CN211668521U - 用于图像采集的自动引导车、以及图像采集和处理系统 - Google Patents
用于图像采集的自动引导车、以及图像采集和处理系统 Download PDFInfo
- Publication number
- CN211668521U CN211668521U CN201822023605.9U CN201822023605U CN211668521U CN 211668521 U CN211668521 U CN 211668521U CN 201822023605 U CN201822023605 U CN 201822023605U CN 211668521 U CN211668521 U CN 211668521U
- Authority
- CN
- China
- Prior art keywords
- picture
- base
- parameter
- camera
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims abstract description 33
- 238000005259 measurement Methods 0.000 claims abstract description 50
- 230000000007 visual effect Effects 0.000 claims description 4
- 239000003550 marker Substances 0.000 claims 4
- 238000000034 method Methods 0.000 description 53
- 238000013507 mapping Methods 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 15
- 238000011478 gradient descent method Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Image Analysis (AREA)
- Image Generation (AREA)
- Image Processing (AREA)
Abstract
本实用新型涉及用于图像采集的自动引导车、以及图像采集和处理系统,该自动引导车包括:基座;配置成可采集所述基座下方的区域的图片的摄像头,安装在基座上;配置成可测量或计算与所述图片对应的所述自动引导车的位置参数以及姿态参数的测量组件,该测量组件安装在基座上。根据本实用新型,可以更加精准的定位自动引导车。
Description
技术领域
本实用新型大致涉及智能仓储领域,尤其涉及一种可用于智能仓储的用于图像采集的自动引导车、以及图像采集和处理系统。
背景技术
现有的智能仓库中,经常需要对定位场地进行测量,建立物理坐标系, 物理坐标系以常见距离单位作为度量单位,比如米、分米、厘米,允许以整数、小数、分数形式进行描述,比如1米、1分米、1厘米,0.55米、0.2分米、1.4厘米、二分之一米等,坐标系方向一般同建筑物围墙平行,或者与东南西北方向相平行。
在智能仓库中运送货物的自动引导车AGV,经常需要对其位置进行精确的定位。但现有的定位方法,其精度通常达不到工作的要求,尤其是当需要精确地确定AGV的位置参数和姿态参数时,更是这样。这很不利于操作人员的操作和控制。
因此,现有技术中迫切需要一种能够更精确地进行建图和定位的方法和装置。
背景技术部分的内容仅仅是实用新型人所知晓的技术,并不当然代表本领域的现有技术。
实用新型内容
针对现有技术存在问题中的一个或多个,本实用新型提供一种对场地进行建图的方法,包括:建立或获取所述场地的坐标系;扫描所述场地,获取标定点的图片、待定位位置的图片、以及与所述图片对应的位置参数和姿态参数;基于所述标定点的图片、所述待定位位置的图片、所述位置参数和所述姿态参数,修正所述待定位位置的图片的所述位置参数和姿态参数。
根据本实用新型的一个方面,所述位置参数包括横坐标和纵坐标,优选地包括垂直坐标,所述姿态参数包括航向角,优选地包括俯仰角和横滚角。
根据本实用新型的一个方面,所述修正的步骤包括:构造连接点的集合,每个所述连接点包括一幅图片、与所述一幅图片对应的所述位置参数和所述姿态参数、以及所述图片是否对应标定点;基于所述连接点的集合,修正所述待定位位置的图片的所述位置参数和姿态参数。
根据本实用新型的一个方面,其中所述修正的步骤包括:从所述连接点的集合中,获取距离不超过预定值的两个连接点作为一连接,建立连接的集合;对所述连接的集合中的每一个连接所包括的两个连接点,计算所述两个连接点之间的连接置信度,并过滤出连接置信度高于预定阈值的那些连接,作为建图连接集合;基于所述建图连接集合,修正所述待定位位置的图片的所述位置参数和姿态参数。
根据本实用新型的一个方面,所述修正步骤还包括:在所述建图连接集合上执行梯度下降法,其中在执行梯度下降法的初始化步骤时,将非标定点的连接点的图片的所述位置参数和姿态参数作为所述梯度下降法的初始迭代参数。
根据本实用新型的一个方面,其中所述修正步骤还包括:执行所述梯度下降法,直至迭代变化率低于预定阈值。
根据本实用新型的一个方面,其中对标定点中的一些或者全部,进行多次图片采集,并获取与每次图片采集对应的位置参数和姿态参数。
根据本实用新型的一个方面,该方法还包括:将所述坐标系、所述标定点的图片、所述待定位位置的图片、所述标定点的图片的位置参数和姿态参数、以及修正后的所述待定位位置的图片的位置参数和姿态参数存储到数据库中或文件中,建立地图库。
根据本实用新型的一个方面,所述坐标系为物理坐标系。
根据本实用新型的一个方面,所述预定值为所述图片的长度或宽度的一半。
本实用新型还提供一种用于图像采集的自动引导车,包括:基座;摄像头,所述摄像头安装在所述基座上并配置成可采集所述基座下方的区域的图片;测量组件,所述测量组件安装在所述基座上,并配置成可测量或计算与所述图片对应的所述自动引导车的位置参数以及姿态参数。
根据本实用新型的一个方面,自动引导车还包括发光装置,所述发光装置安装在所述基座上并配置成可照亮所述基座下方的区域,供所述摄像头采集图片。
根据本实用新型的一个方面,该自动引导车还包括安装在所述基座上的控制装置,所述摄像头和所述测量组件均耦合至所述控制装置,所述控制装置配置成控制所述小车行进至标记点和待定位位置以采集所述标记点的图片和所述待定位位置的图片。
根据本实用新型的一个方面,自动引导车还包括处理装置,所述处理装置与所述摄像头和所述测量组件耦合,并基于所述图片、以及所述位置参数以及姿态参数,修正所述待定位位置的图片的位置参数和姿态参数。
根据本实用新型的一个方面,所述处理装置通过以下的方法修正所述待定位位置的图片的位置参数和姿态参数:构造连接点的集合,每个所述连接点包括一幅图片、与所述一幅图片对应的所述位置参数和所述姿态参数、以及所述图片是否对应标定点;从所述连接点的集合中,获取距离不超过预定值的两个连接点作为一连接,建立连接的集合;对所述连接的集合中的每一个连接所包括的两个连接点,计算所述两个连接点之间的连接置信度,并过滤出连接置信度高于预定阈值的那些连接,作为建图连接集合;在所述建图连接集合上执行梯度下降法,直至迭代变化率低于预定预支,其中在执行梯度下降法的初始化步骤时,将非标定点的连接点的图片的所述位置参数和姿态参数作为所述梯度下降法的初始迭代参数。
根据本实用新型的一个方面,自动引导车还包括遮光罩,所述遮光罩安装在所述基座上,用于柔化所述发光装置发出的光线,所述发光装置优选环绕所述遮光罩安装。
根据本实用新型的一个方面,其中所述测量组件是惯性导航测量组件。
根据本实用新型的一个方面,其中所述位置参数包括横坐标和纵坐标,优选地包括垂直坐标,所述姿态参数包括航向角,优选地包括俯仰角和横滚角。
根据本实用新型的一个方面,其中所述测量组件包括激光SLAM测量装置和/或视觉SLAM测量装置。
根据本实用新型的一个方面,其中所述处理装置配置成将所述坐标系、所述标定点的图片、所述待定位位置的图片、所述标定点的图片的位置参数和姿态参数、以及修正后的所述待定位位置的图片的位置参数和姿态参数存储到数据库中或文件中,建立地图库。
本实用新型还提供一种图像采集和处理系统,包括:如上所述的自动引导车;和处理装置,所述处理装置与所述摄像头和所述测量组件耦合,并基于所述图片、以及所述位置参数以及姿态参数,修正所述图片的位置参数和姿态参数。
根据本实用新型的一个方面,其中所述处理装置配置成可执行上所述的建图方法。
本实用新型还提供一种用于自动引导车的建图和定位系统,包括:摄像头,所述摄像头设置成可采集所述自动引导车下方的图像;发光装置,所述发光装置配置成可照亮所述自动引导车的下方;惯性导航测量组件,所述惯性导航测量组件配置为可测量所述自动引导车的位置参数以及姿态参数;处理装置,所述摄像头和所述惯性导航测量组件均耦合至所述处理装置,所述控制装置配置成基于所述图像、所述位置参数以及姿态参数,修正所述图片的位置参数和姿态参数。
根据本实用新型的一个方面,其中所述处理装置配置成可执行如上任一项所述的建图方法。
本实用新型还提供一种对场地进行建图的设备,包括:配置成建立或获取所述场地的坐标系的装置;配置成扫描所述场地、获取标定点的图片以及多个待定位位置的图片、以及与所述图片对应的位置参数和姿态参数的装置;配置成基于所述图片、所述位置参数和所述姿态参数,修正所述待定位位置的图片的位置参数和姿态参数的装置。
本实用新型还提供一种定位方法,包括:加载或获得通过上述任一项所述的方法获得的地图;采集或获得待定位位置的图片以及与该图片对应的位置参数和姿态参数;根据所述地图,检索与该待定位位置的图片距离最近的图片。
根据本实用新型的一个方面,该定位方法还包括:使用相位相关法计算所述待定位位置的图片与所述距离最近的图片之间的置信度、位置参数偏移和姿态参数偏移。
根据本实用新型的一个方面,当使用相位相关法计算得到的置信度低于预设值时,丢弃该距离最近的图片,重新检索与该待定位位置的图片距离最近且置信度高于预设值的图片。
附图说明
附图用来提供对本实用新型的进一步理解,并且构成说明书的一部分,与本实用新型的实施例一起用于解释本实用新型,并不构成对本实用新型的限制。在附图中:
图1是根据本实用新型一个实施例的建图方法的流程图;
图2是根据本实用新型一个实施例的物理坐标的示意图;
图3是根据本实用新型一个实施例的逻辑坐标的示意图;
图4是根据本实用新型一个实施例的连接点的示意图;
图5是根据本实用新型一个实施例的标定点的示意图;
图6是根据本实用新型一个实施例的修正待定位位置图片的位置参数和姿态参数的方法流程图;
图7是根据本实用新型一个实施例通过相位相关法计算的图片重合的实例;
图8是根据本实用新型一个实施例的连接的示意图;
图9示出了完成物理坐标系和逻辑坐标系映射后的地图截图;
图10是根据本实用新型一个实施例的用于图像采集的自动引导车的示意图;
图11是根据本实用新型一个实施例的定位方法的流程图;和
图12是根据本实用新型一个实施例的计算机程序产品的框图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本实用新型的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本实用新型的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、 "长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、 "水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本实用新型的描述中," 多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征之" 上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、" 下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本实用新型。此外,本实用新型可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本实用新型提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本实用新型的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本实用新型,并不用于限定本实用新型。
首先参考图1描述根据本实用新型第一实施例的建图方法100,例如可用于对场地进行建图。
在步骤S101,建立或获取所述场地的坐标系。所述坐标系可以是物理坐标系,也可以是逻辑坐标系,这都在本实用新型的范围内。坐标系的定义,通常包括原点的位置、XY坐标轴的方向等。
例如可以对需要定位的场地进行测量,建立物理坐标系,物理坐标系以常见距离单位作为度量单位,比如米、分米、厘米,允许以整数、小数、分数形式进行描述,比如1米、1分米、1厘米,0.55米、0.2分米、1.4厘米、二分之一米等,坐标系方向一般同建筑物围墙平行,或者与东南西北方向相平行,遵循以上原则建立的坐标在本系统中称为物理坐标系,如图2所示。
按照业务实际情况设定的坐标系,在本系统中称作逻辑坐标系。示例性的而非限制性的,逻辑坐标系和物理坐标系的不同之处例如可以在于,逻辑坐标系一般是以整数作为描述的,比如(1,2)、(5,10),并且坐标系方向不一定与物理坐标系重合,而且逻辑坐标系的距离单位并不一定是常见物理单位,而是以实际作业需要进行定义,比如图3中A点、B点、C点,B点逻辑坐标为(3,7),A点逻辑坐标为(3,8),C点逻辑坐标为(4,7),以左下角点位为原点,每个逻辑位置间距为1.35米计算的话,A点的物理坐标则为 (4.05,9.45)。因此逻辑位置和物理位置可以完全一致,也可以两者存在一定的换算关系。之所以有逻辑位置的原因是为了方便规划业务逻辑或者方便建图计算,比如以货架摆放为例,货架的位置都是以逻辑坐标系位置进行保存的,比如(3,7)位置,如果使用物理位置的话,就会出现上述(4.05,9.45) 的描述,很不利于操作人员的理解和操作,如果需要物理位置时,可以通过换算关系进行换算,一般换算的时候是乘以一个系数,叫做逻辑位置间距,并且在X方向和Y方向上可以不同。比如仓库内的货架是1.3米*1.3米,货架间距为0.05米,就可以定义逻辑位置间距为1.35米,如果货架是1.2米*1.0 米,那么可以定义逻辑位置间距在X轴方向上为1.25米,Y轴方向上为1.05 米,从而使得需要进行物理定位的设备找到对应的物理位置货架。以上的换算仅为常规的换算方式,还有更为复杂的换算方法,比如坐标系旋转换算,非线性换算等换算方法,在此限于篇幅不详细展开。以上关于逻辑坐标系的描述仅是示例性的而非限制性的。逻辑坐标系是指按照业务实际情况设定的坐标系。在本实用新型的概念下,逻辑坐标系下的位置参数不限于整数,也可以带有小数。这些都在本实用新型的保护范围内。如果事先已经建立好了场地的物理坐标系或者逻辑坐标系,可以从相应的文件或者数据库中获取即可。下文以物理坐标系为例进行说明。
在步骤S102,扫描所述场地,获取标定点的图片(关于标定点的定义,请参见下文)、待定位位置的图片(优选的是多个待定位的位置的图片)、以及与所述标定点图片和待定位位置图片对应的位置参数和姿态参数。
例如可以使用搭载本实用新型的设备(将在下文描述)的自动引导小车,对所述场地进行扫描,获取待定位位置的图片、标定点图片、以及上面两种图片对应的位置参数和姿态参数。这里所谓的待定位的位置,可以根据实际工况确定,例如是自动引导车需要到达的位置。
参考图2为例进行描述,所述位置参数例如是在某一个标定点或者需要定位的位置的图片在物理坐标系下的横坐标和纵坐标(即水平位置,例如图片中心的坐标,或者图片某一个角的坐标),当然也可以是相对于某一个基点的水平距离和纵向距离;所述姿态参数例如获取的图片的角度,例如相对于横轴或纵轴的角度(即航向角)。根据本实用新型的一个优选实施例,还可以获取所述图片对应的俯仰角、横滚角、垂直高度等参数(即自动引导小车获取照片时的俯仰角、横滚角、垂直高度等)。根据本实用新型的一个优选实施例,可以采用本实用新型的自动引导小车上搭载的惯性导航测量设备来提供上述数据。惯性导航测量设备例如包括轮子编码器、加速度计(1~3轴)、陀螺仪(1~3轴)、磁通量传感器(1~3轴)、气压传感器以及能够反馈航向角、俯仰角、横滚角、水平位置、垂直位置的测量设备。利用轮子编码器、加速度计、陀螺仪、磁通量传感器、气压传感器获得的数据,经过计算,即可得到航向角(即图片相对于水平轴或纵轴的角度)、俯仰角、横滚角、水平位置、垂直位置,将得到的以上数据叠加至图片,形成(图片、航向角(即图片角度)、俯仰角、横滚角、水平位置(即x轴横坐标和y轴纵坐标)、垂直位置, 是否是标定点)的七元组数据组合,如图4所示,在本系统中称为连接点,作为后续建图输入。当然,本领域技术人员能够理解,所述连接点不需要具备全部的数据,例如包括(图片、航向角、水平位置、是否是标定点)的四元数据组合就可以实现本实用新型的目的。需要注意的是,根据本实用新型的一个优选实施例,对于标定点的图片和相应的位置参数和姿态参数,可以尽可能多的采集,有助于更精确的建立定位地图和更加精准的定位,采集时,可以多次经过同一区域,多次采集,也可以使得定位地图更加精确。当然本实用新型的保护范围不限于物理坐标系下的坐标,也可以是逻辑坐标系下的坐标。
关于标定点,其代表那些坐标已经经过精确确定的点位。如图3中所标示的A点、B点、C点,这些点位的坐标已经经过确认,是人为定义的,先验的。
图5中示出了标定点的一个实例,其中显示出标定点A、其逻辑坐标为 (5,8),物理坐标为(3.75,4.10)。当然本实用新型中,标定点并不限于必须同时具有逻辑坐标和物理坐标。可以采取多种手段来识别和确认标定点。例如一种是图像上有十字线,上面标注了位置,图像采集之后可以识别出标定点及其位置坐标;还一种是上面有编码信息,例如条形码或者二维码,在图像采集之后可以使用程序解码,解码出来的内容就是该标定点的位置坐标。根据本实用新型一个实施例,由于标定点的坐标是事先经过确认的,所以在步骤S102中,标定点图片的位置参数采用的是该标定点的位置参数,而非惯性导航测量设备所测量出来的标定点图片的位置参数。
在步骤S103,基于所述标定点的图片、所述待定位位置的图片、所述位置参数和所述姿态参数,修正所述待定位位置的图片的所述位置参数和姿态参数。
对于待定位位置的图片,其位置参数和姿态参数是通过测量而得到的,例如通过惯性导航测量设备测量和得到,在现场的工况中存在测量误差,需要进一步修正来提高其精度。而标定点的图片可以作为很好的基准,用来修正待定位位置的图片的位置参数和姿态参数。
下面参考图6来描述步骤S103的一个实施例。
在步骤S1031:构造连接点的集合。如上所述,每个连接点,包括(图片、航向角(即图片角度)、俯仰角、横滚角、水平位置、垂直位置,是否是标定点)的七元组数据组合,或者包括(图片、航向角、水平位置、是否是标定点)的四元数据组合。利用这些连接点来构造连接点集合。关于“是否是标定点”的参数,如果该图片中出现了标定点并正常地获得了该标定点的先验位置参数,该参数即为“是标定点”;否则该参数为“非标定点”。也可以用逻辑0或1来表示。
在步骤S1032,基于所述连接点集合来建立和输出连接集合。输入连接点集合,按照连接点中包括的水平位置即xy轴坐标,进行组对操作,组对操作的原则例如为:两个图片的标注位置距离不超过预定值,例如不超过图片长度或宽度的50%、30%或者20%。举例说明,连接点A水平位置为(0,0),连接点B水平位置为(5,0),那么A到B的距离为5,如果图片大小为10*10,那么A、B就符合不超过50%图片大小的标准,可以组成一对,在本系统中这样的组合叫做连接,每个连接包括两个连接点,输出能够组成的全部连接,在本系统中称为连接集合。
在步骤S1033:输入所生成的连接集合,对于连接集合中的每一个连接,提取连接里面两个连接点A、B,为了方便描述,将连接点A称为基准点,连接点B称为邻接点,以基准点为原点,以邻接点为偏移,将基准点图片和邻接点图片作为输入,例如执行相位相关法,得到连接置信度(conf)(表征二者之间的相似程度),x方向相对位移(delta_x),y方向相对位移(delta_y),旋转相对角度(theta),本系统中将(conf,delta_x,delta_y,theta)组成的4元组称为互相关结果,放入对应的连接保存,将置信度大于一定阈值 (例如10,可理解为该互相关结果随机出现的概率小于正态分布10西格玛位置所表示的概率值)的连接保留,输出过滤后的置信度大于该阈值的、含有互相关结果的新连接集合,在本系统中称为建图连接集合。上文的连接置信度是相位相关法的输出,是通过计算相位相关法取值峰值的尖锐程度,或者说尖峰附近的分布计算的,假设分布是正态的,那么知道了峰值和均值,就可以算出来置信度。互相关结果是按照上面相位相关法,通过计算两个图片的相关度计算出来的。执行相位相关法的过程中,涉及到互功率谱计算,利用互功率谱函数,可以获得在不同的位移条件下的互相关水平,假设互相关水平服从正态分布,可以通过统计方法计算出来正态分布的相关参数,利用该参数和最大的互相关数值相除,即可计算连接置信度。
根据一个实施例,建图连接集合不含有两个点都是标定点的连接。
如图7所示,图中灰色区域是图片A,绿色区域是图片B,说明了两个图片的重合区域,该重合是通过相位相关计算出来的。例如图7中两个图片A 和B计算的互相关结果为:置信度131.542,x方向相对位移33.4,y方向相位位移10.7,旋转角度0.3度。
图8示出了连接的示意图,其中包括基准点和邻接点。
在步骤S1034:在建图连接集合上执行梯度下降法,修正所述待定位位置的图片的位置参数和姿态参数。其中根据一个实施例,标定点图片的横纵坐标和角度不变,梯度调整是以非标定点图片参数作为变量,标定图片可以认为是常量。或者建图连接集合可以定义成不含有两个点都是标定点的连接,因为这样调整没有意义,标定点本来就不应该被调整,求解梯度的时候也不会被求解。优化函数例如如公式1所示:
公式1:
公式2:
公式3:
公式4:
公式5:
公式6:
公式7:
其中N表示建图连接集合一共含有N个连接,i表示建图连接集合中的第i个连接,Ai表示第i个连接的基准点,Bi表示第i个连接的邻接点,Ri表示第 i个连接的互相关结果,表示基准点的航向角,表示邻接点的航向角,表示互相关结果中的旋转相对角度,gθ(Ai,Bi)可以理解为基准点与邻接点在惯性导航测量组件下的角度差异,gθ(Ai,Bi)-uθ(Ri)可以理解为惯性导航测量组件下的角度差异同互相关结果中的旋转相对角度的差异(互相关结果中的旋转角度就是通过相位相关法计算出来的theta,这个值表征了邻接点图片需要旋转多少角度才能和基准点图片平行),其中fθ为航向角权重函数,用于表示航向角拟合过程中,不同的连接点属性(比如:标定点和非标定点)在地图迭代中的权重不同(作为一个实例,通常标定点的权重比较大,例如1000,非标定点的权重比较小,例如1);vθ为互相关结果中角度差异的权重函数,用于表示不同的连接属性(比如:两个非标定点之间的连接、标定点与非标定点之间的连接)对于互相关结果角度的权重(两个非标定点的连接的话,变化程度应该是对等的,或者说叫做均等的,因为两个码的地位是相等的,但是标定点和非标定点变化程度是不对等的,非标定点的变化程度,显著大于标定点,因此要通过权重控制。可以根据实际情况来给定权重)。根据一个优选实施例,对于两个非标定点的连接,权重可取1,按照同等的水平调整;对于标定和非标定点的连接,权重也可以取1,因为标定点是常量,不会参与梯度计算,可以认为梯度是不变的。如果考虑对标定点进行微调的话,标定点与非标定点的连接的权重比值可以高达99比1。
其余公式描述均和以上描述类似,分别计算了惯性导航测量组件下的X 轴方向差异同互相关结果中的X轴方向相对位移的差异,以及惯性导航测量组件下的Y轴方向差异同互相关结果中的Y轴方向相对位移的差异,上述权重函数均可根据业务情况、算法适配情况调整。表示基准点的x轴坐标,表示邻接点的x轴坐标,表示互相关结果中的x方向相对位移,gx(Ai,Bi) 可以理解为基准点与邻接点在惯性导航测量组件下的x方向坐标差异, gx(Ai,Bi)-ux(Ri)可以理解为惯性导航测量组件下的x方向坐标差异同互相关结果中的x方向相对位移的差异(互相关结果中的x方向相对位移就是通过相位相关法计算出来的delta_x,这个值表征了邻接点图片需要沿x方向平移多少距离才能和基准点图片对齐),其中fx为x轴权重函数,用于表示x轴坐标拟合过程中,不同的连接点属性(比如:标定点和非标定点)在地图迭代中的权重不同(作为一个实例,通常标定点的权重比较大,例如1000,非标定点的权重比较小,例如1);vx为互相关结果相对于x轴相对位移的调整权重,例如可以取值1。
表示基准点的y轴坐标,表示邻接点的y轴坐标,表示互相关结果中的y方向相对位移,gy(Ai,Bi)可以理解为基准点与邻接点在惯性导航测量组件下的y方向坐标差异,gy(Ai,Bi)-uy(Ri)可以理解为惯性导航测量组件下的y方向坐标差异同互相关结果中的y方向相对位移的差异(互相关结果中的y方向相对位移就是通过相位相关法计算出来的delta_y,这个值表征了邻接点图片需要沿y方向平移多少距离才能和基准点图片对齐),其中fy为x 轴权重函数,用于表示y轴坐标拟合过程中,不同的连接点属性(比如:标定点和非标定点)在地图迭代中的权重不同(作为一个实例,通常标定点的权重比较大,例如1000,非标定点的权重比较小,例如1);vy为互相关结果相对于y轴相对位移的调整权重,例如可以取值1。
λ1、λ2、λ3分别表示theta、x、y变化量在最终拟合结果中的权重,有的场景对于theta的变化比较敏感,可以调高λ1。根据一个优选实施例,λ1、λ2、λ3均为1。
执行梯度下降法的初始化步骤,将惯性导航标注的位置参数和姿态参数作为图片的初始位置。梯度下降法的输入一个是上次迭代集合,一个是梯度,一个是步长,其中梯度是通过对公式1求导得到的,迭代初始集合是通过例如惯性导航标注的位置参数和姿态参数赋值的,步长是固定的或者可变的。
确定了梯度和迭代初始集合之后,向梯度方向进行步长长度下降,来利用公式1进行优化。可根据需要自定义步长算法,本系统优选采用固定步长进行梯度下降。重复执行,直到迭代变化率小于设定阈值,本系统例如设定阈值为0.1%。变化率例如是上次计算得到的值和本次迭代计算得到的值的差值,除以上次的值,就是变化率。最终得到每一个图片基点(例如中心点) 的物理坐标以及姿态参数,作为修正后的待定位位置的位置参数和姿态参数。
注意,在建图连接集合上执行梯度下降法的过程中,标定点图片的位置参数和姿态参数不进行变化。
上面所描述的执行梯度下降法中用到了图片的x轴坐标、y轴坐标和航向角。根据本实用新型的一个优选实施例,也可以包括图片对应的垂直坐标、俯仰角和横滚角,尤其是在场地高低不平的情况中,这非常有帮助。这些都在本实用新型的保护范围内。
根据本实用新型的一个优选实施例,对标定点中的一些或者全部,进行多次图片采集,并获取与每次图片采集对应的位置参数和姿态参数。通过对标定点的图片多次采集,可使得迭代结果更加精确,增加了连接的数目。
根据本实用新型的一个优选实施例,还包括:将所述坐标系、所述标定点的图片、所述待定位位置的图片、所述标定点的图片的位置参数和姿态参数、以及修正后的所述待定位位置的图片的位置参数和姿态参数存储到数据库中或文件中,建立地图。根据一个优选实施例,同时将所述连接的集合和/ 或所述建图连接集合存储到所述数据库或文件中,作为地图的一部分。图9 示出了根据本实用新型建立的地图的图示。
优选地,另外对于迭代后的地图进行人工校验和微调,就完成了物理坐标系和逻辑坐标系的稳定映射,用于后续定位。
下面参考附图10描述根据本实用新型另一个实施例的用于图像采集的自动引导车10。如图10所示,其中示出了自动引导车10的内部部件,而为了清晰起见省略了其外壳等部件。自动引导车10包括:基座6;发光装置5-2,所述发光装置安装在所述基座上并配置成可照亮所述基座下方的区域;摄像头5-3,所述摄像头安装在所述基座上并配置成可采集基座下方区域的图片,例如被所述发光装置照亮的区域的图片;测量组件3,所述测量组件安装在所述基座上,并配置成可测量或计算与所述图片对应的所述自动引导车的位置参数以及姿态参数。
主动轮1安装在机座6上,包括电机、减速器、编码器,其中电机提供驱动力,减速器放大驱动力,编码器用于获取电机转动角度,从而可以获得自动引导车或者主动轮的水平位置。主动轮2同主动轮1配合完成运动控制。所述测量组件3例如是惯性导航测量装置,可以提供瞬时速度、瞬时角度、瞬时位置的一个或者几个,例如横坐标、纵坐标、垂直坐标、航向角、俯仰角和横滚角。根据本实用新型的一个实施例,所述主动轮的编码器也可以是所述测量组件3的一部分。控制装置4安装在所述基座6上,同测量组件3 和摄像头5-3耦合。所述控制装置4配置成控制所述小车行进至标记点和待定位位置以采集所述标记点的图片和所述待定位位置的图片,并且能够同步所述摄像头5-3和所述测量组件3,使得在摄像头采集图片的同时,所述测量组件3能够测量所述小车的位置参数和姿态参数,也就是获得与所述图片相对应的位置参数和姿态参数。
所述摄像头5-3例如是下视摄像头,连同发光装置5-2和遮光罩5-1一起形成取像装置5,其中摄像头5-3用于获取自动引导车下方图像,发光装置5-2安装在基座上,用于照亮下视摄像头拍摄区域。遮光罩5-1安装在所述基座上,用于将发光装置的光线变得更为柔和,防止反光现象的发生。所述发光装置优选环绕所述遮光罩安装。
根据本实用新型的一个优选实施例,自动引导车10还包括处理装置(未示出),所述处理装置与所述摄像头5-3和所述测量组件3耦合,以接收所述摄像头采集的图片和测量组件测量的位置参数和姿态参数,并基于所述图片、以及所述位置参数以及姿态参数,修正所述待定位位置的图片的位置参数和姿态参数。本领域技术人员能够理解,处理装置可以集成在所述自动引导车 10中,也可以在物理上与所述自动引导车分离,通过有线或者无线的方式与其他部件进行通讯。这些都在本实用新型的范围内。
根据本实用新型的一个优选实施例,所述处理装置通过以下的方法修正所述待定位位置的图片的位置参数和姿态参数:
构造连接点的集合,每个所述连接点包括一幅图片、与所述一幅图片对应的所述位置参数和所述姿态参数、以及所述图片是否对应标定点;
从所述连接点的集合中,获取距离不超过预定值的两个连接点作为一连接,建立连接的集合;
对所述连接的集合中的每一个连接所包括的两个连接点,计算所述两个连接点之间的连接置信度,并过滤出连接置信度高于预定阈值的那些连接,作为建图连接集合;
在所述建图连接集合上执行梯度下降法,直至迭代变化率低于预定预支,其中在执行梯度下降法的初始化步骤时,将非标定点的连接点的图片的所述位置参数和姿态参数作为所述梯度下降法的初始迭代参数。具体的计算过程如公式1-7所示。
根据本实用新型的一个优选实施例,所述测量组件是惯性导航测量组件,所述位置参数包括横坐标和纵坐标,优选地包括垂直坐标,所述姿态参数包括航向角,优选地包括俯仰角和横滚角。
根据本实用新型的一个优选实施例,所述测量组件包括激光SLAM测量装置和/或视觉SLAM测量装置。
根据本实用新型的一个优选实施例,所述处理装置配置成将所述坐标系、所述标定点的图片、所述待定位位置的图片、所述标定点的图片的位置参数和姿态参数、以及修正后的所述待定位位置的图片的位置参数和姿态参数存储到数据库中或文件中,建立地图。
本实用新型还提供一种图像采集和处理系统,包括:如上所述的自动引导车;和处理装置,所述处理装置与所述摄像头和所述测量组件相通讯,并配置成基于所述图片、以及所述位置参数以及姿态参数,修正所述图片的位置参数和姿态参数。其中所述处理装置例如并非设置在所述自动引导车上。
其中所述处理装置例如配置成可执行如上所述的建图方法100。
本实用新型还提供一种用于自动引导车的建图和定位系统,包括:摄像头,所述摄像头设置成可采集所述自动引导车下方的图像;发光装置,所述发光装置配置成可照亮所述自动引导车的下方;惯性导航测量组件,所述惯性导航测量组件配置为可测量所述自动引导车的位置参数和姿态参数;处理装置,所述摄像头和所述惯性导航测量组件均耦合至所述处理装置,基于所述图像、所述位置参数以及姿态参数,修正所述图片的位置参数和姿态参数。
其中所述处理装置例如配置成可执行如上所述的建图方法100。
本实用新型还提供一种对场地进行建图的设备,包括:配置成建立或获取所述场地的坐标系的装置;配置成扫描所述场地、获取标定点的图片以及多个待定位位置的图片、以及与所述图片对应的位置参数和姿态参数的装置;配置成基于所述图片、所述位置参数和所述姿态参数,修正所述待定位位置的图片的位置参数和姿态参数的装置。
基于通过方法100建立的地图,本实用新型还提供一种定位方法200。下面参考图11来描述根据本实用新型的定位方法200。
如图11所示,在步骤S201,加载或获得通过本实用新型的方法100获得的地图,例如可以通过加载或读取地图文件或数据库来进行。
在步骤S202,采集或获得待定位位置的图片以及与该图片对应的位置参数和姿态参数。例如在AGV运行过程中,在采集图片的同时,测量与该图片对应的位置参数和姿态参数。
在步骤S203,在所述地图中,检索与该待定位位置的图片距离最近的图片
根据本实用新型的一个优选实施例,所述定位方法200还包括:使用相位相关法计算所述待定位位置的图片与所述距离最近的图片之间的置信度、位置参数偏移和姿态参数偏移。
根据本实用新型的一个优选实施例,当使用相位相关法计算得到的置信度低于预设值时,丢弃该距离最近的图片,重新检索与该待定位位置的图片距离最近(不包括被丢弃的图片在内)且置信度高于预设值的图片。当找到距离最近且置信度高于预设值的图片时,利用检索到的图片位置,加上相位相关法的偏移量,就可以得出待定位图片的位置参数,然后更新设备的定位位置,即定位成功。定位成功后,下一次检索的位置就是这个定位位置。
图12是依照本实用新型的至少一些实施例布置的计算机程序产品900的框图。信号承载介质902可以被实现为或者包括计算机可读介质906、计算机可记录介质908、计算机通信介质910或者它们的组合,其存储可配置处理单元以执行先前描述的过程中的全部或一些的编程指令904。这些指令可以包括例如用于使一个或多个处理器执行如下处理的一个或多个可执行指令:建立或获取所述场地的坐标系;扫描所述场地,获取标定点的图片、待定位位置的图片、以及与所述图片对应的位置参数和姿态参数;基于所述标定点的图片、所述待定位位置的图片、所述位置参数和所述姿态参数,修正所述待定位位置的图片的所述位置参数和姿态参数。
虽然前面的详细描述已经通过使用框图、流程图和/或示例阐述了装置和 /或方法的各种示例,但是这样的框图、流程图和/或示例包含一个或多个功能和/或操作,本领域技术人员将理解,这样的框图、流程图或示例内的每个功能和/或操作可用范围广泛的硬件、软件、固件或它们的几乎任何组合单个地和/或共同地来实施。在一个示例中,本文中所述的主题的几个部分可经由专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)或其它集成格式来实施。然而,本领域技术人员将认识到,本文中所公开的示例的一些方面整个地或部分地可在集成电路中被等效地实施,被实施作为在一个或多个计算机上运行的一个或多个计算机程序(例如,在一个或多个计算机系统上运行的一个或多个程序),被实施作为在一个或多个处理器上运行的一个或多个程序(例如,在一个或多个微处理器上运行的一个或多个程序),被实施作为固件,或者被实施作为它们的几乎任何组合,并且根据本公开,设计电路和/或编写用于软件和/或固件的代码将在本领域技术人员的熟练技能内。例如,如果用户确定速度和精度是最重要的,则用户可选择主要硬件和/或固件媒介物;如果灵活性是最重要的,则用户可选择主要软件实施方式;或者,再一次可替代地,用户可选择硬件、软件和/或固件的某一组合。
另外,本领域技术人员将意识到,本文中所述的主题的机制能够以各种形式作为程序产品分布,并且本文中所述的主题的说明性示例不管用于实际实现该分布的信号承载介质的具体类型如何都适用。信号承载介质的示例包括但不限于以下:可记录类型的介质,诸如软盘、硬盘驱动器、压缩盘(CD)、数字视频盘(DVD)、数字带、计算机存储器等;以及传输类型的介质,诸如数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路等)。
本领域技术人员将认识到,以本文中所阐述的方式描述装置和/或方法、其后使用工程实践将这样的所述的装置和/或方法集成到数据处理系统中在本领域内是常见的。也就是说,本文中所述的装置和/或方法的至少一部分可经由合理量的实验被集成到数据处理系统中。本领域技术人员将认识到,典型的数据处理系统一般包括以下中的一个或多个:系统单元壳体、视频显示装置、诸如易失性和非易失性存储器的存储器、诸如微处理器和数字信号处理器的处理器、诸如操作系统的计算实体、驱动器、图形用户界面、以及应用程序、诸如触控板或触摸屏的一个或多个交互装置、和/或包括反馈回路和控制电机(例如,用于感测位置和/或速率的反馈;用于移动和/或调整部件和 /或量的控制电机)的控制系统。典型的数据处理系统可利用任何合适的市售部件来实施,诸如常见于数据计算/通信和/或网络计算/通信系统中的那些。
最后应说明的是:以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
Claims (7)
1.一种用于图像采集的自动引导车,其特征在于,包括:
基座;
配置成可采集所述基座下方的区域的图片的摄像头,所述摄像头安装在所述基座上;
配置成可测量或计算与所述图片对应的所述自动引导车的位置参数以及姿态参数的测量组件,所述测量组件安装在所述基座上,其中所述测量组件是惯性导航测量组件、激光SLAM测量装置和视觉SLAM测量装置中的一种或多种;
安装在所述基座上的配置成控制所述车行进至标记点和待定位位置以采集所述标记点的图片和所述待定位位置的图片的控制装置,所述摄像头和所述测量组件均耦合至所述控制装置;
处理装置,所述处理装置与所述摄像头和所述测量组件耦合。
2.如权利要求1所述的自动引导车,其特征在于,还包括发光装置,所述发光装置安装在所述基座上并配置成可照亮所述基座下方的区域,供所述摄像头采集图片。
3.如权利要求2所述的自动引导车,其特征在于,还包括遮光罩,所述遮光罩安装在所述基座上,用于柔化所述发光装置发出的光线。
4.如权利要求3所述的自动引导车,其特征在于,所述发光装置环绕所述遮光罩安装。
5.如权利要求1或2所述的自动引导车,其特征在于,所述位置参数包括横坐标和纵坐标,所述姿态参数包括航向角。
6.一种图像采集和处理系统,其特征在于,包括:
自动引导车,
基座;
配置成可采集所述基座下方的区域的图片的摄像头,所述摄像头安装在所述基座上;
配置成可测量或计算与所述图片对应的所述自动引导车的位置参数以及姿态参数的测量组件,所述测量组件安装在所述基座上,其中所述测量组件是惯性导航测量组件、激光SLAM测量装置和视觉SLAM测量装置中的一种或多种;
安装在所述基座上的配置成控制所述车行进至标记点和待定位位置以采集所述标记点的图片和所述待定位位置的图片的控制装置,所述摄像头和所述测量组件均耦合至所述控制装置;和
处理装置,所述处理装置与所述摄像头和所述测量组件耦合。
7.如权利要求6所述的图像采集和处理系统,其中所述自动引导车还包括发光装置,所述发光装置安装在所述基座上并配置成可照亮所述基座下方的区域,供所述摄像头采集图片。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/075741 WO2019154435A1 (zh) | 2018-05-31 | 2019-02-21 | 建图方法、图像采集和处理系统和定位方法 |
JP2019531677A JP6977921B2 (ja) | 2018-05-31 | 2019-02-21 | マッピング方法、画像収集処理システム及び測位方法 |
JP2019531456A JP7083472B2 (ja) | 2018-05-31 | 2019-04-25 | 地図構築方法、画像収集処理システムと測位方法 |
PCT/CN2019/084185 WO2019154444A2 (zh) | 2018-05-31 | 2019-04-25 | 建图方法、图像采集和处理系统和定位方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820865300 | 2018-05-31 | ||
CN201820865300X | 2018-05-31 | ||
CN201810551792 | 2018-05-31 | ||
CN201810551792X | 2018-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211668521U true CN211668521U (zh) | 2020-10-13 |
Family
ID=67174769
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201822023605.9U Active CN211668521U (zh) | 2018-05-31 | 2018-12-04 | 用于图像采集的自动引导车、以及图像采集和处理系统 |
CN201811475564.5A Active CN110006420B (zh) | 2018-05-31 | 2018-12-04 | 建图方法、图像采集和处理系统和定位方法 |
CN201910303482.0A Active CN110189331B (zh) | 2018-05-31 | 2019-04-16 | 建图方法、图像采集和处理系统和定位方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811475564.5A Active CN110006420B (zh) | 2018-05-31 | 2018-12-04 | 建图方法、图像采集和处理系统和定位方法 |
CN201910303482.0A Active CN110189331B (zh) | 2018-05-31 | 2019-04-16 | 建图方法、图像采集和处理系统和定位方法 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6977921B2 (zh) |
CN (3) | CN211668521U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006420A (zh) * | 2018-05-31 | 2019-07-12 | 上海快仓智能科技有限公司 | 建图方法、图像采集和处理系统和定位方法 |
CN112835333A (zh) * | 2020-12-31 | 2021-05-25 | 北京工商大学 | 一种基于深度强化学习多agv避障与路径规划方法及系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112150907A (zh) * | 2019-10-23 | 2020-12-29 | 王博 | 一种基于地球纹理构建地图的方法及应用 |
CN112070810B (zh) * | 2020-08-31 | 2024-03-22 | 安徽爱观视觉科技有限公司 | 定位方法、可移动设备及计算机可读存储介质 |
CN112465912B (zh) * | 2020-11-18 | 2024-03-29 | 新拓三维技术(深圳)有限公司 | 一种立体相机标定方法及装置 |
CN112612788B (zh) * | 2020-12-11 | 2024-03-01 | 中国北方车辆研究所 | 一种无导航卫星信号下的自主定位方法 |
CN113029168B (zh) * | 2021-02-26 | 2023-04-07 | 杭州海康机器人股份有限公司 | 基于地面纹理信息的地图构建方法和系统及移动机器人 |
JP7511518B2 (ja) | 2021-04-07 | 2024-07-05 | 三菱ロジスネクスト株式会社 | 移動体の制御方法、移動体及びプログラム |
CN115761311B (zh) * | 2022-11-03 | 2023-07-07 | 广东科力新材料有限公司 | Pvc钙锌稳定剂的性能检测数据分析方法及系统 |
CN118172420A (zh) * | 2024-04-22 | 2024-06-11 | 数字鲸鱼(山东)能源科技有限公司 | 一种矩阵摄影棚摄像头定位信息快速获取的方法 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004151085A (ja) * | 2002-09-27 | 2004-05-27 | Canon Inc | 情報処理方法及び情報処理装置 |
US7177737B2 (en) * | 2002-12-17 | 2007-02-13 | Evolution Robotics, Inc. | Systems and methods for correction of drift via global localization with a visual landmark |
EP1590915A4 (en) * | 2003-01-24 | 2010-05-19 | Coco Communications Corp | METHOD AND DEVICE FOR SAFE COMMUNICATION AND JOINT USE OF AGENTS BETWEEN ANONYMS, NON-TRUSTING PARTICIPANTS WITHOUT CENTRAL ADMINISTRATION |
CN101566471B (zh) * | 2007-01-18 | 2011-08-31 | 上海交通大学 | 基于地面纹理的智能车视觉全局定位方法 |
CN101354441A (zh) * | 2008-09-11 | 2009-01-28 | 上海交通大学 | 全天候运行的移动机器人定位系统 |
CN102201052B (zh) * | 2010-03-26 | 2015-08-19 | 新奥特(北京)视频技术有限公司 | 一种篮球广播视频中场地检测的方法 |
CN102324102B (zh) * | 2011-10-08 | 2014-04-16 | 北京航空航天大学 | 一种图像场景空洞区域结构和纹理信息自动填补方法 |
CN102692188B (zh) * | 2012-05-08 | 2014-11-12 | 浙江工业大学 | 机械视觉疲劳裂纹扩展试验裂纹长度动态测量方法 |
WO2014003596A1 (en) * | 2012-06-26 | 2014-01-03 | Schlumberger, Holdings Limited | A method for building a 3d model of a rock sample |
CN102866397B (zh) * | 2012-10-12 | 2014-10-01 | 中国测绘科学研究院 | 一种多源异构遥感影像联合定位方法 |
CN103955550B (zh) * | 2012-11-12 | 2018-04-24 | 罗克韦尔自动化技术公司 | 用于人机接口动画图形元素的计算机辅助设计的方法及装置 |
EP3077619B1 (en) * | 2013-12-05 | 2018-10-24 | Services Petroliers Schlumberger | Digital core model construction |
US11125880B2 (en) * | 2014-12-09 | 2021-09-21 | Basf Se | Optical detector |
CN104732545B (zh) * | 2015-04-02 | 2017-06-13 | 西安电子科技大学 | 结合稀疏近邻传播和快速谱聚类的纹理图像分割方法 |
CN104835173B (zh) * | 2015-05-21 | 2018-04-24 | 东南大学 | 一种基于机器视觉的定位方法 |
CN105043383A (zh) * | 2015-07-10 | 2015-11-11 | 哈尔滨医科大学 | 一种姿态矫正方法及装置 |
CN105389819B (zh) * | 2015-11-13 | 2019-02-01 | 武汉工程大学 | 一种鲁棒的半标定下视图像极线校正方法及系统 |
US10108779B2 (en) * | 2015-12-15 | 2018-10-23 | Leica Biosystems Imaging, Inc. | Automatic nuclear segmentation |
CN105426872B (zh) * | 2015-12-17 | 2019-06-21 | 电子科技大学 | 一种基于相关高斯过程回归的面部年龄估计方法 |
CN105444741B (zh) * | 2015-12-17 | 2018-08-28 | 南京航空航天大学 | 基于双视野窗口的路径特征识别、偏差测量与精确定位方法 |
CN106289285A (zh) * | 2016-08-20 | 2017-01-04 | 南京理工大学 | 一种关联场景的机器人侦察地图及构建方法 |
CN107918499B (zh) * | 2016-10-09 | 2022-09-06 | 北京墨土科技有限公司 | 光学定位系统及方法、定位用光学观测设备 |
CN106767854B (zh) * | 2016-11-07 | 2020-05-22 | 纵目科技(上海)股份有限公司 | 移动设备、车库地图形成方法及系统 |
CN106714110B (zh) * | 2017-01-19 | 2020-03-31 | 深圳大学 | 一种Wi-Fi位置指纹地图自动构建方法及系统 |
CN107146255A (zh) * | 2017-04-05 | 2017-09-08 | 纵目科技(上海)股份有限公司 | 全景图像误差校正方法及装置 |
CN107103293B (zh) * | 2017-04-13 | 2019-01-29 | 西安交通大学 | 一种基于相关熵的注视点估计方法 |
CN106996777B (zh) * | 2017-04-21 | 2019-02-12 | 合肥井松自动化科技有限公司 | 一种基于地面图像纹理的视觉导航方法 |
CN107392848A (zh) * | 2017-06-14 | 2017-11-24 | 江西科技师范大学 | 全景图像显示方法和装置 |
CN107607110A (zh) * | 2017-07-29 | 2018-01-19 | 刘儿兀 | 一种基于图像和惯导技术的定位方法及系统 |
CN107492105A (zh) * | 2017-08-11 | 2017-12-19 | 深圳市旭东数字医学影像技术有限公司 | 一种基于多统计信息的变分分割方法 |
CN107966638B (zh) * | 2017-12-29 | 2020-09-11 | 国网北京市电力公司 | 校正误差的方法和装置、存储介质及处理器 |
CN211668521U (zh) * | 2018-05-31 | 2020-10-13 | 上海快仓智能科技有限公司 | 用于图像采集的自动引导车、以及图像采集和处理系统 |
-
2018
- 2018-12-04 CN CN201822023605.9U patent/CN211668521U/zh active Active
- 2018-12-04 CN CN201811475564.5A patent/CN110006420B/zh active Active
-
2019
- 2019-02-21 JP JP2019531677A patent/JP6977921B2/ja active Active
- 2019-04-16 CN CN201910303482.0A patent/CN110189331B/zh active Active
- 2019-04-25 JP JP2019531456A patent/JP7083472B2/ja active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006420A (zh) * | 2018-05-31 | 2019-07-12 | 上海快仓智能科技有限公司 | 建图方法、图像采集和处理系统和定位方法 |
CN110006420B (zh) * | 2018-05-31 | 2024-04-23 | 上海快仓智能科技有限公司 | 建图方法、图像采集和处理系统和定位方法 |
CN112835333A (zh) * | 2020-12-31 | 2021-05-25 | 北京工商大学 | 一种基于深度强化学习多agv避障与路径规划方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110189331A (zh) | 2019-08-30 |
CN110006420B (zh) | 2024-04-23 |
JP2020530598A (ja) | 2020-10-22 |
JP2020532775A (ja) | 2020-11-12 |
CN110189331B (zh) | 2022-08-05 |
JP7083472B2 (ja) | 2022-06-13 |
JP6977921B2 (ja) | 2021-12-08 |
CN110006420A (zh) | 2019-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211668521U (zh) | 用于图像采集的自动引导车、以及图像采集和处理系统 | |
CN102538779B (zh) | 机器人系统以及地图更新方法 | |
CN112964276B (zh) | 一种基于激光和视觉融合的在线标定方法 | |
CN111121754A (zh) | 移动机器人定位导航方法、装置、移动机器人及存储介质 | |
CN111310840B (zh) | 数据融合处理方法、装置、设备和存储介质 | |
US20210252700A1 (en) | Hybrid visual servoing method based on fusion of distance space and image feature space | |
CN111862215B (zh) | 一种计算机设备定位方法、装置、计算机设备和存储介质 | |
CN116091724A (zh) | 一种建筑数字孪生建模方法 | |
CN109145902B (zh) | 一种利用泛化特征对几何标识进行识别及定位的方法 | |
CN111060131A (zh) | 一种基于激光雷达的机器人精确姿态矫正方法及装置 | |
CN112697153B (zh) | 自主移动设备的定位方法、电子设备及存储介质 | |
CN111612851B (zh) | 用于标定相机的方法、装置、设备以及存储介质 | |
CN112530010A (zh) | 数据获取方法和系统 | |
CN113218392A (zh) | 室内定位导航方法及导航装置 | |
CN111343565B (zh) | 定位方法及终端设备 | |
CN112419402A (zh) | 一种基于多光谱影像和激光点云的定位方法及系统 | |
CN117824667A (zh) | 一种基于二维码和激光的融合定位方法及介质 | |
WO2019154435A1 (zh) | 建图方法、图像采集和处理系统和定位方法 | |
KR20210010309A (ko) | 항공사진을 이용하여 3차원 지도를 생성하는 장치 및 방법 | |
US20230288526A1 (en) | Beacon map construction method, device, and computer-readable storage medium | |
CN115166701B (zh) | 一种rgb-d相机和激光雷达的系统标定方法及装置 | |
CN112945266A (zh) | 激光导航机器人及其机器人的里程计校准方法 | |
CN115597600A (zh) | 基于视觉识别的机器人导航方法、导航机器人及介质 | |
CN113561181A (zh) | 目标检测模型的更新方法、装置及系统 | |
EP4136516A1 (en) | Systems and methods for mobile aerial flight planning and image capturing based on structure footprints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: No. 210-69 Yangmuqiao, Huangxiang Street, Liangxi District, Wuxi City, Jiangsu Province Patentee after: Wuxi Kuaicang Intelligent Technology Co.,Ltd. Country or region after: China Address before: Room 1030, Zone B, Room 1205, No. 968 Memorial Road, Baoshan District, Shanghai Patentee before: SHANGHAI QUICKTRON INTELLIGENT TECHNOLOGY Co.,Ltd. Country or region before: China |