CN201635064U - Resistivity static penetration probe - Google Patents
Resistivity static penetration probe Download PDFInfo
- Publication number
- CN201635064U CN201635064U CN2010201566733U CN201020156673U CN201635064U CN 201635064 U CN201635064 U CN 201635064U CN 2010201566733 U CN2010201566733 U CN 2010201566733U CN 201020156673 U CN201020156673 U CN 201020156673U CN 201635064 U CN201635064 U CN 201635064U
- Authority
- CN
- China
- Prior art keywords
- probe
- friction cylinder
- resistivity
- soil
- inclinometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000523 sample Substances 0.000 title claims abstract description 43
- 230000003068 static effect Effects 0.000 title claims abstract description 23
- 230000035515 penetration Effects 0.000 title claims description 16
- 239000011148 porous material Substances 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000000149 penetrating effect Effects 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 239000002689 soil Substances 0.000 description 30
- 238000012360 testing method Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 244000145841 kine Species 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本实用新型公布了一种电阻率静力触探探头,在该探头上半段的外周包有两个环形电极(2),在环形电极(2)的两侧为绝缘层(1);在该探头下半段设有三分量地震检波器(3),在三分量地震检波器(3)的下部设有测斜仪(4),摩擦筒(5)位于测斜仪(4)的下方,在摩擦筒(5)的中部设有孔隙水压力传感器(6),在摩擦筒(5)的下方连接有探头(7),孔压过滤环(8)位于摩擦筒(5)与探头(7)的连接处。采用该探头,具有原位、快速、准确、经济等特点,为土木工程地基处理实践提供有力的检测工具。
The utility model discloses a resistivity static penetrating probe. Two annular electrodes (2) are wrapped around the upper half of the probe, and insulating layers (1) are formed on both sides of the annular electrodes (2); The lower half of the probe is provided with a three-component geophone (3), and an inclinometer (4) is arranged at the bottom of the three-component geophone (3), and the friction cylinder (5) is located below the inclinometer (4). A pore water pressure sensor (6) is provided in the middle of the friction cylinder (5), a probe (7) is connected below the friction cylinder (5), and a pore pressure filter ring (8) is located between the friction cylinder (5) and the probe (7). ) at the junction. The use of this probe has the characteristics of in-situ, rapidity, accuracy, and economy, and provides a powerful detection tool for the practice of civil engineering foundation treatment.
Description
技术领域technical field
本实用新型涉及一种电阻率静力触探探头,属于岩土工程领域中一种能够连续地分析测试土层原位电阻率的静力触探装置。The utility model relates to a resistivity static sounding probe, which belongs to a static sounding device capable of continuously analyzing and testing the in-situ resistivity of soil layers in the field of geotechnical engineering.
背景技术Background technique
静力触探技术是指利用压力装置将带有触探头的触探杆压入试验土层,通过量测系统测试土的锥尖阻力、侧壁摩阻力等,可确定土的某些基本物理力学特性,如土的变形模量、土的容许承载力等。静力触探技术至今已有80多年的历史。国际上广泛应用静力触探,部分或全部代替了工程勘察中的钻探和取样。我国于1965年首先研制成功电测式静力触探并应用于勘察。近几年随着传感器技术的快速发展,出现了很多新的静力触探技术,这些技术能够快速、准确地获得土层的孔隙水压力、地震波、污染物性状、温度、甚至影像。国外已将之大量应用于环境岩土工程领域。我国在新型静力触探传感器的研究起步比较晚,目前国内广泛使用的单双桥静力触探仅能够测试的贯入阻力或比贯入阻力,侧壁摩阻力,可确定的土层基本物理力学特性非常有限。Static CPT technology refers to using a pressure device to press a penetrating rod with a probe into the test soil layer, and through the measurement system to test the cone tip resistance and side wall friction resistance of the soil, some basic physical properties of the soil can be determined. Mechanical properties, such as the deformation modulus of the soil, the allowable bearing capacity of the soil, etc. The static penetration technology has a history of more than 80 years. Static CPT is widely used in the world, partially or completely replacing drilling and sampling in engineering investigation. In 1965, our country first successfully developed the electric measuring type static penetration and applied it to the survey. In recent years, with the rapid development of sensor technology, many new CPT technologies have emerged, which can quickly and accurately obtain pore water pressure, seismic waves, pollutant properties, temperature, and even images of soil layers. It has been widely used in the field of environmental geotechnical engineering in foreign countries. The research on the new static CPT sensor started relatively late in my country. The static CPT of single and double bridges widely used in China can only test the penetration resistance or specific penetration resistance, side wall friction resistance, and the basic soil layer that can be determined. Physicomechanical properties are very limited.
发明内容Contents of the invention
技术问题:本实用新型要解决的技术问题是针对国内现有单双桥静探技术存在的缺陷,提出一种用于地基处理效果检测的电阻率静力触探探头。Technical problem: The technical problem to be solved by this utility model is to propose a resistivity static penetration probe for foundation treatment effect detection in view of the defects existing in domestic single-double bridge static detection technology.
技术方案:本实用新型的电阻率静力触探探头上半段的外周包有两个环形电极,在环形电极的上下两侧为绝缘层;在该探头下半段设有三分量地震检波器,在三分量地震检波器的下部设有测斜仪,摩擦筒位于测斜仪的下方,在摩擦筒的中部设有孔隙水压力传感器,在摩擦筒的下方连接有探头,孔压过滤环位于摩擦筒与探头的连接处。Technical solution: The outer circumference of the upper half of the resistivity static penetration probe of the utility model is covered with two ring electrodes, and the upper and lower sides of the ring electrodes are insulating layers; the lower half of the probe is provided with a three-component geophone, An inclinometer is installed at the lower part of the three-component geophone, the friction cylinder is located below the inclinometer, a pore water pressure sensor is installed in the middle of the friction cylinder, a probe is connected to the bottom of the friction cylinder, and the pore pressure filter ring is located at the friction The connection between the barrel and the probe.
探头的锥角为60°,锥底截面积为10cm2,摩擦筒表面积150cm2。The cone angle of the probe is 60°, the cross-sectional area of the cone bottom is 10cm 2 , and the surface area of the friction cylinder is 150cm 2 .
孔压过滤环厚度5mm,位于锥肩位置,探头的有效面积比为0.8。The pore pressure filter ring has a thickness of 5 mm and is located at the cone shoulder. The effective area ratio of the probe is 0.8.
本实用新型的电阻率静力触探探头,其电阻率测试部分主要由两个铜质环形电极以及内部的电路系统等所组成。铜电极之间用绝缘塑料隔离开来,形成O形环状密封系统。通过其内部的电路系统与两个电极同步、连续地测量内部两电极间的电压变化,并计算电极周围土体的电阻率大小。The resistivity static penetration probe of the utility model has a resistivity testing part mainly composed of two copper ring electrodes and an internal circuit system. The copper electrodes are separated by insulating plastic to form an O-ring sealing system. Through its internal circuit system and two electrodes synchronously, continuously measure the voltage change between the two internal electrodes, and calculate the resistivity of the soil around the electrodes.
有益效果:因为电阻率静力触探探头所测土原位电阻率是土的基本参数之一,与土的结构、孔隙比、含水量及组成等密切相关,其变化可有效反映土体基本特性参数的变化。因此可以通过对比地基加固前后电阻率的不同来进行地基处理效果的评价,该项技术具有连续性、可靠性和可重复性的特点。Beneficial effects: Because the in-situ resistivity of the soil measured by the resistivity static penetration probe is one of the basic parameters of the soil, it is closely related to the structure, void ratio, water content and composition of the soil, and its change can effectively reflect the basic parameters of the soil. Changes in characteristic parameters. Therefore, the foundation treatment effect can be evaluated by comparing the resistivity before and after foundation reinforcement. This technology has the characteristics of continuity, reliability and repeatability.
假设地基处理前后,土性参数a和胶结系数m保持不变,根据Archie模型定义地基处理前后孔隙率比n′/n为(式中′表示地基处理后的值):Assuming that the soil property parameter a and the cementation coefficient m remain unchanged before and after foundation treatment, the porosity ratio n′/n before and after foundation treatment is defined according to the Archie model (in the formula, ′ represents the value after foundation treatment):
n′/n=((ρ′/ρ)·(ρw /ρw′))-1/m n′/n=((ρ′/ρ)·(ρ w /ρ w ′)) -1/m
式中,n′为地基处理后土的孔隙率;n为地基处理前土的孔隙率。In the formula, n' is the porosity of soil after foundation treatment; n is the porosity of soil before foundation treatment.
用在电阻率静力触探现场测试中,地下水电阻率测试和假设的m值可以用来评价地基处理前后土的孔隙率比。例如地基处理后砂土的孔隙率减小了,地基变得密实了。在探头贯入过程中扰动影响大的区域,体积应变的大小和分布随着密实度和应力水平而改变,实测证明两者在地基处理后均得到了提高。在另外一个振动置换场地加固前后电阻率的改变已得到了证实。Used in the field test of resistivity static penetrating sounding, the groundwater resistivity test and the assumed m value can be used to evaluate the porosity ratio of the soil before and after foundation treatment. For example, after foundation treatment, the porosity of sandy soil decreases, and the foundation becomes denser. In the area where the disturbance is greatly affected during the probe penetration process, the size and distribution of the volumetric strain change with the density and stress level, and the actual measurement proves that both of them have been improved after the foundation treatment. The change in resistivity before and after reinforcement of another vibration-displaced site has been confirmed.
附图说明Description of drawings
图1是本实用新型的测量原理图;Fig. 1 is the measurement schematic diagram of the utility model;
其中有:绝缘塑料1,环形电极2,三分量地震检波器3,测斜仪4,摩擦筒5,孔隙水压力传感器6,探头7,孔压过滤环8。Among them are:
具体实施方式Detailed ways
本实用新型的电阻率静力触探探头上半段的外周包有两个环形电极2,在环形电极2的两侧为绝缘层1;在该探头下半段设有三分量地震检波器3,在三分量地震检波器3的下部设有测斜仪4,摩擦筒5位于测斜仪4的下方,在摩擦筒5的中部设有孔隙水压力传感器6,在摩擦筒5的下方连接有探头7,孔压过滤环8位于摩擦筒5与探头7的连接处。探头7的锥角为60°,锥底截面积为10cm2。The outer circumference of the upper half of the resistivity static penetration probe of the utility model is covered with two
该探头集成了常规静力触探的功能(可测端阻、摩阻、倾斜和孔压)及土电阻率测试功能。土的电阻率是表征土体导电性的基本参数,是土的固有物性参数之一,取决于土的孔隙率、孔隙形状、孔隙液电阻率、饱和度、固体颗粒成分、形状、定向性、胶结状态等。土电阻率及其相关指标的变化规律反映土体的物理力学性质指标的变化规律。因此,基于电阻率静力触探技术可用于地基处理效果的评估。电阻率静力触探探头设备的核心部分为电阻率传感器,探头采用四电极排列方式,以消除气体发生和电镀可能造成的误差。探头有一特制的电伺服系统,使用自动修正技术确保在0~10000ms/s范围内的测试精度。探头规格符合国际标准:锥角60°,锥底截面积为10cm2,侧壁摩擦筒面积150cm2。The probe integrates the functions of conventional static penetration testing (measurable end resistance, friction resistance, inclination and pore pressure) and soil resistivity testing functions. The resistivity of soil is the basic parameter to characterize the conductivity of soil, and it is one of the inherent physical parameters of soil, which depends on the porosity, pore shape, pore fluid resistivity, saturation, solid particle composition, shape, orientation, bonding state, etc. The change law of soil resistivity and its related indexes reflects the change law of physical and mechanical property indexes of soil. Therefore, static CPT technology based on resistivity can be used to evaluate the effect of foundation treatment. The core part of the resistivity static penetration probe equipment is the resistivity sensor, and the probe adopts a four-electrode arrangement to eliminate possible errors caused by gas generation and electroplating. The probe has a special electric servo system, which uses automatic correction technology to ensure the test accuracy in the range of 0-10000ms/s. The probe specifications conform to international standards: the cone angle is 60°, the cross-sectional area of the cone bottom is 10cm 2 , and the area of the side wall friction cylinder is 150cm 2 .
三分量地震检波器3:型号为m317259,固有频率100HZ/60HZ,灵敏度104mV/kine,阻抗215Ω。Three-component geophone 3: model m317259, natural frequency 100HZ/60HZ, sensitivity 104mV/kine, impedance 215Ω.
陀螺测斜仪4:顶角测量范围:0°~15°;精度:±0.1°;顶角分辨率:0.01°;Gyro inclinometer 4: Vertex angle measurement range: 0°~15°; Accuracy: ±0.1°; Vertex angle resolution: 0.01°;
如图1所示为测量的原理图。由于探杆周围土中电场的复杂性,且边界条件难于控制,使得由探头所测得的土电学特征很复杂。通过欧姆定律得出了触探试验的理论方程,土电阻率是通过测试恒定电流下两电极间的电压降ΔV,并根据欧姆定律计算出土电阻R的大小而得出的。试样的竖向电阻率ρ可表示为:As shown in Figure 1 is the schematic diagram of the measurement. Due to the complexity of the electric field in the soil around the probe rod and the difficulty in controlling the boundary conditions, the soil electrical characteristics measured by the probe are very complicated. The theoretical equation of the penetrating test is obtained through Ohm's law. The soil resistivity is obtained by measuring the voltage drop ΔV between the two electrodes under constant current and calculating the resistance R of the soil according to Ohm's law. The vertical resistivity ρ of the sample can be expressed as:
式中,S为电极面积(m2),L为电极间距(m),I为电流强度(A)。In the formula, S is the electrode area (m 2 ), L is the electrode spacing (m), and I is the current intensity (A).
由于边界条件的复杂性,使得探头所得的土的电学特征很复杂。通过欧姆定律得出了触探试验的理论方程:Due to the complexity of the boundary conditions, the electrical characteristics of the soil obtained by the probe are very complicated. The theoretical equation of the penetrating test is obtained by Ohm's law:
ρ=π2ΔV/(CI)ρ=π 2 ΔV/(CI)
式中,C=1/(d+rM)-1/(d+r-rM)-1/(d+rN)+1/(d+r-rN),ρ为土的电阻率,ΔV为电压差,I为电流。In the formula, C=1/(d+r M )-1/(d+rr M )-1/(d+r N )+1/(d+rr N ), ρ is the resistivity of soil, and ΔV is The voltage difference, I is the current.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201566733U CN201635064U (en) | 2010-04-12 | 2010-04-12 | Resistivity static penetration probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201566733U CN201635064U (en) | 2010-04-12 | 2010-04-12 | Resistivity static penetration probe |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201635064U true CN201635064U (en) | 2010-11-17 |
Family
ID=43079550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010201566733U Expired - Fee Related CN201635064U (en) | 2010-04-12 | 2010-04-12 | Resistivity static penetration probe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201635064U (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799442A (en) * | 2010-04-12 | 2010-08-11 | 东南大学 | Resistivity static sounding probe |
CN102400456A (en) * | 2011-11-17 | 2012-04-04 | 东南大学 | Environment piezocone penetration test probe capable of testing fluorescence intensity of soil body |
CN102839641A (en) * | 2012-08-27 | 2012-12-26 | 东南大学 | Nuclear density pore pressure static cone penetration test probe for testing density of soil mass |
CN102841369A (en) * | 2012-09-06 | 2012-12-26 | 东南大学 | Environment piezocone penetration test probe used for detecting soil mass radioactive intensity in situ |
CN102953363A (en) * | 2012-11-14 | 2013-03-06 | 东南大学 | Resistivity detector for quantitatively evaluating change of soil porosity |
CN103061320A (en) * | 2013-01-07 | 2013-04-24 | 上海交通大学 | Method for determining soil permeability coefficient on basis of piezocone sounding |
CN103174122A (en) * | 2012-08-27 | 2013-06-26 | 东南大学 | Lateral stress pore pressure probe used for testing soil static lateral pressure coefficient |
CN104133254A (en) * | 2014-08-11 | 2014-11-05 | 福州华虹智能科技股份有限公司 | Electric and seismic comprehensive detection instrument for underground coal mine |
CN104234023A (en) * | 2014-09-19 | 2014-12-24 | 东南大学 | Bentonite slurry lubricated penetration rod used for piezocone penetration test |
CN109541180A (en) * | 2018-12-06 | 2019-03-29 | 青岛海洋地质研究所 | A kind of dedicated static sounding probe of hydrate reservoir |
CN116593535A (en) * | 2023-05-19 | 2023-08-15 | 中国矿业大学 | A micro-resistivity probe and detection method for detecting soil pollution concentration |
-
2010
- 2010-04-12 CN CN2010201566733U patent/CN201635064U/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799442A (en) * | 2010-04-12 | 2010-08-11 | 东南大学 | Resistivity static sounding probe |
CN102400456A (en) * | 2011-11-17 | 2012-04-04 | 东南大学 | Environment piezocone penetration test probe capable of testing fluorescence intensity of soil body |
CN103174122A (en) * | 2012-08-27 | 2013-06-26 | 东南大学 | Lateral stress pore pressure probe used for testing soil static lateral pressure coefficient |
CN102839641A (en) * | 2012-08-27 | 2012-12-26 | 东南大学 | Nuclear density pore pressure static cone penetration test probe for testing density of soil mass |
CN103174122B (en) * | 2012-08-27 | 2015-07-15 | 东南大学 | Lateral stress pore pressure probe used for testing soil static lateral pressure coefficient |
CN102841369A (en) * | 2012-09-06 | 2012-12-26 | 东南大学 | Environment piezocone penetration test probe used for detecting soil mass radioactive intensity in situ |
CN102841369B (en) * | 2012-09-06 | 2015-04-15 | 东南大学 | Environment piezocone penetration test probe used for detecting soil mass radioactive intensity in situ |
CN102953363A (en) * | 2012-11-14 | 2013-03-06 | 东南大学 | Resistivity detector for quantitatively evaluating change of soil porosity |
CN103061320A (en) * | 2013-01-07 | 2013-04-24 | 上海交通大学 | Method for determining soil permeability coefficient on basis of piezocone sounding |
CN104133254A (en) * | 2014-08-11 | 2014-11-05 | 福州华虹智能科技股份有限公司 | Electric and seismic comprehensive detection instrument for underground coal mine |
CN104234023A (en) * | 2014-09-19 | 2014-12-24 | 东南大学 | Bentonite slurry lubricated penetration rod used for piezocone penetration test |
CN109541180A (en) * | 2018-12-06 | 2019-03-29 | 青岛海洋地质研究所 | A kind of dedicated static sounding probe of hydrate reservoir |
CN116593535A (en) * | 2023-05-19 | 2023-08-15 | 中国矿业大学 | A micro-resistivity probe and detection method for detecting soil pollution concentration |
CN116593535B (en) * | 2023-05-19 | 2023-10-20 | 中国矿业大学 | Miniature resistivity probe for detecting soil pollution concentration and detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201635064U (en) | Resistivity static penetration probe | |
CN101858075A (en) | Environmental Static Penetration Probe for Contaminated Foundation Soil | |
CN101799442A (en) | Resistivity static sounding probe | |
CN103174122B (en) | Lateral stress pore pressure probe used for testing soil static lateral pressure coefficient | |
CN102900063B (en) | Dynamic pore-pressure static sounding probe for detecting sludge | |
CN102564676B (en) | Penetrating-stretching type pore water pressure measurement device and measurement method thereof | |
CN207557160U (en) | System is monitored for the Multifunctional corrosion of reinforced concrete structure | |
CN103147432A (en) | Spherical hole-pressure static cone penetration probe for detecting sludge | |
CN106706673B (en) | Test method for concentration of heavy metal pollutants based on environmental hole pressure static penetration probe | |
CN102839641A (en) | Nuclear density pore pressure static cone penetration test probe for testing density of soil mass | |
CN103343530B (en) | The micro-scale pores pressure static sounding probe of the very thin soil layer of a kind of effective identification | |
Comina et al. | EIT Oedometer: an advanced cell to monitor spatial and time variability in soil with electrical and seismic measurements | |
CN102518107A (en) | Environmental geotechnical piezocone penetration test probe capable of extracting gas samples and gas sample extracting method | |
CN103255757A (en) | Energy environment static sounding probe capable of measuring deep soil temperatures | |
CN102943458A (en) | Device based on resistivity piezocone penetration test and saturated sandy soil dilatancy evaluation method | |
CN103061321B (en) | Cone penetrometer for evaluating penetration property of unsaturated soil | |
CN102520134B (en) | An environmental probe that can test the pH value of soil in situ | |
CN204514850U (en) | A kind of galvanochemistry the cannot-harm-detection device detecting cracks of metal surface | |
CN201635066U (en) | Environmental Static Penetration Probe for Contaminated Foundation Soil | |
CN203361119U (en) | Energy environment static sounding probe capable of measuring temperature of deep soil | |
CN103674169A (en) | Method for automatically measuring pipe-free embedded type groundwater level and water level changes | |
CN113484138B (en) | Damage cumulative assessment method for rock slopes under complex loads based on electrical measurement | |
CN102953363A (en) | Resistivity detector for quantitatively evaluating change of soil porosity | |
CN102135572A (en) | Environmental pore-pressure cone penetration test probe capable of measuring dielectric constant of soil | |
CN116289848A (en) | In-situ controllable frequency electric pore pressure static cone penetration test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101117 Termination date: 20130412 |