CN216389353U - A power module with stepped pads formed on a ceramic substrate - Google Patents
A power module with stepped pads formed on a ceramic substrate Download PDFInfo
- Publication number
- CN216389353U CN216389353U CN202122401677.4U CN202122401677U CN216389353U CN 216389353 U CN216389353 U CN 216389353U CN 202122401677 U CN202122401677 U CN 202122401677U CN 216389353 U CN216389353 U CN 216389353U
- Authority
- CN
- China
- Prior art keywords
- ceramic substrate
- layer
- metal
- thin
- bonding layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 239000000919 ceramic Substances 0.000 title claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 70
- 230000008646 thermal stress Effects 0.000 claims abstract description 11
- 125000006850 spacer group Chemical group 0.000 claims description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 2
- 239000010936 titanium Substances 0.000 claims 2
- 229910052719 titanium Inorganic materials 0.000 claims 2
- 229910052709 silver Inorganic materials 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 6
- 238000003466 welding Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 208000013201 Stress fracture Diseases 0.000 abstract 1
- 238000005336 cracking Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种具有陶瓷基板的电源模块,尤其是一种陶瓷基板上形成有步阶接垫的电源模块。The utility model relates to a power supply module with a ceramic substrate, in particular to a power supply module with stepped pads formed on the ceramic substrate.
背景技术Background technique
相较于传统印刷电路板,陶瓷基板更具有散热性佳、厚度薄、尺寸小、耐高温及可靠度佳等优点,常使用于高功率晶粒或芯片等电子元件。最常见陶瓷基板材料有氧化铝(Aluminium Oxide,Al2O3)制成的直接覆铜(Dircet Bonded Copper,DBC)基板或直接覆铝(Dircet Bonded Aluminum,DBA)基板,而覆铜或铝的厚度多在200至300微米之间,当铜或铝的厚度大于300微米时,则可能因为制造过程或安装高发热元件后造成基板温度变化而导致接合界面破裂问题。Compared with traditional printed circuit boards, ceramic substrates have the advantages of good heat dissipation, thin thickness, small size, high temperature resistance and good reliability, and are often used in electronic components such as high-power chips or chips. The most common ceramic substrate materials are direct copper (Dircet Bonded Copper, DBC) substrates made of aluminum oxide (Aluminium Oxide, Al 2 O 3 ) or direct aluminum (Dircet Bonded Aluminum, DBA) substrates. The thickness is mostly between 200 and 300 microns. When the thickness of copper or aluminum is greater than 300 microns, it may cause the cracking of the bonding interface due to the temperature change of the substrate caused by the manufacturing process or the installation of high heat-generating components.
随着晶粒及芯片的功率日益提高,陶瓷基板上的金属接垫、线路或导电层需要更厚的厚度,才能符合高功率元件的需求,尤其以电源模块为例,更需要陶瓷基板进行散热。然而,陶瓷基板与金属层彼此的热膨胀系数(coefficient of thermal expansion)及线膨胀系数(coefficient of linear expansion)差异极大,在温度20度时,金属铜与铝的热膨胀系数为16.5与23ppm/K,而陶瓷材料氧化铝、氮化铝与氮化硅大约分别是7、4.5与3.5ppm/K,当陶瓷基板与结合的金属层热膨胀系数差异过大时,金属及陶瓷基板之间的界面容易产生破裂、翘曲或变形的问题,也势必会造成因热应力而让接点产生受损的风险。With the increasing power of die and chips, the metal pads, lines or conductive layers on the ceramic substrate need to be thicker to meet the needs of high-power components, especially in the case of power modules, which require ceramic substrates for heat dissipation . However, the coefficient of thermal expansion and coefficient of linear expansion of the ceramic substrate and the metal layer are very different from each other. When the temperature is 20 degrees, the thermal expansion coefficients of metal copper and aluminum are 16.5 and 23ppm/K. , while the ceramic materials alumina, aluminum nitride and silicon nitride are about 7, 4.5 and 3.5 ppm/K respectively. When the difference in thermal expansion coefficient between the ceramic substrate and the combined metal layer is too large, the interface between the metal and the ceramic substrate is easy to Problems with cracking, warping or deformation also entail the risk of damage to the contacts due to thermal stress.
因此,如何一方面使金属电路层能增加厚度,使得温差能分布在更厚的金属层,减少单位高度中的温度落差,让陶瓷基板能适用于高功率晶粒及芯片;并且减缓金属层与陶瓷基板界面受热应力破裂,让高功率电子组元件的应用成为可行,还同时能依照不同的客户需求,提供各式厚度的金属接垫,提供制造弹性,就是本实用新型所要达到的目的。Therefore, how to increase the thickness of the metal circuit layer on the one hand, so that the temperature difference can be distributed in the thicker metal layer, reduce the temperature drop per unit height, and make the ceramic substrate suitable for high-power die and chips; The interface of the ceramic substrate is cracked by thermal stress, making the application of high-power electronic components feasible, and at the same time, it can provide various thicknesses of metal pads according to different customer requirements to provide manufacturing flexibility, which is the purpose of the present invention.
实用新型内容Utility model content
针对现有技术的上述不足,根据本实用新型的实施例,希望提供一种陶瓷基板上形成有步阶接垫的电源模块,旨在实现如下目的:(1)透过上窄下宽的双层金属结构并且降低其中薄型接合层厚度,大幅降低金属电路层与陶瓷基板结合界面破裂的风险;(2)陶瓷基板能适用于高功率晶粒或芯片等电子元件;(3)让高功率晶粒或芯片可被设置于陶瓷基板上,且顺利将发热导出。In view of the above-mentioned deficiencies of the prior art, according to the embodiments of the present utility model, it is desirable to provide a power module with stepped pads formed on a ceramic substrate, aiming to achieve the following purposes: layer metal structure and reduce the thickness of the thin bonding layer, which greatly reduces the risk of cracking at the interface between the metal circuit layer and the ceramic substrate; (2) the ceramic substrate can be applied to electronic components such as high-power die or chips; The particles or chips can be placed on the ceramic substrate, and the heat can be smoothly conducted out.
根据实施例,本实用新型提供的一种陶瓷基板上形成有步阶接垫的电源模块,包括:一第一陶瓷基板,具有一上表面,以及至少一金属步阶接垫,其中上述金属步阶接垫包括:一结合于上述上表面、且厚度介于10至300微米的薄型接合层,具有一个第一热膨胀系数,其中上述第一热膨胀系数大于上述第一陶瓷基板的热膨胀系数;以及一结合于上述薄型接合层的固晶层,具有远离上述第一陶瓷基板方向的一设置面,其中上述固晶层的厚度方向投影面积小于上述薄型接合层,借此减缓上述薄型接合层与上述第一陶瓷基板的界面受热应力破裂;至少一个大功率电路元件,具有一对分别位于一顶面和一底面的出入电极,前述大功率电路元件以前述底面的出入电极导电结合至上述设置面;数目对应于上述大功率电路元件的金属间隔单元,每一前述金属间隔单元分别导热且导电地设置于上述对应大功率电路元件的上述顶面出入电极,且在厚度方向形成不超过上述顶面出入电极的投影;以及一平行于上述第一陶瓷基板的第二陶瓷基板,具有一金属对应接垫,其中上述金属对应接垫导电及导热结合至上述金属间隔单元相反于上述大功率电路元件侧面。According to an embodiment, the present invention provides a power module with step pads formed on a ceramic substrate, comprising: a first ceramic substrate having an upper surface and at least one metal step pad, wherein the metal step The step pad includes: a thin bonding layer bonded to the upper surface and having a thickness of 10 to 300 microns, having a first thermal expansion coefficient, wherein the first thermal expansion coefficient is greater than the thermal expansion coefficient of the first ceramic substrate; and a The die-bonding layer combined with the thin bonding layer has a setting surface away from the direction of the first ceramic substrate, wherein the projected area of the die-bonding layer in the thickness direction is smaller than that of the thin bonding layer, thereby slowing the connection between the thin bonding layer and the first ceramic substrate. The interface of a ceramic substrate is cracked by thermal stress; at least one high-power circuit element has a pair of input and output electrodes respectively located on a top surface and a bottom surface, and the high-power circuit element is electrically connected to the above-mentioned setting surface with the input and output electrodes on the bottom surface; the number Corresponding to the metal spacer unit of the above-mentioned high-power circuit element, each of the foregoing metal spacer units is respectively thermally and electrically conductively disposed on the above-mentioned top surface in-out electrodes of the above-mentioned corresponding high-power circuit components, and is formed in the thickness direction not exceeding the above-mentioned top surface In-out electrodes and a second ceramic substrate parallel to the first ceramic substrate, having a metal corresponding pad, wherein the metal corresponding pad is electrically and thermally bonded to the metal spacer unit opposite to the side of the high-power circuit element.
相对于现有技术,本实用新型陶瓷基板上形成有步阶接垫的电源模块,借由多层结构的金属凸块接垫,使得与陶瓷基板连结的薄型接合层界面厚度在一定范围内,降低界面受热应力破裂的机率,借此提升产出良率,同时延长使用寿命,并且利用多层金属结构,让陶瓷基板上结合有厚度较厚的金属凸块接垫,让单位厚度内的温差减小,借此保护金属和陶瓷的接口,延长使用寿命,且使得设置发热度较高的大功率电路元件更为可行。Compared with the prior art, the power supply module with step pads formed on the ceramic substrate of the present invention uses the metal bump pads of the multi-layer structure to make the interface thickness of the thin bonding layer connected to the ceramic substrate within a certain range. Reduce the probability of thermal stress cracking of the interface, thereby improving the yield rate and prolonging the service life, and using the multi-layer metal structure, the ceramic substrate is combined with a thicker metal bump pad, so that the temperature difference within the unit thickness is reduced. It is reduced, thereby protecting the interface of metal and ceramics, prolonging the service life, and making it more feasible to install high-power circuit components with high heat generation.
附图说明Description of drawings
图1为本实用新型陶瓷基板上形成有步阶接垫的电源模块的第一较佳实施例的侧视示意图。1 is a schematic side view of a first preferred embodiment of a power module with stepped pads formed on a ceramic substrate of the present invention.
图2为本实用新型陶瓷基板上形成有步阶接垫的电源模块的第二较佳实施例的侧视示意图。2 is a schematic side view of a second preferred embodiment of a power module with stepped pads formed on a ceramic substrate of the present invention.
图3为本实用新型陶瓷基板上形成有步阶接垫的电源模块的第三较佳实施例的侧视示意图。3 is a schematic side view of a third preferred embodiment of a power module with stepped pads formed on a ceramic substrate of the present invention.
其中:1、1’、1”为第一陶瓷基板;11为上表面;2、2’、2”为金属步阶接垫;21、21’为薄型接合层;22、22’为固晶层;221为设置面;23”为打线步阶焊垫;3、3’、3”为大功率电路元件;31、31’、31”为出入电极;311为底面;312、312’、312”为顶面;32”为控制电极;4、4’、4”为金属间隔单元;41’为薄型间隔层;42’为间隔固晶层;5、5’为金属对应接垫;51’为薄型对应层;52’为对应步阶层;6、6’为第二陶瓷基板;7”为打线。Among them: 1, 1', 1" are the first ceramic substrate; 11 is the upper surface; 2, 2', 2" are metal step pads; 21, 21' are thin bonding layers; 22, 22' are die-bonding 221 is the setting surface; 23" is the wire bonding step pad; 3, 3', 3" are high-power circuit components; 31, 31', 31" are the input and output electrodes; 311 is the bottom surface; 312" is the top surface; 32" is the control electrode; 4, 4', 4" are metal spacer units; 41' is the thin spacer layer; 42' is the spacer solid crystal layer; 5, 5' are the metal corresponding pads; ' is a thin corresponding layer; 52' is a corresponding step layer; 6 and 6' are the second ceramic substrate; 7'' is a wire bonding.
具体实施方式Detailed ways
下面结合附图和具体实施例,进一步阐述本实用新型。这些实施例应理解为仅用于说明本实用新型而不用于限制本实用新型的保护范围。在阅读了本实用新型记载的内容之后,本领域技术人员可以对本实用新型作各种改动或修改,这些等效变化和修改同样落入本实用新型权利要求所限定的范围。The present utility model will be further described below in conjunction with the accompanying drawings and specific embodiments. These embodiments should be understood as only for illustrating the present invention and not for limiting the protection scope of the present invention. After reading the contents recorded in the present utility model, those skilled in the art can make various changes or modifications to the present utility model, and these equivalent changes and modifications also fall within the scope defined by the claims of the present utility model.
第一较佳实施例first preferred embodiment
如图1所示,本实用新型第一较佳实施例提供的一种陶瓷基板上形成有步阶接垫的电源模块中,第一陶瓷基板1例释为氮化铝材质的高导热陶瓷基板,具有一上表面11以及至少一金属步阶接垫2,其中上述金属步阶接垫2包括薄型接合层21和固晶层22。本实施例中是以溅镀的方式将铜结合于上表面11,再镀厚形成厚度介于10至300微米的薄型接合层21,其中铜的热膨胀系数约为17ppm/K,而一般陶瓷基板材料(例如氧化铝、氮化铝与氮化硅)的热膨胀系数约为4~7ppm/K,借由设置厚度较薄的薄型接合层21,使其发挥较佳的延展性;接着利用光阻进行显影而第二次电镀铜,在薄型接合层21上进一步形成可供晶粒焊接结合的固晶层22,固晶层22的厚度方向投影面积小于薄型接合层21,其中固晶层22远离上述第一陶瓷基板1方向的上表面定义为一设置面221。当固晶层22受热膨胀时,一方面温度差会分布在较厚的金属层级中,使得单位厚度的温差降低;另方面借由薄型接合层21的延展性,保持金属步阶接垫2与陶瓷基板接合界面不易因热应力破裂。As shown in FIG. 1 , in a power module provided with step pads formed on a ceramic substrate provided by a first preferred embodiment of the present invention, the first ceramic substrate is an example of a high thermal conductivity ceramic substrate made of aluminum nitride. , has an
本实施例中的大功率电路元件3,则例释为义法半导体(STMicroelectronics)自动车级1200V的SiC功率芯片,以例如表面安装的方式焊接固定于固晶层22的设置面221。本实施例中大功率电路元件3,包含一个底面311、位于底面311焊接在固晶层22设置面221上的出入电极31、一个顶面312以及位于顶面312的出入电极31。由于此类大功率电路元件的电流甚至可达上百安培,一旦在传输途径中有些许阻抗,将会造成极大的发热,因此在本实施例中的焊接是透过加压及热融而达成。The high-
接着,将一个释例为铜的金属间隔单元4,表面经过纳米银烧结制程后,焊接于大功率电路元件3顶面312的出入电极31上,一方面保持电和热的良好导通,另方面,该金属间隔单元4高度方向的投影,不超过大功率电路元件3顶面312的出入电极31。尤其在本实施例中,金属间隔单元4的各角隅分别形成例如圆弧状的导角,使得无论是焊接时的加热或运作过程中大电流经过所导致温升,以及温度降低的反复温差下,热膨胀和冷却收缩所造成的接口间应力可以被圆弧状导角有效分散,借此避免热应力所造成的接口剥离。最后,第二陶瓷基板6则透过对应金属间隔单元4形成例如铜质金属的金属对应接垫5,焊接至金属间隔单元4上。Next, a
由于金属步阶接垫2的薄型接合层21厚度较薄,在例如表面安装等制造过程或后续的电动车运作过程中,即使是环境温度提高,陶瓷基板和薄型接合层21间的热膨胀程度差异较大,仍然可以借由薄型接合层21的可挠性,完全吸收彼此膨胀差异,确保结合关系良好。另方面,则可以固晶层22的厚度,减少单位距离中的温度梯度,避免温差造成困扰。Since the thickness of the
第二较佳实施例Second Preferred Embodiment
如图2所示,本实用新型第二较佳实施例提供的一种陶瓷基板上形成有步阶接垫的电源模块中,与前一较佳实施例相同部分于此不再赘述,相似的元件也使用相似名称与标号,仅就差异部分提出说明。本实施例中的金属间隔单元4’以及金属对应接垫5’都和第一陶瓷基板1’上的金属步阶接垫2’有相似的结构,透过一厚一薄的双层结构来缓冲膨胀系数差异所带来的接口剥离风险。其中,金属对应接垫5’包括一结合于第二陶瓷基板6’、且厚度介于10至300微米的薄型对应层51’,具有一个大于上述第二陶瓷基板6’的热膨胀系数,以及一结合于上述薄型对应层51’的对应步阶层52’,导电及导热结合至上述金属间隔单元4’相反于上述大功率电路元件3’侧面,其中上述对应步阶层52’的厚度方向投影面积小于上述薄型对应层51’,借此减缓上述薄型对应层51’与上述第二陶瓷基板6’的界面受热应力破裂;而上述金属间隔单元4’则包括一结合于上述金属对应接垫5’的薄型间隔层41’以及一结合于上述薄型间隔层41’的间隔固晶层42’,导电及导热结合至上述对应大功率电路元件3’的上述顶面312’出入电极31’,其中上述间隔固晶层42’的厚度方向投影面积小于上述薄型间隔层41’以及上述对应大功率电路元件3’的上述顶面312’。如此一来,上述金属间隔单元4’以及上述金属对应接垫5’如同上述金属步阶接垫2’的薄型接合层21’和固晶层22’,都形成阶梯状的结构,透过相似的原理避免接合界面因热应力破裂。As shown in FIG. 2 , in a power module provided with step pads formed on a ceramic substrate provided by a second preferred embodiment of the present invention, the same parts as those in the previous preferred embodiment will not be repeated here. Elements also use similar names and numbers, and only the differences are explained. The metal spacer units 4' and the metal corresponding pads 5' in this embodiment have similar structures to the metal step pads 2' on the first ceramic substrate 1'. The risk of interface debonding caused by differences in buffer expansion coefficients. The metal corresponding pad 5' includes a thin
第三较佳实施例Third Preferred Embodiment
如图3所示,本实用新型第三较佳实施例提供的一种陶瓷基板上形成有步阶接垫的电源模块中,与前述较佳实施例相同部分于此不再赘述,相似的元件也使用相似名称与标号,仅就差异部分提出说明。本实施例中的金属步阶接垫2”的阶梯状结构不仅用于乘载大功率电路元件3”,更同时作为独立的接垫用于打线7”。本实施例中的第一陶瓷基板1”上设置的金属步阶接垫2”与前述较佳实施例相异之处在于上述金属步阶接垫2”更包括有打线步阶焊垫23”,和上述金属步阶接垫2”具有相同上窄下宽的阶梯状结构,其中上述打线7”是自上述对应大功率电路元件3”上述顶面312”的控制电极32”电性连接至打线步阶焊垫23”;金属间隔单元4”则同上述第一较佳实施例所述,设置在大功率电路元件3”上述顶面312”的出入电极31”。As shown in FIG. 3 , in a power module provided with step pads formed on a ceramic substrate provided by a third preferred embodiment of the present invention, the same parts as those in the previous preferred embodiment will not be repeated here, and similar components Similar names and labels are also used, and only the differences are explained. The stepped structure of the
综上所述,本实用新型所提供的陶瓷基板上形成有步阶接垫的电源模块,透过复数个双层结构的金属步阶接垫,利用固晶层厚度而减缓单位厚度的温度差、以及利用薄型接合层面积超过固晶层厚度的结构,展现薄型接合层的延展性,减缓金属电路层与陶瓷基板的结合界面破裂的问题,而此技术领域中具有通常知识者,能够根据要求分别在金属步阶接垫、金属对应接垫或金属间隔单元,也就是大功率元件和双面基板之间的空间,自由搭配设计双层或多层的阶梯状结构,均无碍本实用新型实施效果。To sum up, the power supply module provided with the step pads formed on the ceramic substrate of the present invention can reduce the temperature difference per unit thickness by using the thickness of the solid crystal layer through a plurality of metal step pads with a double-layer structure. , and the use of a structure in which the area of the thin bonding layer exceeds the thickness of the solid crystal layer to show the ductility of the thin bonding layer and alleviate the problem of cracking of the bonding interface between the metal circuit layer and the ceramic substrate, and those with ordinary knowledge in this technical field can request In the space between the metal step pads, the metal corresponding pads or the metal spacer units, that is, the space between the high-power components and the double-sided substrate, it is possible to freely design a double-layer or multi-layer stepped structure without hindering the present invention. Implementation Effect.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122401677.4U CN216389353U (en) | 2021-10-07 | 2021-10-07 | A power module with stepped pads formed on a ceramic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122401677.4U CN216389353U (en) | 2021-10-07 | 2021-10-07 | A power module with stepped pads formed on a ceramic substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216389353U true CN216389353U (en) | 2022-04-26 |
Family
ID=81243730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202122401677.4U Active CN216389353U (en) | 2021-10-07 | 2021-10-07 | A power module with stepped pads formed on a ceramic substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216389353U (en) |
-
2021
- 2021-10-07 CN CN202122401677.4U patent/CN216389353U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4207896B2 (en) | Semiconductor device | |
US6911728B2 (en) | Member for electronic circuit, method for manufacturing the member, and electronic part | |
JP2592308B2 (en) | Semiconductor package and computer using the same | |
CA2704870A1 (en) | Heatsink and method of fabricating same | |
JP4683043B2 (en) | Manufacturing method of semiconductor device | |
JP2020516054A (en) | Circuit cooled on both sides | |
JP2005011922A (en) | Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it | |
CN111819684A (en) | Electronic component mounting module | |
CN216389353U (en) | A power module with stepped pads formed on a ceramic substrate | |
TWI775075B (en) | Ceramic substrate assemblies and components with metal thermally conductive bump pads | |
JP2735912B2 (en) | Inverter device | |
US20200312740A1 (en) | Low thermal resistance power module packaging | |
TWM625419U (en) | Power module with stepped pads formed on ceramic substrate | |
TWI706857B (en) | Ceramic substrate assembly and element with metal thermal conductive bump pads and manufacturing method thereof | |
JP3419642B2 (en) | Power module | |
JP4459031B2 (en) | Electronic component storage package and electronic device | |
TWI765352B (en) | High thermal conductivity ceramic substrate with protective pad and high-power module with the same | |
JPH08222670A (en) | Package for mounting semiconductor devices | |
CN113451252B (en) | High-heat-conductivity ceramic substrate with protection connecting pad and high-power module with same | |
TWI728672B (en) | A heat dissipation type electronic device | |
TWI722850B (en) | High thermal conductivity ceramic substrate with protective pad and high-power module with the substrate | |
US20240404927A1 (en) | Ceramic substrate for power module, method for manufacturing same, and power module having same | |
JP2003124584A (en) | Ceramic circuit board | |
JPH05114665A (en) | Heat radiative substrate | |
JP2006270062A (en) | Insulating heat-transfer structure and substrate for power module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240625 Address after: No. 526, Nanshang Road, Guishan District, Taoyuan, Taiwan, China, China Patentee after: ICP TECHNOLOGY Co.,Ltd. Country or region after: TaiWan, China Patentee after: XIAMEN SENTEC E&E CO.,LTD. Country or region after: China Address before: No. 526, Nanshang Road, Guishan District, Taoyuan, Taiwan, China, China Patentee before: ICP TECHNOLOGY Co.,Ltd. Country or region before: TaiWan, China Patentee before: Shanghai Zhaohui Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |