CN218956845U - Large-channel wavelength division multiplexer - Google Patents
Large-channel wavelength division multiplexer Download PDFInfo
- Publication number
- CN218956845U CN218956845U CN202222202729.XU CN202222202729U CN218956845U CN 218956845 U CN218956845 U CN 218956845U CN 202222202729 U CN202222202729 U CN 202222202729U CN 218956845 U CN218956845 U CN 218956845U
- Authority
- CN
- China
- Prior art keywords
- waveguide
- output
- input
- straight
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005253 cladding Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 230000003595 spectral effect Effects 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 238000005530 etching Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000003292 glue Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
本实用新型涉及一种大通道波分复用器,从下至上包括晶圆的衬底、晶圆的埋氧层、器件层和器件的SiO2上包层,所述器件层分别为微环谐振器、移相器、传输波导和阵列波导光栅,移相器加载在微环上,微环谐振器通过传输波导与上下两个阵列波导光栅相连。本实用新型通过微环谐振器级联两个输出通道波峰交错的波导阵列光栅,微环直通端的谐振波峰和下阵列波导光栅的各通道输出波峰对应重合,微环谐振器下载端的谐振波峰与上阵列波导光栅的各通道输出波峰对应重合,且上阵列波导光栅与下阵列波导光栅的输出波峰交错排列,从而形成交错信道的大通道波分复用器,解决了常规波分复用器波长通道数较少的问题,并在低串扰方面表现良好。
The utility model relates to a large-channel wavelength division multiplexer, which comprises a substrate of a wafer, a buried oxide layer of the wafer, a device layer and an SiO2 upper cladding layer of the device from bottom to top, and the device layers are respectively micro-rings A resonator, a phase shifter, a transmission waveguide and an arrayed waveguide grating, the phase shifter is loaded on the microring, and the microring resonator is connected with the upper and lower arrayed waveguide gratings through the transmission waveguide. The utility model cascades waveguide array gratings with two output channel peaks staggered through the microring resonator, the resonant peaks at the straight-through end of the microring coincide with the output peaks of each channel of the lower array waveguide grating, and the resonant peaks at the download end of the microring resonator coincide with the upper The output peaks of each channel of the arrayed waveguide grating coincide with each other, and the output peaks of the upper arrayed waveguide grating and the lower arrayed waveguide grating are staggered, thus forming a large-channel wavelength division multiplexer with interleaved channels, which solves the problem of wavelength division multiplexers in conventional wavelength division multiplexers. fewer problems and perform well with low crosstalk.
Description
技术领域technical field
本实用新型涉及一种大通道波分复用器,属于半导体光信号传输技术领域。The utility model relates to a large-channel wavelength division multiplexer, which belongs to the technical field of semiconductor optical signal transmission.
背景技术Background technique
光纤通信是以光波为载体、光纤为传输媒质的通信方式,承载了全球通信数据容量的90%以上,光网络最大优势在于拥有波分复用技术,具有高速、大容量的传输能力,它的技术进步极大地推动光纤通信事业的发展,给传输技术带来了革命性的变革。基于材料的硅光子器件具有极小的尺寸和低廉的成本,其制备工艺与COMS工艺完全兼容并能与IC电路实现单片集成,凭借这种独特的优势,成为光纤通信研究领域的热点之一。目前硅光子中波分复用器主要有四种结构,刻蚀光栅(EDG)、微环谐振滤波器(Micro-Ring Resonator,MRR)、级联MZI和阵列波导光栅(Silicon arrayed waveguide grating,Silicon AWG)。刻蚀光栅适用于粗分复用,无法实现密集波分复用,适用范围受到一定限制:微环谐振滤波器通过级联不同半径的微环,利用谐振波长实现解复用,受工艺影响,稳定的波长间隔难以控制,需要增加调谐系统,多个调谐系统会造成较大的额外功耗;MZI通过臂长差实现波分复用,当通道数增加时,级联次数也随之增加,芯片尺寸增大,不利于集成。鉴于以上原因,此三种硅光子器件未在波分复用领域广泛应用。而硅光子阵列波导光栅是一种综合性能最优异的波分复用/解复用器,自阵列波导光栅AWG诞生以来,由于其与MRR和MZI相比更紧凑,且具有更低的插入损耗和更好的串扰性能,因此得到了广泛的研究。有报道研制出了基于氮化硅的16通道AWG,在损耗0.5dB的情况下能够实现-30dB的相邻通道串扰。但由于低折射率差的原因,整个器件的占地面积超过了1平方厘米。在硅的高折射率对比度特性基础上,设计了一种占地面积为400×600μm2的紧凑AWG。然而,相邻信道的串扰足有10分贝。此外,还提出了一些新颖的设计方案,如折叠结构。例如,在阵列波导上增加反射器,形成4通道折叠AWG,串扰和插入损耗分别约为-20dB和3.5dB,结果都不是很理想。因此,如何在紧凑的占用空间内实现多通道高性能AWG仍然是一个挑战。Optical fiber communication is a communication method with light wave as the carrier and optical fiber as the transmission medium. It carries more than 90% of the global communication data capacity. The biggest advantage of optical network is that it has wavelength division multiplexing technology and high-speed and large-capacity transmission capabilities. Technological progress has greatly promoted the development of optical fiber communication and brought revolutionary changes to transmission technology. Material-based silicon photonic devices have extremely small size and low cost, and their fabrication process is fully compatible with the CMOS process and can be monolithically integrated with IC circuits. With this unique advantage, it has become one of the hot spots in the field of optical fiber communication research. . At present, there are four main structures of wavelength division multiplexers in silicon photonics, etched grating (EDG), micro-ring resonator filter (Micro-Ring Resonator, MRR), cascaded MZI and arrayed waveguide grating (Silicon arrayed waveguide grating, Silicon AWG). Etched gratings are suitable for coarse division multiplexing, but cannot achieve dense wavelength division multiplexing, and the scope of application is limited: microring resonant filters cascade microrings with different radii, and use resonant wavelengths to achieve demultiplexing, which is affected by the process. The stable wavelength interval is difficult to control, and it is necessary to increase the tuning system. Multiple tuning systems will cause large additional power consumption; MZI realizes wavelength division multiplexing through the arm length difference. When the number of channels increases, the number of cascades also increases. Chip size increases, which is not conducive to integration. In view of the above reasons, these three silicon photonic devices have not been widely used in the field of wavelength division multiplexing. The silicon photonic arrayed waveguide grating is a wavelength division multiplexer/demultiplexer with the best comprehensive performance. Since the birth of the arrayed waveguide grating AWG, it is more compact and has lower insertion loss than MRR and MZI. and better crosstalk performance, so it has been extensively studied. It has been reported that a 16-channel AWG based on silicon nitride has been developed, which can achieve -30dB adjacent channel crosstalk at a loss of 0.5dB. However, due to the low refractive index difference, the entire device occupies an area of more than 1 square centimeter. Based on the high refractive index contrast property of silicon, a compact AWG with a footprint of 400 × 600 μm was designed. However, the crosstalk between adjacent channels can be as much as 10 dB. In addition, some novel design schemes, such as folded structures, are also proposed. For example, adding reflectors to the arrayed waveguide to form a 4-channel folded AWG, the crosstalk and insertion loss are about -20dB and 3.5dB, respectively, and the results are not very ideal. Therefore, how to realize a multi-channel high-performance AWG within a compact footprint remains a challenge.
发明内容Contents of the invention
针对上述现有技术存在的问题及不足,本实用新型提供一种大通道波分复用器,本实用新型能解决大通道波分复用器通道串扰大的问题、常规波分复用器波长通道数较少的问题。Aiming at the problems and deficiencies in the above-mentioned prior art, the utility model provides a large channel wavelength division multiplexer, which can solve the problem of large channel crosstalk of the large channel wavelength division multiplexer, the wavelength of the conventional wavelength division multiplexer Problem with low number of channels.
本实用新型技术方案是:一种大通道波分复用器,从下至上包括晶圆的衬底、晶圆的埋氧层、器件层和器件的SiO2上包层,所述器件层包括微环谐振器110、移相器120、下载端波导130、直通端波导140、上阵列波导光栅150和下阵列波导光栅160;所述移相器120加载在微环谐振器(110)上,微环谐振器110下载端通过下载端波导130与上阵列波导光栅(150)相连,微环谐振器(110)直通端通过直通端波导140与下阵列波导光栅160相连。The technical scheme of the utility model is: a large-channel wavelength division multiplexer, which includes the substrate of the wafer, the buried oxide layer of the wafer, the device layer and the SiO2 upper cladding layer of the device from bottom to top, and the device layer includes
作为本实用新型的进一步方案,所述微环谐振器110包括输出直波导111、环形谐振腔112、输入直波导113;输出直波导111与位于输出直波导111下部的环形谐振腔112间存在第一耦合区5,输入直波导113与位于输入直波导113上部的环形谐振腔112之间存在第二耦合区6,移相器120为连接电源调整微环谐振波长的器件,作用在环形谐振腔112上。As a further solution of the present utility model, the
作为本实用新型的进一步方案,所述输出直波导111分为输出直波导下载端1和输出直波导输出端2,所述输入直波导113分为输入直波导输入端3和输入直波导直通端4。As a further solution of the present utility model, the output
作为本实用新型的进一步方案,所述下载端波导130包含半圆形弯曲波导和直波导,输出直波导下载端1通过下载端波导130连接上阵列波导光栅150的上输入波导8。As a further solution of the present invention, the
作为本实用新型的进一步方案,所述直通端波导140包含S型弯曲波导和直波导,微环谐振器110的输入直波导直通端4通过直通端波导140连接下阵列波导光栅160的下输入波导13。As a further solution of the present invention, the straight-through
作为本实用新型的进一步方案,所述上阵列波导光栅150包括上输入波导8、上输入平板波导9、上阵列波导10、上输出平板波导11和上输出波导12;上输入波导8连接上输入平板波导9;上输入平板波导9通过上阵列波导10连接上输出平板波导11,上输入平板波导9、上阵列波导10、上输出平板波导11形成罗兰圆结构,上输出平板波导11连接上输出波导12。As a further solution of the present utility model, the upper
作为本实用新型的进一步方案,所述下阵列波导光栅160包括下输入波导13、下输入平板波导14、下阵列波导15、下输出平板波导16和下输出波导17;下输入波导13连接下输入平板波导14;下输入平板波导14通过下阵列波导15连接下输出平板波导16,下输入平板波导14、下阵列波导15、下输出平板波导16形成罗兰圆结构,下输出平板波导16连接下输出波导17。As a further solution of the present utility model, the lower
作为本实用新型的进一步方案,所述微环谐振器110的自由光谱范围FSR等于上阵列波导光栅150的通道间隔,也等于下阵列波导光栅160的通道间隔。As a further solution of the present invention, the free spectral range FSR of the
作为本实用新型的进一步方案,所述上阵列波导光栅150与下阵列波导光栅160的中心波长存在△λ的中心波长差,所述微环谐振器110的自由光谱范围FSR等于2△λ,其中,△λ表示上阵列波导光栅150的通道间隔,且下阵列波导光栅160的通道间隔也为△λ。As a further solution of the present utility model, there is a central wavelength difference of Δλ between the central wavelengths of the upper arrayed waveguide grating 150 and the lower
作为本实用新型的进一步方案,所述微环谐振器110下载端的谐振波峰与上阵列波导光栅150各通道峰值波长重合,且微环谐振器110直通端的谐振波峰与下阵列波导光栅160各通道峰值波长重合。As a further solution of the present utility model, the resonant peak at the download end of the
本实用新型的工作原理是:通过加载于微环谐振器110上的移相器120调制作用,利用热光/电光效应改变微环谐振滤波器波导折射率,从而对微环谐振器110的谐振中心波长进行调节,使微环下载端的谐振波峰与上阵列波导光栅150(AWG)的输出波峰相匹配(如图5),同时微环直通端谐振波峰与下阵列波导光栅160(AWG)的输出波峰重合(如图6)。在实际工作环境中,光信号从微环下直波导输入,一部分光经过直波导耦合进入环形谐振腔112,在经过半个周长的路径之后,产生谐振作用的波长信号从微环谐振器第一耦合区5耦合进入输出直波导111,从其下载端输出,经过一段弯曲的波导后,进入上阵列波导光栅150。另一部分光再经过直波导耦合进入环形谐振腔112之后,经过一个周长的路径,产生相位改变,由微环谐振器第二耦合区6耦合进入输入直波导113与原下输入直波导的光信号进行干涉,干涉后的光信号从输入直波导直通端4输出,经过一段弯曲波导进入下阵列波导光栅160。阵列波导光栅AWG由条形波导和阵列波导组成,随着阵列波导光栅AWG里阵列波导长度的线性增加,波长变化引起的相位变化沿输出孔径线性变化。因此,光的焦点沿着第二平板波导的输出表面移动。通过将输出波导放置在适当的位置,可以获得不同波长通道的空间分离,在本实用新型中上下两个阵列波导光栅AWG的输出波导位置是交错的,微环谐振器110起到滤波和分波的作用,从微环谐振器110下载端输出的谐振波峰与上阵列波导光栅150的各通道波峰相重合,且从微环谐振器110直通端输出的谐振波峰与下阵列波导光栅160的各通道波峰相重合,两个阵列波导光栅经过微环谐振器110叠加之后的谐振波峰在光谱图上是交错排列的,如图7,且交错后的阵列波导光栅的自由光谱范围FSR>n·△λ,与常规型阵列波导光栅AWG相比,可以实现翻倍的通道数,是一种新型大通道波分复用器。The working principle of the utility model is: through the modulation effect of the
本实用新型的有益效果是:本实用新型通过微环谐振器级联两个输出通道波峰交错的波导阵列光栅,微环直通端的谐振波峰和下阵列波导光栅(AWG)的各通道输出波峰对应重合,微环谐振器下载端的谐振波峰与上阵列波导光栅(AWG)的各通道输出波峰对应重合,且上阵列波导光栅(AWG)与下阵列波导光栅(AWG)的输出波峰交错排列,从而形成交错信道的大通道波分复用器。是一种新的大通道波分复用方案,解决了常规波分复用器波长通道数较少的问题,并在低串扰方面表现良好。The beneficial effects of the utility model are: the utility model cascades two output channel waveguide array gratings with interlaced peaks through the microring resonator, and the resonant peaks at the straight-through end of the microring coincide with the output peaks of each channel of the lower array waveguide grating (AWG). , the resonance peaks of the download end of the microring resonator coincide with the output peaks of each channel of the upper arrayed waveguide grating (AWG), and the output peaks of the upper arrayed waveguide grating (AWG) and the lower arrayed waveguide grating (AWG) are arranged alternately, thus forming an interlaced channel of a large channel WDM multiplexer. It is a new large-channel wavelength division multiplexing scheme, which solves the problem of fewer wavelength channels in conventional wavelength division multiplexers, and performs well in low crosstalk.
附图说明Description of drawings
图1是本实用新型大通道波分复用器连接示意图;Fig. 1 is a schematic diagram of the connection of the large channel wavelength division multiplexer of the present invention;
图2是本实用新型微环谐振器结构示意图;Fig. 2 is the structure schematic diagram of the utility model microring resonator;
图3是本实用新型上阵列波导光栅结构示意图;Fig. 3 is a schematic diagram of the structure of the arrayed waveguide grating on the utility model;
图4是本实用新型下阵列波导光栅结构示意图;Fig. 4 is a schematic diagram of the structure of the arrayed waveguide grating under the utility model;
图5是本实用新型微环下载端谐振峰和上阵列波导光栅通道波峰的匹配图;Fig. 5 is a matching diagram of the resonant peak of the download end of the microring of the present invention and the peak of the upper arrayed waveguide grating channel;
图6是本实用新型微环直通端谐振峰和下阵列波导光栅通道波峰的匹配图;Fig. 6 is a matching diagram of the resonant peak at the straight-through end of the microring of the present invention and the peak of the channel of the lower arrayed waveguide grating;
图7是本实用新型上阵列波导光栅和下阵列波导光栅各输出通道波峰交错图。Fig. 7 is an interleaving diagram of the wave peaks of the output channels of the upper arrayed waveguide grating and the lower arrayed waveguide grating of the present invention.
图中各标号:1-输出直波导下载端,2-输出直波导输出端,3-输入直波导输入端,4-输入直波导直通端,5-第一耦合区,6-第二耦合区,8-上输入波导,9-上输入平板波导,10-上阵列波导,11-上输出平板波导,12-上输出波导,13-下输入波导,14-下输入平板波导,15-下阵列波导,16-下输出平板波导,17-下输出波导,110-微环谐振器,120-移相器,130-下载端波导,140-直通端波导,150-上阵列波导光栅,160-下阵列波导光栅,111-输出直波导,112-环形谐振腔,113-输入直波导。Each label in the figure: 1-output straight waveguide download end, 2-output straight waveguide output end, 3-input straight waveguide input end, 4-input straight waveguide straight-through end, 5-first coupling area, 6-second coupling area , 8-upper input waveguide, 9-upper input slab waveguide, 10-upper array waveguide, 11-upper output slab waveguide, 12-upper output waveguide, 13-lower input waveguide, 14-lower input slab waveguide, 15-lower array Waveguide, 16-lower output slab waveguide, 17-lower output waveguide, 110-microring resonator, 120-phase shifter, 130-download end waveguide, 140-through end waveguide, 150-upper arrayed waveguide grating, 160-lower Arrayed waveguide grating, 111 - output straight waveguide, 112 - ring resonant cavity, 113 - input straight waveguide.
具体实施方式Detailed ways
下面结合附图和具体实施例,对本实用新型作进一步说明。Below in conjunction with accompanying drawing and specific embodiment, the utility model is described further.
实施例1:如图1-图7所示,一种大通道波分复用器,从下至上包括晶圆的衬底、晶圆的埋氧层、器件层和器件的SiO2上包层,所述器件层材料为单晶硅,所述器件层包括微环谐振器110、移相器120、下载端波导130、直通端波导140、上阵列波导光栅150和下阵列波导光栅160;所述移相器120加载在微环谐振器(110)上,微环谐振器110下载端通过下载端波导130与上阵列波导光栅(150)相连,微环谐振器(110)直通端通过直通端波导140与下阵列波导光栅160相连。Embodiment 1: as shown in Fig. 1-Fig. 7, a kind of large channel wavelength division multiplexer, comprises the substrate of wafer, the buried oxide layer of wafer, device layer and the SiO2 upper cladding layer of device from bottom to top , the material of the device layer is single crystal silicon, and the device layer includes a
其中,所述微环谐振器110包括输出直波导111、环形谐振腔112、输入直波导113;所述输出直波导111分为输出直波导下载端1和输出直波导输出端2,所述输入直波导113分为输入直波导输入端3和输入直波导直通端4。输出直波导111与位于输出直波导111下部的环形谐振腔112间存在第一耦合区5,输入直波导113与位于输入直波导113上部的环形谐振腔112之间存在第二耦合区6,移相器120为连接电源调整微环谐振波长的器件,作用在环形谐振腔112上。Wherein, the
所述下载端波导130包含半圆形弯曲波导和直波导,输出直波导下载端1通过下载端波导130连接上阵列波导光栅150的上输入波导8。所述直通端波导140包含S型弯曲波导和直波导,微环谐振器110的输入直波导直通端4通过直通端波导140连接下阵列波导光栅160的下输入波导13。所述上阵列波导光栅150包括上输入波导8、上输入平板波导9、上阵列波导10、上输出平板波导11和上输出波导12;上输入波导8连接上输入平板波导9;上输入平板波导9通过上阵列波导10连接上输出平板波导11,上输入平板波导9、上阵列波导10、上输出平板波导11形成罗兰圆结构,上输出平板波导11连接上输出波导12。所述下阵列波导光栅160包括下输入波导13、下输入平板波导14、下阵列波导15、下输出平板波导16和下输出波导17;下输入波导13连接下输入平板波导14;下输入平板波导14通过下阵列波导15连接下输出平板波导16,下输入平板波导14、下阵列波导15、下输出平板波导16形成罗兰圆结构,下输出平板波导16连接下输出波导17。所述微环谐振器110的自由光谱范围FSR等于上阵列波导光栅150的通道间隔△λ,也等于下阵列波导光栅160的通道间隔△λ。所述上阵列波导光栅150与下阵列波导光栅160的中心波长存在△λ的中心波长差,所述微环谐振器110的自由光谱范围FSR等于2△λ。所述微环谐振器110下载端的谐振波峰与上阵列波导光栅150各通道峰值波长重合,且微环谐振器110直通端的谐振波峰与下阵列波导光栅160各通道峰值波长重合。The
一束含不同波长光信号从微环输入直波导输入端3输入,一部分光经过直波导耦合进入环形谐振腔,在谐振腔上加载有电光移相器,通过施加在电光移相器上的电压改变微环谐振滤波器弯曲波导的波导折射率,从而对微环谐振器的谐振中心波长进行调节,使微环下载端的谐振波峰与上阵列波导光栅(AWG)的输出波峰相匹配(如图5),同时微环直通端谐振波峰与下阵列波导光栅(AWG)的输出波峰重合(如图6)。通过微环谐振器第二耦合区6耦合进入谐振腔的光信号,在经过半个周长的路径之后,产生谐振作用的波长信号从微环谐振器第一耦合区5耦合进入输出直波导111,从其下载端输出,再经过一段弯曲的波导后,进入上阵列波导光栅(150)。另一部分光在经过微环谐振器第二耦合区6耦合进入环形谐振腔之后,经过一个周长的路径后,产生相位改变,再由微环谐振器第二耦合区6耦合进入输入直波导(113)与原输入直波导的光信号进行干涉,干涉后的光信号从输入直波导直通端4输出,经过一段弯曲波导进入下阵列波导光栅(160)。经过微环谐振器级联的两个16通道阵列波导光栅最后输出光谱图如图7所示。A beam of optical signals with different wavelengths is input from the microring input straight
微环谐振器110、下载端波导130、直通端波导140、上阵列波导光栅150和下阵列波导光栅160均在SOI晶圆相同顶层硅上。SOI晶圆尺寸为8英寸,晶圆厚度为725μm,埋氧层厚度为2μm,顶层硅厚度为220nm。上阵列波导光栅150和下阵列波导光栅160的阵列波导10为宽度450nm、刻蚀深度100nm的脊型波导,上阵列波导10的长度差为12.95μm,罗兰圆半径为89.3μm,最小完全半径为50μm,衍射级数为20,通道间隔为6nm。下载端波导130和直通端波导140为宽度450nm、高度200nm的脊型波导。微环谐振器110的输入/输出波导均为宽度450nm的条形波导,环形谐振腔112和耦合区(第一耦合区5和第二耦合区6)均为宽度为450nm、刻蚀深度为100nm的脊型波导,输入/输出波导与环形谐振腔的最小间距为200nm,环形谐振腔直径为23μm,自由光谱区FSR为6nm。The
在SOI晶圆上通过多次光刻/刻蚀半导体工艺,制作本实用新型器件的波导结构,在波导形成后,通过PECVD工艺沉积1.5μm厚的Si02上包层,并通过反向刻蚀和抛光工艺得到平整而光滑的表面,在此平滑表面通过PVD技术沉积一层110nm厚的高电阻材料TiN,并通过光刻/刻蚀形成TiN加热电极,其为宽度5μm、总长200μm的折返分布结构,在TiN电极材料上方采用PECVD工艺沉积450nm厚的Si02隔离层;通过光刻/刻蚀技术在TiN电极上方形成加热电极引线孔,引线孔刻蚀停在TiN加热电极上;最后在采用PMI技术沉积2μm的金属引线材料Al,Al材料与TiN加热电极相连,并通过光刻/刻蚀技术形成宽度为10μm的Al金属引线,Al金属引线与探测接触的终端结构为边长70μm的正方形。The waveguide structure of the device of the present invention is produced on the SOI wafer through multiple photolithography/etching semiconductor processes. After the waveguide is formed, a 1.5 μm thick SiO 2 upper cladding is deposited by PECVD process, and reverse etching is performed. and polishing process to obtain a flat and smooth surface. On this smooth surface, a layer of 110nm thick high-resistance material TiN is deposited by PVD technology, and a TiN heating electrode is formed by photolithography/etching, which is a foldback distribution with a width of 5 μm and a total length of 200 μm. structure, a 450nm thick SiO 2 isolation layer is deposited on the TiN electrode material by PECVD process; the heating electrode lead hole is formed above the TiN electrode by photolithography/etching technology, and the lead hole etching stops on the TiN heating electrode; PMI technology deposits 2μm metal lead material Al, the Al material is connected to the TiN heating electrode, and the Al metal lead with a width of 10μm is formed by photolithography/etching technology, and the terminal structure of the Al metal lead and the detection contact is a square with a side length of 70μm .
实施例2,一种大通道波分复用器,本实施例区别于实施例1中器件层中基于SOI基底的单晶硅波导,在实施例2中器件层采用Si3N4波导,其他结构不变,Si3N4波导与单晶硅波导相比具有更低的损耗和更高的工艺容差,制作工艺如下。
步骤一:取纯硅片,进行清洗,热氧化后得到埋氧层,利用CMP技术对所得表面进行化学抛光,得到平滑表面;Step 1: Take a pure silicon wafer, clean it, and obtain a buried oxide layer after thermal oxidation, and use CMP technology to chemically polish the obtained surface to obtain a smooth surface;
步骤二:在步骤一制作的埋氧层上利用LPCVD技术沉积氮化硅层,进行抛光,然后进行光刻,光刻包括甩胶、曝光、显影、烘干,再刻蚀,最后去胶清洗,制备得到完整的脊型结构和条形波导结构,完成微环谐振器、阵列波导光栅和传输波导结构;Step 2: Use LPCVD technology to deposit a silicon nitride layer on the buried oxide layer produced in
步骤三:清洗后,采用PECVD方法沉积Si波导上层SiO2包层。为得到光滑平整的上表面,采用CMP化学机械抛光得到光滑的上表面;Step 3: After cleaning, the SiO 2 cladding layer on the upper layer of the Si waveguide is deposited by PECVD. In order to obtain a smooth upper surface, CMP chemical mechanical polishing is used to obtain a smooth upper surface;
步骤四:经去胶、清洗,采用PECVD方法沉积SiO2层,采用PVD方法沉积得到TiN电极层。通过光刻、TiN刻蚀,得到加热的电极TiN;Step 4: After degelling and cleaning, a PECVD method is used to deposit a SiO 2 layer, and a PVD method is used to deposit a TiN electrode layer. Through photolithography and TiN etching, the heated electrode TiN is obtained;
步骤五:去胶、清洗,沉积上包层SiO2后,经光刻、刻蚀得到金属引线孔;Step 5: After removing glue, cleaning, and depositing upper cladding SiO 2 , metal lead holes are obtained by photolithography and etching;
步骤六:去胶、清洗后,采用PVD方法沉积Al金属层,经光刻、刻蚀得到金属Al引线,金属Al与加热电极TiN连通;Step 6: After degumming and cleaning, the Al metal layer is deposited by PVD method, and the metal Al lead is obtained through photolithography and etching, and the metal Al is connected to the heating electrode TiN;
步骤七:去胶、清洗后,再进行光刻和深刻蚀得到隔热槽。最后通过深刻蚀得到用于光纤耦合测试的深刻蚀槽。即完成芯片的工艺加工。Step 7: After removing glue and cleaning, perform photolithography and deep etching to obtain heat insulation grooves. Finally, a deep etched groove for fiber coupling testing is obtained by deep etching. That is, the process of chip processing is completed.
上面结合附图对本实用新型的具体实施例作了详细说明,但是本实用新型并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化。The specific embodiments of the utility model have been described in detail above in conjunction with the accompanying drawings, but the utility model is not limited to the above-mentioned embodiments. Various changes are made.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222202729.XU CN218956845U (en) | 2022-08-22 | 2022-08-22 | Large-channel wavelength division multiplexer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222202729.XU CN218956845U (en) | 2022-08-22 | 2022-08-22 | Large-channel wavelength division multiplexer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218956845U true CN218956845U (en) | 2023-05-02 |
Family
ID=86134474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202222202729.XU Active CN218956845U (en) | 2022-08-22 | 2022-08-22 | Large-channel wavelength division multiplexer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218956845U (en) |
-
2022
- 2022-08-22 CN CN202222202729.XU patent/CN218956845U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100686920B1 (en) | Optical devices comprising thermo-optic polymers | |
US6738546B2 (en) | Optical waveguide circuit including multiple passive optical waveguide devices, and method of making same | |
US4737007A (en) | Narrow-band wavelength selective optical coupler | |
US6760498B2 (en) | Arrayed waveguide grating, and method of making same | |
US6891985B2 (en) | Polyloaded optical waveguide devices and methods for making same | |
US20020172464A1 (en) | Optical waveguide circuit including passive optical waveguide device combined with active optical waveguide device, and method for making same | |
CN108445586B (en) | Band-pass filter irrelevant to polarization based on silicon-based waveguide grating | |
CA2300170A1 (en) | Switchable optical components | |
CA2725883C (en) | Integrated optical waveguide device comprising a polysilicon layer-based passive optical waveguide device in combination with an active optical waveguide device, and method for making same | |
US20030003738A1 (en) | Polyloaded optical waveguide device in combination with optical coupler, and method for making same | |
CN109991700A (en) | A Micro-ring Integrated Arrayed Waveguide Grating Wavelength Division Multiplexer | |
KR20000018925A (en) | Fabricating method of thermo-optical variable wavelength filter | |
CN108646346A (en) | A kind of narrow band filter based on phase-modulation apodization grating | |
CN101666907B (en) | Electrostatically driven optical waveguide and F-P cavity tunable optical filter and preparation method | |
CN114400236B (en) | Silicon photonic integrated chip integrating silicon photonic modulator and silicon germanium detector and preparation method thereof | |
CN209446819U (en) | A kind of silicon photon wavelength division multiplexer of low crosstalk | |
CN218956845U (en) | Large-channel wavelength division multiplexer | |
CN115390184A (en) | Large channel wavelength division multiplexer based on staggered structure | |
CN211348702U (en) | A Micro-ring Integrated Arrayed Waveguide Grating Wavelength Division Multiplexer | |
CN115079339B (en) | Wavelength division multiplexing filter comprising auxiliary coupling region | |
CN112379489B (en) | A kind of silicon-based WDM receiving device and preparation method thereof | |
CN110941048B (en) | Coarse wavelength division multiplexer/demultiplexer with high extinction ratio based on the principle of multimode interference | |
CN115236799A (en) | Grating type lithium niobate optical filter with apodized transverse amplitude | |
CN219657906U (en) | Wavelength division multiplexer of multimode interference waveguide assisted by annular reflector | |
WO2002079863A2 (en) | Optoelectronic filters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |