CN219266827U - DDS-based dual-channel radar arbitrary waveform signal generator - Google Patents
DDS-based dual-channel radar arbitrary waveform signal generator Download PDFInfo
- Publication number
- CN219266827U CN219266827U CN202320303506.4U CN202320303506U CN219266827U CN 219266827 U CN219266827 U CN 219266827U CN 202320303506 U CN202320303506 U CN 202320303506U CN 219266827 U CN219266827 U CN 219266827U
- Authority
- CN
- China
- Prior art keywords
- module
- waveform
- chip
- output
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000013461 design Methods 0.000 abstract description 31
- 230000006870 function Effects 0.000 abstract description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 4
- 239000003990 capacitor Substances 0.000 description 56
- 238000010586 diagram Methods 0.000 description 12
- 238000011161 development Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Manipulation Of Pulses (AREA)
Abstract
本实用新型涉及雷达波形产生技术领域,尤其涉及基于DDS的双通道雷达任意波形信号发生器。包括:控制模块、时钟模块、波形产生模块、滤波输出模块、接口模块和电源模块。本实用新型通过FPGA控制两片AD9910芯片可实现400MHz频率下的双通道任意波形输出,信号经过低通滤波电路后,输出波形质量良好。且整体设计输出波形种类多样、设计结构简单、操作灵活、通用性强,可实现多种雷达背景下的信号产生功能。
The utility model relates to the technical field of radar waveform generation, in particular to a DDS-based dual-channel radar arbitrary waveform signal generator. Including: control module, clock module, waveform generation module, filter output module, interface module and power supply module. The utility model controls two AD9910 chips by FPGA to realize dual-channel arbitrary waveform output at a frequency of 400MHz, and the output waveform quality is good after the signal passes through a low-pass filter circuit. Moreover, the overall design has a variety of output waveforms, a simple design structure, flexible operation, and strong versatility, and can realize signal generation functions under various radar backgrounds.
Description
技术领域technical field
本实用新型涉及雷达波形产生技术领域,尤其涉及基于DDS的双通道雷达任意波形信号发生器。The utility model relates to the technical field of radar waveform generation, in particular to a DDS-based dual-channel radar arbitrary waveform signal generator.
背景技术Background technique
随着雷达技术的不断发展,各式雷达层出不穷,并继续在军事及民用中发挥着重要作用。雷达信号发生器作为雷达系统中的重要组件,其研发的性能质量直接影响了雷达对于目标探测结果的准确性。根据雷达的不同应用场景,所需产生的雷达波形要求各不相同。根据雷达波形要求,雷达信号发生器需要进行特别定制,致使雷达研发周期长,研发成本高。因此能够研制一款产生任意波形的通用型雷达信号发生器是非常有意义的。With the continuous development of radar technology, various radars emerge in an endless stream, and continue to play an important role in military and civilian applications. As an important component in the radar system, the radar signal generator's performance quality directly affects the accuracy of the radar's target detection results. According to different application scenarios of radar, the requirements of radar waveforms to be generated are different. According to the radar waveform requirements, the radar signal generator needs to be specially customized, resulting in a long radar development cycle and high development costs. Therefore, it is very meaningful to develop a general-purpose radar signal generator that can generate arbitrary waveforms.
一直以来,对于雷达信号波形发生器的研究非常火热。例如,2005年,电子科技大学雷晓华发表的论文中采用FPGA控制AD9854设计了一款LFMCW雷达波形发生器,通过两片AD9854分别产生LFMCW雷达波形信号及雷达目标回波模拟信号。但由于系统设计中的波形数据是预先计算并存储到ROM中的,而非采用专门的波形数据运算电路来实时的产生,因此,该波形发生器输出的波形种类有限,只能用于产生线性调频连续波信号。For a long time, the research on radar signal waveform generator has been very hot. For example, in 2005, Lei Xiaohua of the University of Electronic Science and Technology of China published a paper using FPGA to control AD9854 to design a LFMCW radar waveform generator, and two AD9854s were used to generate LFMCW radar waveform signals and radar target echo analog signals respectively. However, since the waveform data in the system design is pre-calculated and stored in the ROM, instead of being generated in real time by a special waveform data operation circuit, the types of waveforms output by the waveform generator are limited and can only be used to generate linear FM continuous wave signal.
2009年,西安电子科技大学刘祿祿发表的论文中采用FPGA控制AD9854芯片设计出一种高精度、高纯度的实用数字频率合成信号发生器。以软、硬件结合的实现方法,实现系统波形输出,使系统灵活性大大提高,但由于AD9854芯片本身所固有的ROM的容量、D/A转换器的非理想特性、输出频率上限值等约束,使得系统波形输出杂散较大。In 2009, Liu Lulu of Xidian University used FPGA to control AD9854 chip to design a high-precision, high-purity practical digital frequency synthesis signal generator in a paper published. The combination of software and hardware realizes the system waveform output, which greatly improves the system flexibility. However, due to the constraints of the inherent ROM capacity of the AD9854 chip itself, the non-ideal characteristics of the D/A converter, and the upper limit of the output frequency, etc. , making the system waveform output spurs larger.
2011年,电子科技大学徐庆发表论文《Ka波段雷达中频信号源模块的设计与实现》中提供了一种基于DDS芯片AD9910、锁相环、倍频器等元件的频率合成方案,用于产生点频和扫频信号。该方案先通过FPGA控制AD9910芯片产生中频信号,在通过后续倍频电路将信号频率被倍频到Ka波段。但该方案设计仅使用到AD9910芯片的单频和数字斜坡两种工作模式,产生的波形种类较为单一,不能产生任意波形信号。In 2011, Xu Qing of the University of Electronic Science and Technology of China published a paper "Design and Implementation of Ka-band Radar Intermediate Frequency Signal Source Module", which provided a frequency synthesis scheme based on DDS chip AD9910, phase-locked loop, frequency multiplier and other components to generate Spot and sweep signals. In this scheme, the FPGA controls the AD9910 chip to generate an intermediate frequency signal, and then the signal frequency is multiplied to the Ka band through the subsequent frequency multiplication circuit. However, the design of this scheme only uses the single-frequency and digital ramp modes of the AD9910 chip, and the types of waveforms generated are relatively single, and arbitrary waveform signals cannot be generated.
2015年,西安电子科技大学汪世友发表论文《多功能MIMO雷达信号源的设计与实现》中提供了一种基于多片AD9910产生的多通道波形输出设计方案。主要输出波形为线性调频信号和二相编码信号。通过以太网接收波形参数并解析,通过FPGA控制多片AD9910芯片输出多通道波形。论文中提供的滤波输出电路是使用集成的低通滤波芯片SCLF-380和功率放大芯片ADL5536进行波形滤波和放大。In 2015, Wang Shiyou of Xidian University published a paper "Design and Realization of Multifunctional MIMO Radar Signal Source", which provided a multi-channel waveform output design scheme based on multi-chip AD9910. The main output waveforms are linear frequency modulation signal and bi-phase coded signal. Receive and analyze waveform parameters through Ethernet, and control multiple AD9910 chips to output multi-channel waveforms through FPGA. The filter output circuit provided in the thesis uses the integrated low-pass filter chip SCLF-380 and the power amplifier chip ADL5536 for waveform filtering and amplification.
2018年,申请公布号为CN 209375583 U,名称为《一种300MHz正弦波信号发生电路》的专利申请,公开了一种基于单片机和AD9910芯片的信号发生器设计架构。首先,该设计方式通过STM32F103RGT6芯片控制DDS芯片可以实现300MHz以下频率的正弦波波形输出。该单片机设计电路结构简单,成本较低,但其由于单片机管脚数目限制,此种方法只能设计单通道波形输出,且使用单片机作为核心控制模块对于波形切换和数据处理的速度会受到限制。且该设计方法进用于产生正弦波信号,输出信号波形种类单一。In 2018, the application publication number is CN 209375583 U, and the patent application titled "A 300MHz Sine Wave Signal Generating Circuit" discloses a signal generator design architecture based on a single-chip microcomputer and AD9910 chip. First of all, this design method controls the DDS chip through the STM32F103RGT6 chip to achieve a sine wave output with a frequency below 300MHz. The design circuit structure of the single-chip microcomputer is simple and the cost is low. However, due to the limitation of the number of pins of the single-chip microcomputer, this method can only design a single-channel waveform output, and the use of the single-chip microcomputer as the core control module will limit the speed of waveform switching and data processing. Moreover, the design method is further used to generate a sine wave signal, and the output signal waveform has a single type.
2021年,电子科技大学张宏发表的论文《一种多功能雷达信号发生器的设计与研制》中提供了一种通过上位机接收波形命令,通过FPGA控制AD9910产生雷达多种波形输出的设计方案。其方案输出波形频率范围在160MHz以内,输出波形种类可根据上位机要求进行调制。该设计方法输出波形比较灵活,但由于该方案设计滤波电路为通带频率160MHz,阻带衰减70dB的椭圆滤波电路,其输出波形的频率范围受滤波电路影响较为有限。且该设计方案接收上位机的波形控制命令为串口接收。In 2021, the paper "Design and Development of a Multifunctional Radar Signal Generator" published by Zhang Hong of the University of Electronic Science and Technology of China provides a design scheme for receiving waveform commands through the host computer and controlling AD9910 through FPGA to generate multiple radar waveform outputs. . The output waveform frequency range of the scheme is within 160MHz, and the output waveform type can be modulated according to the requirements of the host computer. The output waveform of this design method is relatively flexible, but because the filter circuit designed in this scheme is an elliptic filter circuit with a passband frequency of 160MHz and a stopband attenuation of 70dB, the frequency range of the output waveform is relatively limited by the filter circuit. And the design scheme receives the waveform control command of the upper computer as serial port reception.
即现有技术中,产生的雷达波形种类较为单一,不能产生任意波形信号。That is, in the prior art, the types of radar waveforms generated are relatively single, and arbitrary waveform signals cannot be generated.
发明内容Contents of the invention
为至少在一定程度上克服相关技术中产生的雷达波形种类较为单一,不能产生任意波形信号的问题,本实用新型提供基于DDS的双通道雷达任意波形信号发生器。In order to overcome at least to a certain extent the problem that the types of radar waveforms generated in the related art are relatively single and cannot generate arbitrary waveform signals, the utility model provides a dual-channel radar arbitrary waveform signal generator based on DDS.
本实用新型的方案如下:The scheme of the present utility model is as follows:
本实用新型提供基于DDS的双通道雷达任意波形信号发生器,包括:The utility model provides a DDS-based dual-channel radar arbitrary waveform signal generator, including:
控制模块、时钟模块、波形产生模块、滤波输出模块、接口模块和电源模块;Control module, clock module, waveform generation module, filter output module, interface module and power module;
其中,所述接口模块用于生成波形命令及任意波形数据;Wherein, the interface module is used to generate waveform commands and arbitrary waveform data;
所述控制模块用于接收来自所述接口模块的波形命令及任意波形数据,并对所述波形命令及任意波形数据进行解析处理,输出波形状态参数传递到所述波形产生模块中;The control module is used to receive the waveform command and arbitrary waveform data from the interface module, analyze and process the waveform command and arbitrary waveform data, and output the waveform state parameters to the waveform generation module;
所述波形产生模块接收来自所述控制模块传输的波形状态参数,并输出模拟信号传递到所述滤波输出模块;The waveform generation module receives the waveform state parameters transmitted from the control module, and outputs an analog signal to the filter output module;
所述滤波输出模块接收所述波形产生模块输出的模拟信号,经过所述滤波输出模块中的滤波输出电路进行处理,输出中频输出信号;The filter output module receives the analog signal output by the waveform generation module, processes it through the filter output circuit in the filter output module, and outputs an intermediate frequency output signal;
所述电源模块分别与所述控制模块、时钟模块、波形产生模块、滤波输出模块和接口模块电气连接;所述电源模块用于为所述控制模块、时钟模块、波形产生模块、滤波输出模块和接口模块供电;The power supply module is electrically connected to the control module, clock module, waveform generation module, filter output module and interface module respectively; the power supply module is used for the control module, clock module, waveform generation module, filter output module and Interface module power supply;
所述时钟模块与所述控制模块电气连接。The clock module is electrically connected with the control module.
进一步地,所述控制模块,包括:产品型号XC7Z015的FPGA芯片和双核ARM Cortex-A9处理器。Further, the control module includes: an FPGA chip of product model XC7Z015 and a dual-core ARM Cortex-A9 processor.
进一步地,所述波形产生模块,包括:两片DDS芯片,所述DDS芯片的产品型号为:AD9910。Further, the waveform generation module includes: two DDS chips, and the product model of the DDS chips is AD9910.
进一步地,所述时钟模块,包括:时钟芯片,所用时钟芯片的产品型号为ADCLK950。Further, the clock module includes: a clock chip, and the product model of the clock chip used is ADCLK950.
进一步地,所述接口模块,包括:PHY芯片和UART串口电平转换芯片,所述PHY芯片的产品型号为:88E1111。Further, the interface module includes: a PHY chip and a UART serial port level conversion chip, and the product model of the PHY chip is: 88E1111.
进一步地,所述接口模块,还包括:Further, the interface module also includes:
与上位机接口通信包括:串口通信及以太网通信两种方式;Communication with the host computer interface includes: serial port communication and Ethernet communication;
其中,串口通信通过芯片MAX3490EESA将差分信号转为单端信号,再通过电平转换芯片SN74AVC4T245PWR进行电平转换连接至FPGA引脚;以太网通信将接口信号通过变压器HX5004NL转换后通过PHY芯片88E1111与FPGA的PS端相连。Among them, the serial port communication converts the differential signal into a single-ended signal through the chip MAX3490EESA, and then performs level conversion through the level conversion chip SN74AVC4T245PWR to connect to the FPGA pin; the Ethernet communication converts the interface signal through the transformer HX5004NL and then passes the PHY chip 88E1111 and FPGA The PS side is connected.
进一步地,所述电源模块,包括:产品型号为LTM4644的降压型微型模块稳压器。Further, the power module includes: a step-down micro-module voltage regulator whose product model is LTM4644.
进一步地,所述滤波输出模块,包括:低通滤波电路,所述低通滤波电路的频率为400MHz。Further, the filter output module includes: a low-pass filter circuit, and the frequency of the low-pass filter circuit is 400MHz.
本实用新型提供的技术方案可以包括以下有益效果:The technical solution provided by the utility model can include the following beneficial effects:
本实用新型通过FPGA控制两片AD9910芯片可实现400MHz频率下的双通道任意波形输出,信号经过低通滤波电路后,输出波形质量良好。且整体设计输出波形种类多样、设计结构简单、操作灵活、通用性强,可实现多种雷达背景下的信号产生功能。The utility model controls two AD9910 chips through the FPGA to realize dual-channel arbitrary waveform output at a frequency of 400 MHz, and the output waveform quality is good after the signal passes through a low-pass filter circuit. Moreover, the overall design output waveforms are diverse, the design structure is simple, the operation is flexible, and the versatility is strong, which can realize the signal generation function under various radar backgrounds.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本实用新型。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present invention.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本实用新型的实施例,并与说明书一起用于解释本实用新型的原理。The accompanying drawings, which are incorporated in the specification and constitute a part of the specification, illustrate embodiments consistent with the present utility model, and are used together with the specification to explain the principle of the utility model.
图1是本实用新型一个实施例提供的基于DDS的双通道雷达任意波形信号发生器的结构组成示意图;Fig. 1 is the structural composition schematic diagram of the dual-channel radar arbitrary waveform signal generator based on DDS that an embodiment of the present invention provides;
图2为本实用新型的系统设计架构图;Fig. 2 is a system design architecture diagram of the present utility model;
图3为本实用新型中FPGA与AD9910连接示意图;Fig. 3 is FPGA and AD9910 connection schematic diagram among the utility model;
图4为本实用新型中系统设计硬件框图;Fig. 4 is a block diagram of system design hardware in the utility model;
图5为本实用新型中波形滤波模块电路图;Fig. 5 is the circuit diagram of the waveform filter module in the utility model;
图6为本实用新型中网口PHY芯片管脚接口图;Fig. 6 is the pin interface diagram of the network port PHY chip of the utility model;
图7为本实用新型中时钟电路设计图;Fig. 7 is clock circuit design diagram in the utility model;
图8为本实用新型中电源电路设计图;Fig. 8 is a design diagram of the power supply circuit in the utility model;
图9为本实用新型中FPGA与AD9910连接电路图;Fig. 9 is the connection circuit diagram of FPGA and AD9910 in the utility model;
图10为本实用新型中FPGA与PHY芯片连接电路图;Fig. 10 is the connection circuit diagram of FPGA and PHY chip in the utility model;
图11为本实用新型中两片AD9910的外围电路图。Fig. 11 is the peripheral circuit diagram of two AD9910 in the utility model.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本实用新型相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本实用新型的一些方面相一致的装置和方法的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the present invention. Rather, they are merely examples of devices and methods consistent with aspects of the invention as recited in the appended claims.
实施例一Embodiment one
请参阅图1,图1是本实用新型一个实施例提供的基于DDS的双通道雷达任意波形信号发生器的结构组成示意图,包括:Please refer to Fig. 1. Fig. 1 is a schematic diagram of the structural composition of a DDS-based dual-channel radar arbitrary waveform signal generator provided by an embodiment of the present invention, including:
控制模块20、时钟模块50、波形产生模块30、滤波输出模块40、接口模块10和电源模块60;
其中,所述接口模块10用于生成波形命令及任意波形数据;Wherein, the
所述控制模块20用于接收来自所述接口模块10的波形命令及任意波形数据,并对所述波形命令及任意波形数据进行解析处理,输出波形状态参数传递到所述波形产生模块30中;The
所述波形产生模块30接收来自所述控制模块20传输的波形状态参数,并输出模拟信号传递到所述滤波输出模块40;The
所述滤波输出模块40接收所述波形产生模块30输出的模拟信号,经过所述滤波输出模块40中的滤波输出电路进行处理,输出中频输出信号;The filter output module 40 receives the analog signal output by the
所述电源模块60分别与所述控制模块20、时钟模块50、波形产生模块30、滤波输出模块40和接口模块10电气连接;所述电源模块60用于为所述控制模块20、时钟模块50、波形产生模块30、滤波输出模块40和接口模块10供电;The power supply module 60 is electrically connected with the
所述时钟模块50与所述控制模块20电气连接。The clock module 50 is electrically connected to the
在具体实施时,请参阅图2和图4,所述发生器包括相互电气连接的控制电路、波形产生电路、滤波输出电路与通信接口电路,其中,所述控制电路用于接收来自所述通信接口电路的上位机波形数据及波形控制命令,通过解析处理后将需要输出的波形状态参数传递于所述波形产生电路;所述波形产生电路输出的模拟信号连接到所述滤波输出电路,信号波形经所述滤波输出电路处理后变为质量良好的中频输出信号,连接到最终的模拟输出端进行波形输出。In specific implementation, please refer to Figure 2 and Figure 4, the generator includes a control circuit electrically connected to each other, a waveform generation circuit, a filter output circuit and a communication interface circuit, wherein the control circuit is used to receive information from the communication The host computer waveform data and waveform control commands of the interface circuit, after analysis and processing, the waveform state parameters to be output are transferred to the waveform generation circuit; the analog signal output by the waveform generation circuit is connected to the filter output circuit, and the signal waveform After being processed by the filter output circuit, it becomes an intermediate frequency output signal with good quality, which is connected to the final analog output terminal for waveform output.
需要指出的是,本实用新型中的控制模块20核心为FPGA芯片,其具有以太网和串口多种外部通信交互方式。FPGA可接收上位机传送的波形控制命令,也可接收来自上位机传送的任意波形数据。FPGA接收到的命令或波形数据进行解析之后控制DDS芯片的波形输出。进一步地,FPGA芯片选型为XC7Z015,其内部组合了一个双核ARM Cortex-A9处理器和一个传统的现场可编程门阵列(FPGA)逻辑部件,可作为控制模块20的核心组件。It should be pointed out that the core of the
另一方面,本实用新型的波形产生模块30包含两片DDS芯片,DDS芯片选型为AD9910。AD9910是一款具有14位DAC,最高采样频率支持1GHz,频率分辨率达0.23Hz,输出波形频率高达400MHz的高性能DDS芯片。其内部配备有四种工作模式:单频调制模式、RAM调制模式、线性斜坡调制模式及并行数据端口模式。On the other hand, the
进一步的,请参阅图10和图11,本实用新型的所述波形产生电路包括芯片AD9910_1、芯片AD9910_2、电阻R1、电阻R2、电阻R5、电阻R7、电阻R9、电阻R12、电阻R15、电阻R18、电阻R19、电阻R22、电阻R24、电阻R29、电容C1、电容C2、电容C3、电容C4、电容C13、电容C14、电容C15、电容C16、发光二极管D1、发光二极管D2、发光二极管D3以及发光二极管D4;电阻R1和电阻R18一端分别连接AD9910_1和AD9910_2的MASTER_RESET引脚,另一端均与地相连;电阻R2和电阻R19的一端分别与AD9910_1和AD9910_2的SYNC_SMP_ERR引脚相连,另一端分别与发光二极管D1和发光二极管D3相连,发光二极管D1和发光二极管D3的另一端均接地;芯片AD9910_1和芯片AD9910_2的PLL_LOOP_FILTER引脚分别连接电容C1、电容C2和电容C13、电容C14,电容C2和电容C14的另一端分别串接电阻R5和电阻R22,电容C1、电容C13、电阻R5和电阻R22的另一端均连接模拟电源1.8V;芯片AD9910_1的REF_CLK+和REF_CLK-引脚分别连接电容C3和电容C4,电容C3和电容C4的另一端分别连接到参考时钟输入的P端和N端;芯片AD9910_2的REF_CLK+和REF_CLK-引脚分别连接电容C15和电容C16,电容C15和电容C16的另一端分别连接到参考时钟输入的P端和N端;芯片AD9910_1和芯片AD9910_2的XTAL_SEL引脚分别通过电阻R7和电阻R24接地;芯片AD9910_1和芯片AD9910_2的PLL_LOCK引脚分别通过电阻R9和电阻R26串接发光二极管D3和发光二极管D4接地;芯片AD9910_1和芯片AD9910_2的DAC_RSET引脚分别通过电阻R12和电阻R29接地;芯片AD9910_1和芯片AD9910_2的DGND和AGND引脚接地,DVDD33_I/O引脚接数字电源3.3V,DVDD18引脚接数字电源1.8V,AVDD18接模拟电源1.8V,AVDD33接模拟电源3.3V。Further, referring to Fig. 10 and Fig. 11, the waveform generating circuit of the present invention includes chip AD9910_1, chip AD9910_2, resistor R1, resistor R2, resistor R5, resistor R7, resistor R9, resistor R12, resistor R15, resistor R18 , resistor R19, resistor R22, resistor R24, resistor R29, capacitor C1, capacitor C2, capacitor C3, capacitor C4, capacitor C13, capacitor C14, capacitor C15, capacitor C16, light emitting diode D1, light emitting diode D2, light emitting diode D3 and light emitting diode Diode D4; one end of resistor R1 and resistor R18 are respectively connected to the MASTER_RESET pin of AD9910_1 and AD9910_2, and the other end is connected to the ground; one end of resistor R2 and resistor R19 are respectively connected to the SYNC_SMP_ERR pin of AD9910_1 and AD9910_2, and the other end is respectively connected to the light-emitting diode D1 is connected to light-emitting diode D3, and the other ends of light-emitting diode D1 and light-emitting diode D3 are grounded; the PLL_LOOP_FILTER pins of chip AD9910_1 and chip AD9910_2 are respectively connected to capacitor C1, capacitor C2, capacitor C13, capacitor C14, and the other end of capacitor C2 and capacitor C14 Resistor R5 and resistor R22 are connected in series at one end, and the other end of capacitor C1, capacitor C13, resistor R5 and resistor R22 are connected to analog power supply 1.8V; the REF_CLK+ and REF_CLK- pins of chip AD9910_1 are respectively connected to capacitor C3 and capacitor C4, capacitor C3 and the other end of capacitor C4 are respectively connected to the P terminal and N terminal of the reference clock input; the REF_CLK+ and REF_CLK- pins of the chip AD9910_2 are respectively connected to the capacitor C15 and the capacitor C16, and the other ends of the capacitor C15 and the capacitor C16 are respectively connected to the reference clock input The P terminal and N terminal of the chip AD9910_1 and the chip AD9910_2 are grounded through the resistor R7 and the resistor R24 respectively; the PLL_LOCK pins of the chip AD9910_1 and the chip AD9910_2 are respectively connected in series with the light-emitting diode D3 and the light-emitting diode D4 through the resistor R9 and the resistor R26 Grounding; DAC_RSET pins of chip AD9910_1 and chip AD9910_2 are grounded through resistor R12 and resistor R29 respectively; DGND and AGND pins of chip AD9910_1 and chip AD9910_2 are grounded, DVDD33_I/O pin is connected to digital power supply 3.3V, DVDD18 pin is connected to digital power supply 1.8V, AVDD18 is connected to analog power supply 1.8V, AVDD33 is connected to analog power supply 3.3V.
进一步的,请参阅图5,本实用新型的所述滤波输出电路包括电阻R10、电阻R11、电阻R13、电阻R14、电阻R27、电阻R28、电阻R30、电阻R31、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电容C11、电容C12、电容C17、电容C18、电容C19、电容C20、电容C21、电容C22、电容C23、电容C24、电感L1、电感L2、电感L3、电感L4、电感L5、电感L6、巴伦变压器U34、巴伦变压器U36、SMA接口U3、SMA接口U5;电阻R10和电阻R28的两端分别与芯片AD9910_1和芯片AD9910_2的IOUT+和IOUT-引脚相连;芯片AD9910_1的IOUT+引脚串接电阻R13后接地,IOUT-引脚串接电阻R14后接地;芯片AD9910_2的IOUT+引脚串接电阻R30后接地,IOUT-引脚串接电阻R31后接地;巴伦变压器U34的引脚4连接芯片AD9910_1的IOUT+,引脚6连接芯片AD9910_1的IOUT-,引脚2连接模拟地,引脚3连接电阻R11,引脚1连接模拟地,引脚5悬空;巴伦变压器U36的引脚4连接芯片AD9910_2的IOUT+,引脚6连接芯片AD9910_2的IOUT-,引脚2连接模拟地,引脚3连接电阻R27,引脚1连接模拟地,引脚5悬空;电感L1一端连接电阻R11,另一端连接电感L2,电感L2一端连接电感L1,另一端连接电感L3,电感L3一端连接电感L2,另一端连接SMA模拟输出接口U3;电感L6一端连接电阻R11,另一端连接电感L4,电感L4一端连接电感L6,另一端连接电感L5,电感L5一端连接电感L4,另一端连接SMA模拟输出接口U5;电容C5和电容C6一端连接电阻R11,另一端接模拟地;电容C7和电容C8一端连接电感L1,另一端接模拟地;电容C9和电容C10一端连接电感L2,另一端接模拟地;电容C11和电容C12一端连接电感L3,另一端接模拟地;电容C17和电容C18一端连接电阻R27,另一端接模拟地;电容C19和电容C20一端连接电感L6,另一端接模拟地;电容C21和电容C22一端连接电感L4,另一端接模拟地;电容C23和电容C24一端连接电感L5,另一端接模拟地;SMA接口U3和接口U5分别作为芯片AD9910_1和芯片AD9910_2的模拟波形输出接口。Further, please refer to Fig. 5, the filter output circuit of the present invention includes resistor R10, resistor R11, resistor R13, resistor R14, resistor R27, resistor R28, resistor R30, resistor R31, capacitor C5, capacitor C6, capacitor C7 , capacitor C8, capacitor C9, capacitor C10, capacitor C11, capacitor C12, capacitor C17, capacitor C18, capacitor C19, capacitor C20, capacitor C21, capacitor C22, capacitor C23, capacitor C24, inductance L1, inductance L2, inductance L3, inductance L4, inductor L5, inductor L6, balun transformer U34, balun transformer U36, SMA interface U3, SMA interface U5; both ends of resistor R10 and resistor R28 are respectively connected to the IOUT+ and IOUT- pins of chip AD9910_1 and chip AD9910_2; The IOUT+ pin of the chip AD9910_1 is connected in series with the resistor R13 and then grounded, and the IOUT- pin is connected in series with the resistor R14 and then grounded; the IOUT+ pin of the chip AD9910_2 is connected in series with the resistor R30 and grounded, and the IOUT- pin is connected in series with the resistor R31 and grounded; the balun The pin 4 of the transformer U34 is connected to the IOUT+ of the chip AD9910_1, the pin 6 is connected to the IOUT- of the chip AD9910_1, the pin 2 is connected to the analog ground, the pin 3 is connected to the resistor R11, the pin 1 is connected to the analog ground, and the pin 5 is suspended; the balun The pin 4 of the transformer U36 is connected to the IOUT+ of the chip AD9910_2, the pin 6 is connected to the IOUT- of the chip AD9910_2, the pin 2 is connected to the analog ground, the pin 3 is connected to the resistor R27, the pin 1 is connected to the analog ground, and the pin 5 is suspended; the inductor L1 One end is connected to resistor R11, the other end is connected to inductor L2, one end of inductor L2 is connected to inductor L1, the other end is connected to inductor L3, one end of inductor L3 is connected to inductor L2, and the other end is connected to SMA analog output interface U3; one end of inductor L6 is connected to resistor R11, and the other end is connected to Inductor L4, one end of inductor L4 is connected to inductor L6, the other end is connected to inductor L5, one end of inductor L5 is connected to inductor L4, and the other end is connected to SMA analog output interface U5; one end of capacitor C5 and capacitor C6 is connected to resistor R11, and the other end is connected to analog ground; capacitor C7 One end of capacitor C8 is connected to inductor L1, and the other end is connected to analog ground; one end of capacitor C9 and capacitor C10 is connected to inductor L2, and the other end is connected to analog ground; one end of capacitor C11 and capacitor C12 is connected to inductor L3, and the other end is connected to analog ground; capacitor C17 and capacitor One end of C18 is connected to resistor R27, and the other end is connected to analog ground; one end of capacitor C19 and capacitor C20 is connected to inductor L6, and the other end is connected to analog ground; one end of capacitor C21 and capacitor C22 is connected to inductor L4, and the other end is connected to analog ground; one end of capacitor C23 and capacitor C24 Connect the inductor L5, and connect the other end to the analog ground; the SMA interface U3 and the interface U5 are used as the analog waveform output interfaces of the chip AD9910_1 and the chip AD9910_2 respectively.
进一步的,请参阅图3和图6,本实用新型与上位机接口通信主要包括串口通信及以太网通信两种方式;串口通信通过芯片MAX3490EESA将差分信号转为单端信号,再通过电平转换芯片SN74AVC4T245PWR进行电平转换连接至FPGA引脚;以太网通信将接口信号通过变压器HX5004NL转换后通过PHY芯片88E1111与FPGA的PS端相连。Further, please refer to Fig. 3 and Fig. 6, the interface communication between the utility model and the upper computer mainly includes two modes of serial port communication and Ethernet communication; the serial port communication converts the differential signal into a single-ended signal through the chip MAX3490EESA, and then through the level conversion The chip SN74AVC4T245PWR is connected to the FPGA pin for level conversion; the interface signal is converted by the transformer HX5004NL through the Ethernet communication, and then connected to the PS terminal of the FPGA through the PHY chip 88E1111.
具体的,所述控制模块20核心为FPGA,波形产生模块30包括两片AD9910,时钟模块50所用时钟芯片为ADCLK950,接口模块10包括PHY芯片88E1111和UART串口电平转换芯片,电源模块60所用芯片为两片LTM4644。FPGA作为控制核心与两片AD9910相连,每片AD9910都连接一组400MHz的低通滤波输出电路。Specifically, the core of the
FPGA芯片为XC7Z015,该芯片具有丰富的IO管脚,内部组合了一个双核ARMCortex-A9处理器和一个传统的现场可编程门阵列(FPGA)逻辑部件。PL逻辑控制部分连接两片AD9910,电路连接如图9所示;PS部分连接以太网PHY芯片,电路连接如图10所示,需要说明的是FPGA芯片XC7Z015内部集成了ARM系统(即PS部分)和PL逻辑控制部分。The FPGA chip is XC7Z015, which has abundant IO pins, and internally combines a dual-core ARM Cortex-A9 processor and a traditional field programmable gate array (FPGA) logic unit. The PL logic control part is connected to two pieces of AD9910, and the circuit connection is shown in Figure 9; the PS part is connected to the Ethernet PHY chip, and the circuit connection is shown in Figure 10. It should be noted that the FPGA chip XC7Z015 integrates an ARM system (that is, the PS part) And PL logic control part.
系统外部输入差分时钟120MHz和内部120MHz晶振产生的时钟经过ADCLK950芯片进行缓冲选择后,输出时钟为FPGA和两片AD9910提供参考时钟输入,如图7所示。120MHz参考时钟送入AD9910后,通过芯片内置的倍频器可将时钟频率进行倍频产生芯片内部的工作时钟。The external input differential clock 120MHz of the system and the clock generated by the internal 120MHz crystal oscillator are buffered and selected by the ADCLK950 chip, and the output clock provides reference clock input for the FPGA and two AD9910s, as shown in Figure 7. After the 120MHz reference clock is sent to AD9910, the clock frequency can be multiplied by the built-in frequency multiplier of the chip to generate the working clock inside the chip.
波形产生模块30的核心是AD9910芯片,如图11所示。AD9910第2个管脚PLL_LOOP_FILTER采用三阶RC无源低通滤波器作为外接的环路滤波器,参考芯片手册,可计算出环路滤波器中电阻和电容值。AD9910芯片的AVDD(1.8V)引脚连接模拟1.8V电源,AD9910芯片的DVDD(1.8V)引脚连接数字1.8V电源,AD9910芯片的AVDD(3.3V)引脚连接模拟3.3V电源,AD9910芯片的DVDD33_I/O(3.3V)引脚连接数字3.3V电源,AD9910芯片的AGND引脚和DVDD引脚连接电源地。AD9910内置一个14位电流输出DAC,利用两路输出保证输出电流信号的平衡。平衡输出能够降低DAC输出时潜在的共模噪声,提供更高的信噪比。根据芯片设计手册指导,在DAC_RSET和AGND之间连接一个外部10K电阻来建立参考电流。AD9910的第80和81引脚为模拟波形输出引脚,连接低通滤波输出电路。The core of the
FPGA解析上位机通过UART串口传送的命令信息,得到需要产生的双通道波形参数之后,通过SPI串行接口控制两片AD9910的CFR1-3模式控制寄存器,使两片AD9910工作在单频调制模式、RAM调制模式、线性斜坡调制模式或并行数据模式下。FPGA analyzes the command information sent by the upper computer through the UART serial port, and after obtaining the dual-channel waveform parameters to be generated, it controls the CFR1-3 mode control registers of the two AD9910s through the SPI serial interface, so that the two AD9910s work in single-frequency modulation mode, In RAM modulation mode, linear ramp modulation mode, or parallel data mode.
当目标波形为单频信号时,可优先采用单频调制模式产生。输出波形参数由AD9910的编程寄存器直接提供。When the target waveform is a single-frequency signal, the single-frequency modulation mode can be preferentially used for generation. The output waveform parameters are provided directly by the programming register of AD9910.
当目标波形为任意波形信号时,可采用RAM调制模式产生。RAM调制模式分为波形数据写入和波形数据回放两个步骤,波形数据写入时,FPGA通过SPI接口向AD9910中RAM对应的波形存储寄存器中写入波形数据,AD9910内部有8个profile寄存器可用来存储8个独立的时域波形,不同的profile寄存器通过PROFILE[2:0]引脚进行控制选取。每个profile寄存器中包含10位波形起始地址、10位波形结束地址、16位地址步率控制字。SPI最大的波形数据传输速率为70M。当处在波形数据回放时,RAM可以根据profile寄存器的内容,按照规定的速率发送至相应的DDS信号控制参数。回放地址的时钟速率即生成波形的采样速率由16位地址步率控制字M决定。回放速率如式1所示如下:When the target waveform is an arbitrary waveform signal, it can be generated in RAM modulation mode. The RAM modulation mode is divided into two steps of waveform data writing and waveform data playback. When the waveform data is written, the FPGA writes the waveform data to the waveform storage register corresponding to the RAM in the AD9910 through the SPI interface. There are 8 profile registers available inside the AD9910 To store 8 independent time-domain waveforms, different profile registers are controlled and selected through the PROFILE[2:0] pin. Each profile register contains 10-bit waveform start address, 10-bit waveform end address, and 16-bit address step rate control word. The maximum waveform data transmission rate of SPI is 70M. When the waveform data is being played back, the RAM can send the corresponding DDS signal control parameters at a specified rate according to the contents of the profile register. The clock rate of the playback address, that is, the sampling rate of the generated waveform is determined by the 16-bit address step rate control word M. The playback rate is shown in
其中,fsysclk为倍频之后的芯片系统时钟,fDDSCLOCK表示波形回放时钟频率;M为回放地址步进率。Among them, f sysclk is the chip system clock after frequency multiplication, f DDSCLOCK represents the waveform playback clock frequency; M is the playback address step rate.
当使用数字斜坡模式时,需配置数字斜坡限值寄存器、数字斜坡步长寄存器和数字斜坡速率寄存器。数字斜坡限值寄存器,地址0x0B,8个字节64位。高32位是数字斜坡上限值,低32位是数字斜坡下限值,数字斜坡目的位设置为频率,对应限值分别为上限频率和下限频率。限制频率与FTW值对应关系如式2所示:When using the digital ramp mode, the digital ramp limit register, the digital ramp step size register and the digital ramp rate register need to be configured. Digital ramp limit register, address 0x0B, 8
其中,FTW为限制寄存器的值,f为限制频率。Among them, FTW is the value of the limit register, and f is the limit frequency.
数字斜坡步长寄存器,地址0x0C,8个字节64位。高32位是数字斜坡递减值,低32位是数字斜坡递增值。在线性调频信号中,步进值是每次步进时间间隔下的步进频率。步进频率值受带宽、时宽以及时间间隔的影响。步进频率以及步进时间间隔如式3所示:Digital ramp step register, address 0x0C, 8
其中,DFTW是斜坡步长寄存器的值,Δf是步进频率,BW是带宽,TW是时宽,Δt是步进时间间隔。Among them, DFTW is the value of the ramp step register, Δf is the step frequency, BW is the bandwidth, TW is the time width, and Δt is the step time interval.
数字斜坡速率寄存器,地址0x0D,4个字节32位。高16位是两个递减值之间的时间间隔,低16位是两个递增值之间的时间间隔。当数字斜坡速率寄存器值(DFRRW)配置成1时,最小频率转换时间间隔(Δt)是AD9910系统时钟周期的4倍。Digital ramp rate register, address 0x0D, 4 bytes 32 bits. The upper 16 bits are the time interval between two decremented values, and the lower 16 bits are the time interval between two incremented values. When the digital ramp rate register value (DFRRW) is configured as 1, the minimum frequency conversion time interval (Δt) is 4 times the AD9910 system clock period.
当使用并行数据模式时,DDS信号控制参数直接由18位并行数据端口提供。数据端口分为两部分,16位数据字DATA[15:0]和2位目的字F[1:0]。数据字为波形数据信息,目的字用来控制波形数据信息是属于幅度、频率或相位。由于FPGA与AD9910的并行传输速率PDCLK最高可达250MHz。PDCLK作为并行端口的数据时钟使用,因此此模式可用于高速场景下的任意波形信号产生。When using the parallel data mode, the DDS signal control parameters are directly provided by the 18-bit parallel data port. The data port is divided into two parts, 16-bit data word DATA[15:0] and 2-bit destination word F[1:0]. The data word is waveform data information, and the destination word is used to control whether the waveform data information belongs to amplitude, frequency or phase. Because the parallel transmission rate PDCLK of FPGA and AD9910 can reach up to 250MHz. PDCLK is used as the data clock of the parallel port, so this mode can be used for arbitrary waveform signal generation in high-speed scenarios.
滤波输出模块40采用的是400MHz的低通滤波电路设计,由于AD9910芯片的模拟输出引脚是采用差分的形式,而一般输出的中频信号都是单端的,因此就需要通过巴伦来进行单双端的转换;巴伦选用TRE001,该巴伦频率输入范围为0.4~800MHz,插损在1~400MHz范围内最大为1db,阻抗为1:1。模拟信号数据接口采用SMA接口,滤波输出电路如图5所示。The filter output module 40 adopts a 400MHz low-pass filter circuit design. Since the analog output pins of the AD9910 chip are in the form of differentials, and the general output intermediate frequency signals are single-ended, it is necessary to perform single- and dual-mode output through a balun. The conversion of the end; the balun uses TRE001, the balun frequency input range is 0.4 ~ 800MHz, the maximum insertion loss is 1db in the range of 1 ~ 400MHz, and the impedance is 1:1. The analog signal data interface adopts SMA interface, and the filter output circuit is shown in Figure 5.
以太网接口模块10核心PHY芯片为88E1111。采用RGMII接口与FPGA的PS端相连。The core PHY chip of the
通过PHY芯片的CONFIG[6:0]这7个引脚与外部信号相连接,可以得到不同的芯片配置结果,例如传输速率、光纤、以太网接口等,通过与外界不同管脚的连接也影响着寄存器,他们分别可以与VSS、LED_TX、LED_RX、LED_DUPLEX、LED_LINK1000、LED_LINK100、LED_LINK10、VDDO连接,依次代表3位从000到111的值,对于CONFIG[6:0]分别对应3位,每位都具有自己的含义。By connecting the 7 pins of CONFIG[6:0] of the PHY chip to external signals, different chip configuration results can be obtained, such as transmission rate, optical fiber, Ethernet interface, etc., and the connection with different external pins also affects With registers, they can be connected with VSS, LED_TX, LED_RX, LED_DUPLEX, LED_LINK1000, LED_LINK100, LED_LINK10, VDDO respectively, which in turn represent the value of 3 bits from 000 to 111, for CONFIG[6:0] corresponding to 3 bits, each bit has its own meaning.
根据芯片手册配置说明,将88E1111芯片初始化状态配置为:地址PHY_ADDR[4:0]=11000b,接口方式“RGMII to copper”。According to the configuration instructions in the chip manual, configure the initialization state of the 88E1111 chip as: address PHY_ADDR[4:0]=11000b, interface mode "RGMII to copper".
电源模块60设计的核心是LTM4644电压转换芯片。本使用新型设计使用的电源电压有数字电压也有模拟电压。波形信号产生及输出过程中需要使用模拟电压,其它部分为数字电压。需要供电的芯片有FPGA芯片、两片DDS芯片AD9910、时钟驱动芯片等。The core of the design of the power module 60 is the LTM4644 voltage conversion chip. The power supply voltage used in this novel design includes digital voltage and analog voltage. The waveform signal generation and output process needs to use analog voltage, and the other parts are digital voltage. Chips that need power supply include FPGA chip, two DDS chips AD9910, clock driver chip, etc.
FPGA芯片采用XC7Z015。其所需的芯片管脚电压有3.3V、1.0V、1.2V、1.5V和1.8V,共5种电压。DDS芯片采用ADI公司的AD9910设计,AD9910电源需求如表1所示。FPGA chip adopts XC7Z015. The required chip pin voltages are 3.3V, 1.0V, 1.2V, 1.5V and 1.8V, a total of 5 voltages. The DDS chip adopts the AD9910 design of ADI Company, and the power requirements of AD9910 are shown in Table 1.
表1Table 1
根据以上各芯片所需电源电压统计,可按以下进行电源模块60设计。According to the above statistics of the power supply voltage required by each chip, the power supply module 60 can be designed as follows.
电源电路设计中,采用的是两片LTM4644电源转换芯片。LTM4644电源转换芯片可以实现4通道电压转换,最大限度地降低输入纹波。芯片具有较宽的输入电压范围:4V至14V,输出电压范围为:0.6V至5.5V。LTM4644可在多种输入电源电压下调节输出。该稳压器还包括输出过压和过流故障保护,因此使用这款电源转换芯片做输入电源的转换非常适合。In the power circuit design, two LTM4644 power conversion chips are used. The LTM4644 power conversion chip can realize 4-channel voltage conversion and minimize input ripple. The chip has a wide input voltage range: 4V to 14V, output voltage range: 0.6V to 5.5V. The LTM4644 can regulate the output over a wide range of input supply voltages. The regulator also includes output overvoltage and overcurrent fault protection, so it is very suitable to use this power conversion chip for input power conversion.
第一片LTM4644将12V外部输入电源转换为:1.2V、1.8V、1.5V和3.3V四路电压。第二片LTM4644的四个输出通道分别将12V外部输入电源转换为Z7所需的1.0V、DDS所需的1.8V和3.3V、以及PHY芯片的电源电压2.5V。电源模块60电路设计如图8所示。The first LTM4644 converts the 12V external input power supply into four voltages: 1.2V, 1.8V, 1.5V and 3.3V. The four output channels of the second LTM4644 convert the 12V external input power to 1.0V required by Z7, 1.8V and 3.3V required by DDS, and 2.5V power supply voltage of the PHY chip. The circuit design of the power module 60 is shown in FIG. 8 .
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。It can be understood that, the same or similar parts in the above embodiments can be referred to each other, and the content that is not described in detail in some embodiments can be referred to the same or similar content in other embodiments.
需要说明的是,在本实用新型的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本实用新型的描述中,除非另有说明,“多个”的含义是指至少两个。It should be noted that, in the description of the present utility model, terms such as "first" and "second" are only used for description purposes, and should not be understood as indicating or implying relative importance. In addition, in the description of the present invention, unless otherwise specified, the meaning of "plurality" means at least two.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本实用新型的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本实用新型的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments or portions of code comprising one or more executable instructions for implementing specific logical functions or steps of the process , and the scope of preferred embodiments of the invention includes additional implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which It should be understood by those skilled in the art to which the embodiments of the present invention belong.
应当理解,本实用新型的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that each part of the present invention can be realized by hardware, software, firmware or their combination. In the embodiments described above, various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium. During execution, one or a combination of the steps of the method embodiments is included.
此外,在本实用新型各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention can be integrated into one processing module, or each unit can exist separately physically, or two or more units can be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。The storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structures, materials or features are included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above-mentioned embodiments are exemplary and should not be construed as limitations of the present invention, and those skilled in the art are within the scope of the present invention. Variations, modifications, substitutions and variations can be made to the above-described embodiments.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320303506.4U CN219266827U (en) | 2023-02-23 | 2023-02-23 | DDS-based dual-channel radar arbitrary waveform signal generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320303506.4U CN219266827U (en) | 2023-02-23 | 2023-02-23 | DDS-based dual-channel radar arbitrary waveform signal generator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219266827U true CN219266827U (en) | 2023-06-27 |
Family
ID=86867165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320303506.4U Expired - Fee Related CN219266827U (en) | 2023-02-23 | 2023-02-23 | DDS-based dual-channel radar arbitrary waveform signal generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN219266827U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420878A (en) * | 2023-11-03 | 2024-01-19 | 北方通用电子集团有限公司 | Waveform generation circuit |
-
2023
- 2023-02-23 CN CN202320303506.4U patent/CN219266827U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420878A (en) * | 2023-11-03 | 2024-01-19 | 北方通用电子集团有限公司 | Waveform generation circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105404495B (en) | For modulating the high speed PRBS generator and method for generation of wide-band transducer | |
CN219266827U (en) | DDS-based dual-channel radar arbitrary waveform signal generator | |
CN204731577U (en) | A kind of multifunctional signal generator based on FPGA | |
CN108471303B (en) | A Programmable Nanosecond Timing Precision Pulse Generator Based on FPGA | |
CN104237905B (en) | Big Dipper detector | |
CN108664439B (en) | Analog quantity output circuit device with digital isolation | |
CN102522967A (en) | B-type LXI (LAN eXtensions for Instrument) arbitrary waveform generator | |
CN108768390A (en) | A kind of high-precision four-way signal source based on DDS chips | |
CN205750776U (en) | 64 multi-channel high frequency ultrasound data receive-transmit systems based on PCI-E interface | |
CN115729875A (en) | ZYNQ-based programmable ultrafast delay pulse generator and method | |
CN118311503B (en) | Single-bit broadband radar system with arbitrary variable threshold | |
CN204439829U (en) | Multifunction radar waveform generator and multiband radar expanding system | |
CN207662948U (en) | A kind of optional waveform generator | |
CN218974581U (en) | Low-cost Doppler radar frequency calibration circuit | |
CN102984106B (en) | Binary frequency shift keying modulation system | |
CN206583953U (en) | A kind of multifunctional intellectual instrument | |
CN104065360A (en) | Approximate sine carrier generator with wide-temperature application function and stable and controllable frequency | |
CN204832855U (en) | High sample rate frequency diversity pulse generator based on AD9914 design | |
CN111812187B (en) | Multi-thread integrated integrated main control system applied to FAIMS | |
CN217157168U (en) | Circuit for generating various modulation signals based on ZYNQ device | |
CN108809344A (en) | A kind of RF automatic switching circuit based on power detection | |
CN203630354U (en) | Radar communication system based on DDS | |
CN208079033U (en) | Multi-channel PWM synthesizes analogue signal circuit | |
CN207232689U (en) | A kind of multichannel isolation and the sine wave generating system of clock synchronization | |
CN207366651U (en) | A kind of multifunctional virtual instrument and its data processing end |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230627 |