracavity tissue.
本实用新型是这样实现的:一种腔内组织内窥拉曼光谱检测装置,包括一手持探头,所述手持探头具有一探头支架和一光纤探头;所述探头支架包括一手持部和一中空的探头导管,所述手持部连接于所述探头导管的一端;所述探头导管的首尾两端均为开口结构,该探头导管对应于所述手持部的一端为入口端,另一端为探测端;所述光纤探头穿过所述入口端,并固定于探头导管内。The utility model is realized as follows: an endoscopic Raman spectrum detection device for intracavity tissue, comprising a hand-held probe, the hand-held probe has a probe holder and an optical fiber probe; the probe holder comprises a hand-held part and a hollow The probe catheter, the handle part is connected to one end of the probe catheter; both ends of the probe catheter are open structures, one end of the probe catheter corresponding to the handle part is the inlet end, and the other end is the detection end ; The fiber probe passes through the inlet end and is fixed in the probe conduit.
进一步地,所述探头导管对应于所述入口端处设有一紧定件,所述光纤探头滑动连接于所述探头导管内,且所述光纤探头通过所述紧定件固定于所述探头导管内。Further, the probe conduit is provided with a fastener corresponding to the inlet end, the fiber probe is slidably connected in the probe conduit, and the optical fiber probe is fixed to the probe conduit through the fastener Inside.
进一步地,所述探头导管的探测端处设有一石英玻璃柱,所述光纤探头紧接于石英玻璃柱上。Further, a quartz glass column is provided at the detection end of the probe conduit, and the optical fiber probe is immediately connected to the quartz glass column.
进一步地,所述石英玻璃柱的前端设有倒圆角。Further, the front end of the quartz glass column is provided with rounded corners.
进一步地,所述手持部包括手柄和手指孔,所述手指孔设于手柄的下端。Further, the hand-held portion includes a handle and a finger hole, and the finger hole is provided at the lower end of the handle.
进一步地,所述光纤探头包括一拉曼激发光纤、数根拉曼收集光纤、一荧光/反射激发光纤和一荧光/反射收集光纤;所述数根拉曼收集光纤围成一圆圈;所述拉曼激发光纤、荧光/反射激发光纤和荧光/反射收集光纤呈等边三角形排布,并均位于所述圆圈内。Further, the fiber probe includes a Raman excitation fiber, several Raman collection fibers, a fluorescence/reflection excitation fiber, and a fluorescence/reflection collection fiber; the Raman collection fibers form a circle; the The Raman excitation fiber, fluorescence/reflection excitation fiber, and fluorescence/reflection collection fiber are arranged in an equilateral triangle and are all located within the circle.
进一步地,所述拉曼激发光纤的前端面镀有允许一个波长激光发通过的低通膜,所述拉曼收集光纤的前端设有可截止激发光并允许波长更大的拉曼散射光通过的高通滤波片。Further, the front end of the Raman excitation fiber is coated with a low-pass film that allows one wavelength of laser light to pass through, and the front end of the Raman collection fiber is provided with a front end that can cut off the excitation light and allow Raman scattered light with a larger wavelength to pass through. high pass filter.
进一步地,还包括拉曼光谱仪、拉曼激发光源、白光光源、荧光激发光源、反射/荧光光谱仪和检测器;所述拉曼光谱仪与数根拉曼收集光纤的输出端连接;所述拉曼激发光源的输出端与拉曼激发光纤连接;所述白光光源、荧光激发光源经第一滤波器与所述荧光/反射激发光纤的输入端相连接;所述反射/荧光光谱仪经滤光轮与荧光/反射收集光纤的输出端相连接;所述拉曼光谱仪、反射/荧光光谱仪均与检测器连接。Further, it also includes a Raman spectrometer, a Raman excitation light source, a white light source, a fluorescence excitation light source, a reflection/fluorescence spectrometer and a detector; the Raman spectrometer is connected to the output ends of several Raman collecting fibers; the Raman The output end of the excitation light source is connected with the Raman excitation fiber; the white light source and the fluorescence excitation light source are connected with the input end of the fluorescence/reflection excitation fiber through the first filter; the reflection/fluorescence spectrometer is connected with the filter wheel through the filter wheel. The output ends of the fluorescence/reflection collecting fibers are connected; the Raman spectrometer and the reflection/fluorescence spectrometer are all connected with the detector.
本实用新型的优点在于:不依赖于内窥镜,不占用活检通道,给医生预留出活检通道和抽取腔内粘液的通道,适用于与无活检孔的鼻咽电子镜结合;手持探头不仅能与有活检孔的空内窥镜配合使用,而且还能与无活检孔的内窥镜或鼻咽硬镜一起检测鼻咽组织,也可做成硬镜形式,利用转向透镜实现多角度的准确测量;提高了信噪比和避免探头污染,延长了探头的使用寿命;能够实现拉曼光谱检测,提高检测的灵敏度和特异性。本实用新型也可适用于不同类型功能的内窥镜,如鼻咽镜,口腔镜,子宫镜等,从而满足人体腔内不同部位的观察需要。The utility model has the advantages that: it does not depend on the endoscope, does not occupy the biopsy channel, reserves the biopsy channel and the channel for extracting the mucus in the cavity for the doctor, and is suitable for combining with the nasopharyngeal electron microscope without the biopsy hole; the hand-held probe not only It can be used in conjunction with an empty endoscope with a biopsy hole, and can also detect nasopharyngeal tissue together with an endoscope without a biopsy hole or a nasopharyngeal rigid endoscope. Accurate measurement; improve the signal-to-noise ratio and avoid probe pollution, prolong the service life of the probe; can realize Raman spectrum detection, improve the sensitivity and specificity of detection. The utility model can also be applied to endoscopes with different types of functions, such as nasopharyngoscope, oral mirror, hysteroscope, etc., so as to meet the observation needs of different parts in the human cavity.
【附图说明】【Description of drawings】
下面参照附图结合实施例对本实用新型作进一步的说明。The present utility model will be further described below with reference to the accompanying drawings and embodiments.
图1为本实用新型一种腔内组织内窥拉曼光谱检测装置的结构示意图。FIG. 1 is a schematic structural diagram of an intracavity tissue endoscopic Raman spectrum detection device of the present invention.
图2为本实用新型中探头支架的结构示意图。FIG. 2 is a schematic structural diagram of a probe holder in the present invention.
图3为本实用新型中光纤探头的结构示意图。FIG. 3 is a schematic structural diagram of an optical fiber probe in the utility model.
图4为本实用新型中手持探头一优选实施例的结构示意图。FIG. 4 is a schematic structural diagram of a preferred embodiment of the hand-held probe in the present invention.
图5为本实用新型一种腔内组织内窥拉曼光谱检测装置的使用状态图。FIG. 5 is a state diagram of a use state of an intracavity tissue endoscopic Raman spectrum detection device of the present invention.
【具体实施方式】【Detailed ways】
请参阅图1至图5,一种腔内组织内窥拉曼光谱检测装置100,包括一手持探头1、拉曼光谱仪2、拉曼激发光源3、白光光源4、荧光激发光源5、反射/荧光光谱仪6、检测器(未图示)、内窥镜系统7;所述手持探头1具有一探头支架11和一光纤探头12。Please refer to FIGS. 1 to 5 , an intracavity tissue endoscopic Raman
请再参阅图1和图2,所述探头支架11包括一手持部111和一中空的探头导管112,所述手持部111连接于所述探头导管112的一端;所述手持部111包括手柄111a和手指孔111b,所述手指孔111b设于手柄111a的下端。所述探头导管112的首尾两端均为开口结构,该探头导管112对应于所述手持部111的一端为入口端1121,另一端为探测端1122;所述光纤探头12穿过所述入口端1121,并固定于探头导管112内,且延伸至所述探测端1122。所述探头导管112对应于所述入口端1121处设有一紧定件8,所述光纤探头12滑动连接于所述探头导管112内,且所述光纤探头12通过所述紧定件8固定于所述探头导管112内。通过紧定件8使光纤探头12可随转向,也可调节光纤探头12进入探头支架11通道的长度,确保光纤探头12在进入人体腔内进行检测时,其探测端1122的端面不接触人体腔内的粘膜组织,避免了对腔内粘膜组织的损伤而导致的出血、感染等医疗风险;紧定件8可为锁定螺母,通过所述紧定件8对光纤探头12和探头支架11进行固定,可防止测量过程中由光纤探头12侧倾、移动等造成测量点位的偏差,提高光纤探头12对病灶的定位精度。Please refer to FIG. 1 and FIG. 2 again, the
请再参阅图1、图2和图3,在一优选实施例中,所述探头导管112的探测端1122处设有一石英玻璃柱9,所述光纤探头12抵接于石英玻璃柱9上。所述石英玻璃柱的前端设有倒圆角;这样避免探测端1122在检测人体腔内时,石英玻璃柱插伤腔内的组织。石英玻璃柱9前端面镀有增反膜,石英玻璃柱9不仅起到限定光纤探头12与组织的距离,获得稳定的光学腔内组织信号,探头支架11和石英玻璃柱9可以避免光纤探头12与组织的直接接触,保护光纤探头12前端的清洁度,确保信号收集效率,同时下一个患者检测时,可直接替换探头支架11,无需再次对光纤探头12进行清洗,从而延长了光纤探头12的使用寿命和缩短了检测时间。探头支架11由不锈钢或者具有刚性、生物相容性的其它材料制成,可以直接接触人体腔内组织。Please refer to FIG. 1 , FIG. 2 and FIG. 3 again. In a preferred embodiment, a
请再参阅图1和图3,所述光纤探头12包括一拉曼激发光纤121、数根拉曼收集光纤122、一荧光/反射激发光纤123和一荧光/反射收集光纤124;所述数根拉曼收集光纤122围成一圆圈O;所述拉曼激发光纤121、荧光/反射激发光纤123和荧光/反射收集光纤124呈等边三角形排布,并均位于所述圆圈O内。拉曼激发光纤121、拉曼收集光纤122、荧光/反射激发光纤123和荧光/反射收集光纤124的中部集合成一根合束光纤,且在探测端1122处采用金属套筒进行固定。中间的三根光纤为等边三角形结构可以使收集到的多光谱汇聚在同一检测点上。所述拉曼光谱仪2与数根拉曼收集光纤122的输出端连接;所述拉曼激发光源3的输出端与拉曼激发光纤121连接;所述白光光源4、荧光激发光源5经第一滤波器101与所述荧光/反射激发光纤123的输入端相连接;所述反射/荧光光谱仪6经滤光轮102与荧光/反射收集光纤124的输出端相连接;所述拉曼光谱仪2、反射/荧光光谱仪6均与检测器连接。所述检测器与一显示器103连接。光纤探头12能获取腔内组织的反射光谱、荧光光谱和拉曼光谱信号,其中拉曼信号激发和接收部分,拉曼激发光纤121端面先镀上允许一个波长激发光通过的低通膜,拉曼收集光纤122前端采用可截止激发光并允许波长更大的拉曼散射光通过的高通滤波片,然后组装在一起。可采集反射光谱、荧光光谱、拉曼光谱的低波数(200~2000cm-1,fingerprint)和高波数(2600~3500cm-1,high wavenumber),从而做到了对腔内组织的全方面光谱检测,提高检测效率。本实用新型以白光光源4作为激发光源的反射光谱检测和蓝光光源作为激发光的荧光光谱检测。Please refer to FIG. 1 and FIG. 3 again, the
请再参阅图1和图5,所述内窥镜系统7包括内窥镜71、第二滤波器72、氙灯光源73和数据处理器74,所述内窥镜71、第二滤波器72和氙灯光源73依次连接;所述内窥镜71、数据处理器74和显示器103依次连接。氙灯光源73输出白光作为内窥镜71的照明光对腔内组织进行照明,数据处理器74可实时记录内窥镜71下所观察到的白光光学图像,光纤探头12同时进入腔内收集的光谱信号进行实时处理,并通过显示装置显示出来。光纤探头12和内窥镜71可同时进入人体腔内到达被检组织处,以获取腔内组织白光图像以及反射光谱、荧光光谱、拉曼光谱等光谱信号,实现了多种光学信号的同时检测。当内窥镜71为鼻咽镜时,消毒处理后将鼻咽镜缓慢沿人体的一个鼻腔伸入,将探头支架11从人体另一鼻腔伸入,在显示器103上显示的白光图像的引导下到达鼻咽部组织附近,进行光学图像的观察和光谱采集再开启白光激发光源,采集荧光成像从而使医生可以分别观察鼻咽部组织在白光照明下的白光图像,医生在观察图像过程中发现可疑的病变组织时,采集白光照明下的反射谱和蓝光照明下的荧光光谱,并在显示器103上进行观察;同时手持式探头支架11可与组织接触,开启785nm拉曼激发光源3发出激光,经激发光纤对可疑组织进行激发,组织的拉曼光谱信号经收集光纤进行收集并传输至拉曼光谱仪2进行检测,实现可以鼻咽的拉曼检测,光学图像和光谱信号均可通过检测器进行处理和实时保存。1 and 5 again, the
请再参阅图4,本实用新型可与电子内窥镜71分开地进入人体腔内,进行人体腔内组织的多光谱测量,能与目前临床的内窥镜71、咽镜检查同时进行并相互配合,可以快速获得高质量的鼻咽部组织的多光谱信号,并在分子水平上实现对鼻咽部癌变组织的有效检测。如应用于双侧鼻孔检测时,一侧观察图像,另一侧用于采集拉曼信号,可增加拉曼光的搜集效率。本实用新型的手持探头1不仅能与有活检孔的空内窥镜配合使用,而且还能与无活检孔的内窥镜或鼻咽硬镜一起检测鼻咽组织,也可做成硬镜形式。本实用新型的手持探头1与鼻咽内镜联用,不占用活检通道,能与目前无活检的鼻咽电子镜结合,实现了与临床鼻咽镜检查的高度结合,具有非常高的临床应用价值。本实用新型也可适用于不同类型功能的内窥镜71,如鼻咽镜,口腔镜,子宫镜等,从而满足人体腔内不同部位的观察需要;手持式探头也可以适用于人体体外皮肤,活检组织等多光谱检测,拉曼光谱检测系统波数覆盖范围广,可同时检测指纹区和高波数区拉曼光谱的;为活体组织的无损、快速诊断提供有效的临床检测工具。Please refer to FIG. 4 again, the present invention can enter the human body cavity separately from the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921866518.8U CN211749542U (en) | 2019-11-01 | 2019-11-01 | Endoscopic Raman spectrum detection device for intracavity tissue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921866518.8U CN211749542U (en) | 2019-11-01 | 2019-11-01 | Endoscopic Raman spectrum detection device for intracavity tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211749542U true CN211749542U (en) | 2020-10-27 |
Family
ID=72962602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921866518.8U Expired - Fee Related CN211749542U (en) | 2019-11-01 | 2019-11-01 | Endoscopic Raman spectrum detection device for intracavity tissue |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211749542U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110840397A (en) * | 2019-11-01 | 2020-02-28 | 福建师范大学 | Endoscopic Raman spectrum detection device for intracavity tissue |
-
2019
- 2019-11-01 CN CN201921866518.8U patent/CN211749542U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110840397A (en) * | 2019-11-01 | 2020-02-28 | 福建师范大学 | Endoscopic Raman spectrum detection device for intracavity tissue |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105997000B (en) | A fiberscope-based Raman spectroscopy detection device and its implementation method | |
EP2057936B1 (en) | Method and system for characterization and mapping of tissue lesions | |
AU2001251164B2 (en) | Methods and apparatus for diagnostic multispectral digital imaging | |
US20060217594A1 (en) | Endoscopy device with removable tip | |
US20060293556A1 (en) | Endoscope with remote control module or camera | |
US20050059894A1 (en) | Automated endoscopy device, diagnostic method, and uses | |
CA2860026C (en) | Biopsy device with integrated optical spectroscopy guidance | |
CN107941782B (en) | Endoscopic optical fiber Raman probe and detection device | |
CN104116482A (en) | Optical image and spectral signal detection device based on endoscope | |
EP2911586A1 (en) | Methods and apparatus for colonic neoplasia detection with high frequency raman spectra | |
CN206138087U (en) | Raman spectrum detection device based on fibrescope | |
CN211749542U (en) | Endoscopic Raman spectrum detection device for intracavity tissue | |
CN204207708U (en) | A kind of novel endoscopic spectrum image and signal supervisory instrument | |
CN110840397A (en) | Endoscopic Raman spectrum detection device for intracavity tissue | |
KR101905975B1 (en) | Plasmon raman probe and endoscope device using the same | |
WO2021081972A1 (en) | Endoscopic raman spectroscopy detection device for intracavitary tissue | |
RU107923U1 (en) | LASER SPECTRAL COLOSCOPE | |
RU104836U1 (en) | LASER SPECTRAL-FLUORESCENT COLOSCOPE | |
RU51847U1 (en) | FILTER ATTACHMENT | |
AU2001244423B2 (en) | Method and system for characterization and mapping of tissue lesions | |
Wu et al. | Detecting neoplastic growths in vivo with autofluorescence imaging | |
AU2001244423A1 (en) | Method and system for characterization and mapping of tissue lesions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201027 |
|
CF01 | Termination of patent right due to non-payment of annual fee |