CN201184875Y - Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave - Google Patents
Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave Download PDFInfo
- Publication number
- CN201184875Y CN201184875Y CNU2007200875155U CN200720087515U CN201184875Y CN 201184875 Y CN201184875 Y CN 201184875Y CN U2007200875155 U CNU2007200875155 U CN U2007200875155U CN 200720087515 U CN200720087515 U CN 200720087515U CN 201184875 Y CN201184875 Y CN 201184875Y
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- torsional wave
- receiving element
- exciting unit
- magnetostriction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
A device which is based on magnetostrictive torsional waves for detecting defects of a magnetic conductive component belongs to ultrasonic non-destructive detection devices. The device aims to overcome the shortcomings of greater attenuation of guided waves and obvious frequency dispersion effect of the longitudinal mode, and the surface of a component does not need to be processed during the detection. The device comprises a pulse signal generator, a power amplifier, a magnetostrictive torsional wave sensor, a signal pre-processor, an A/D converter and a computer; and the magnetostrictive torsional wave sensor comprises an exciting unit and a receiving unit. The computer controls the generation of pulse signals, the pulse signals are amplified by a power amplifier, torsional waves are generated in the component through the exciting unit, torsional waves which are spread in the component are received by the receiving unit, processed by the signal pre-processor and converted to digital signals through the A/D converter, and the defect information of the component is obtained through the processing by the computer. The device can conveniently excite and receive the torsinal waves and detect the defects along the direction of the axial line of the component, the device can be applied in a pipeline with a coating layer and a cable with a PE protection tube for the long-distance detection.
Description
Technical field
The utility model belongs to the Ultrasonic Nondestructive device, particularly a kind of device that detects member defectives such as pipeline, suspension cable based on magnetic striction wave guide.
Background technology
In the prior art to the detection of defective in pipeline, rod iron, wire rope and the similar conducting magnetic component mainly by magnetic, eddy current, method such as ultrasonic.It is exactly sensor must be placed or scanned relevant position as the privileged site of wanting detection means that there is a problem in said method, yet it is inaccessible using on-the-spot some position in reality, peach shape ring as wire rope, dark buried pipeline etc., and the key position of these positions in using often.Supersonic guide-wave has some excitation, can detect the advantage of a segment distance, be applied to gradually and detected in the practice, the patent No. 96193606.1 has been announced a kind of pipeline and steel pipe lossless detection method and equipment that utilizes magneto strictive sensor, this patent disclosure the guided wave sensor of vertical pattern, be mainly used in the detection transverse defect, the decay of the guided wave of vertical pattern in member is bigger, has significantly frequency dispersion effect.Number of patent application 200480038549.4 discloses the method and system that a kind of torsional wave that is used for heat-exchange tube detects, mainly utilize a kind of guided wave probe scheme, produce and receive the torsional wave signal from tube interior and realize defects detection, but this method can't and receive torsional wave from the pipeline external drive, must handle inner surface of component when member is detected.
Summary of the invention
The utility model provides a kind of device based on magnetostriction torsional wave detection conducting magnetic component defective, and it is bigger that purpose is to overcome the decay of vertical pattern guided wave, has the significantly deficiency of frequency dispersion effect, need not handle component surface during detection.
A kind of device based on magnetostriction torsional wave detection conducting magnetic component defective of the present utility model comprises pulse signal generator, power amplifier, magnetostriction torsional wave sensor, signal preprocessor, A/D converter and computing machine; It is characterized in that:
Described magnetostriction torsional wave sensor comprises exciting unit and receiving element, computing machine connects the pulse signal generator control end by cable, pulse signal generator output electric signal connects power amplifier, power amplifier connects exciting unit by cable, and exciting unit utilizes magnetostrictive effect to encourage the elastic wave of torsion mode in detected member;
Receiving element utilizes counter magnetostriction effect that the elastic wave conversion of signals in the detected member is electric signal, outputs to signal preprocessor, and the signal preprocessor electric signal connects A/D converter, the signals collecting end of the digital signal input computing machine after the conversion.
Described device based on magnetostriction torsional wave detection conducting magnetic component defective is characterized in that:
Described exciting unit is identical with the receiving element structure; have rectangular channel in the middle of the housing; lay permanent magnet in the rectangular channel; permanent magnet polarity is vertical direction, and the rectangular channel both sides have skewed slot, places coil in the skewed slot; the housing upper surface is equipped with cover plate; be used to protect permanent magnet and coil, two coils are connected with socket on the cover plate respectively, and the housing bottom surface is reverse V-shaped or arc surface.
Described device based on magnetostriction torsional wave detection conducting magnetic component defective is characterized in that:
Described permanent magnet adopts rare-earth permanent magnet, and quantity is 1~20 stack; Be provided with prime amplifier in the described receiving element, coil receives the torsional wave signal, delivers to send into pretreater again after prime amplifier is handled and handle.
Described device based on magnetostriction torsional wave detection conducting magnetic component defective is characterized in that:
Described exciting unit has M, and forming array uses side by side, and the permanent magnet polarity face of housing bottom surface is identical; Described receiving element has N, and forming array uses side by side, and the permanent magnet polarity face of housing bottom surface is identical; M is 1~100, and N is 1~100.
The generation of computing machine control wave in the utility model, this signal is after power amplifier amplifies, exciting unit by magnetostriction torsional wave sensor produces torsional wave in member, this torsional wave is propagated in member, and be electric signal by the torsional wave of propagating in the receiving element receiving member, after signal preprocessor is handled, be converted to digital signal by A/D converter, obtain the defect information of member by Computer Processing.Utilize the utility model can encourage and receive torsional wave easily, detect along the defective of member axis direction, because torsional wave is subjected to ectocine little in member is propagated, decay is few, can be applicable to be with the clad pipeline, the long distance detecting of band PE pillar cable.
Description of drawings
Fig. 1 is a formation synoptic diagram of the present utility model;
Fig. 2 is the structural drawing of torsional wave sensor excitation unit in the utility model;
Fig. 3 is the structural drawing of the receiving element of band prime amplifier in the utility model;
Fig. 4 is installed in synoptic diagram on the steel pipe for the torsional wave sensor;
Fig. 5 is the signal waveforms that utilizes the utility model to obtain on steel pipe.
Embodiment
Describe content of the present utility model in detail below in conjunction with accompanying drawing.
As shown in Figure 1, in the utility model, magnetostriction torsional wave sensor 2 comprises exciting unit 3 and receiving element 9, computing machine 6 is connected by the control end of communication cable with pulse signal generator 5, the output terminal of pulse signal generator 5 connects the input end of power amplifier 4, the output terminal of power amplifier 4 is connected to exciting unit 3 by high frequency cable, exciting unit 3 utilizes magnetostrictive effect to encourage the elastic wave of torsion mode in detected member 1, receiving element 9 utilizes counter magnetostriction effect that the elastic wave conversion of signals is electric signal, the output terminal of receiving element 9 is connected to the input end of signal preprocessor 8, the output terminal of signal preprocessor 8 is connected to the input end of A/D converter 7, and the digital signal after conversion is connected with the signals collecting input end of computing machine 6 by the output terminal of A/D converter 7.
Figure 2 shows that the structural drawing of magnetostriction torsional wave sensor excitation unit in the utility model, constitute by permanent magnet 10, coil 11, cover plate 12, socket 13, housing 14.Permanent magnet 10 and coil 11 are installed in housing 14 inside, permanent magnet 10 be positioned at housing 14 directly over, and the pole orientation that guarantees magnet is perpendicular to housing 14,11 two of coils are one group, are installed in the both sides perpendicular to housing 14 respectively.Housing 14 and cover plate 12 are used to protect inner structure, cover plate 12 centre perforate mounting receptacles 13, and socket 13 is used for the input of pumping signal and the output of received signal.
The structure of receiving element and exciting unit can be identical, when specifically implementing, can the diameter than receiving element coil of the diameter of exciting unit coil design is thick, but that the number of turn of receiving element coil can design is more.
Figure 3 shows that the structural drawing of the receiving element of band prime amplifier, compare that receiving element is furnished with the stability that prime amplifier 15 improves signal with Fig. 2.
Provide an embodiment below in conjunction with content of the present utility model.
Member to be measured is that length 3200mm, internal diameter are that 26mm, external diameter are the steel pipe of 38mm, and defective 16 is grown vertically for 40mm, the wide 0.5mm of being, the degree of depth are 2mm, is positioned at apart from end 810mm place, and magnetostriction torsional wave sensor scheme of installation as shown in Figure 4.Exciting unit 3 and receiving element 9 structures as shown in Figure 2, wherein 2 exciting units are placed with member to be measured relatively axle center symmetric position, the coil of exciting unit is long 100mm, wide 35mm, the number of turn 5 circles directly are that the enamel covered wire coiling of 1mm forms with line; Permanent magnet adopts rare-earth permanent magnet, and quantity is 4 stacks; 1 receiving element coil is long 55mm, wide 35mm, and the number of turn 40 circles directly are that the enamel covered wire coiling of 0.18mm forms with line; Permanent magnet adopts rare-earth permanent magnet, and quantity is 4 stacks.At first respectively exciting unit and receiving element are installed on the steel pipe, the frequency of utilizing the computer installation pulse signal generator is that 2, interval time are that 150ms, multiplicity are 500 times for the number of 40KHz, pulse.Pulse signal is transferred to exciting unit after power amplifier amplifies, in member, produce the elastic wave of torsion mode by magnetostrictive effect, receiving element utilizes counter magnetostriction effect that the elastic wave conversion of signals is electric signal, signal enters A/D converter behind pretreater, enter into computing machine then, the detection signal that obtains as shown in Figure 5.Be designated among Fig. 5: by Air Coupling electromagnetic pulse signal M
1, the first time is by the signal S of receiving element
1, right part echoed signal S
2, left part echoed signal S
3, flaw echo F
1
Claims (4)
1. the device based on magnetostriction torsional wave detection conducting magnetic component defective comprises pulse signal generator, power amplifier, magnetostriction torsional wave sensor, signal preprocessor, A/D converter and computing machine; It is characterized in that:
Described magnetostriction torsional wave sensor comprises exciting unit and receiving element, computing machine connects the pulse signal generator control end by cable, pulse signal generator output electric signal connects power amplifier, power amplifier connects exciting unit by cable, and exciting unit utilizes magnetostrictive effect to encourage the elastic wave of torsion mode in detected member;
Receiving element utilizes counter magnetostriction effect that the elastic wave conversion of signals in the detected member is electric signal, outputs to signal preprocessor, and the signal preprocessor electric signal connects A/D converter, the signals collecting end of the digital signal input computing machine after the conversion.
2. the device based on magnetostriction torsional wave detection conducting magnetic component defective as claimed in claim 1 is characterized in that:
Described exciting unit is identical with the receiving element structure; have rectangular channel in the middle of the housing; lay permanent magnet in the rectangular channel; permanent magnet polarity is vertical direction, and the rectangular channel both sides have skewed slot, places coil in the skewed slot; the housing upper surface is equipped with cover plate; be used to protect permanent magnet and coil, two coils are connected with socket on the cover plate respectively, and the housing bottom surface is reverse V-shaped or arc surface.
3. the device based on magnetostriction torsional wave detection conducting magnetic component defective as claimed in claim 2, it is characterized in that: described permanent magnet adopts rare-earth permanent magnet, and quantity is 1~20 stack; Be provided with prime amplifier in the described receiving element, coil receives the torsional wave signal, delivers to send into pretreater again after prime amplifier is handled and handle.
4. as claim 2 or 3 described devices, it is characterized in that based on magnetostriction torsional wave detection conducting magnetic component defective:
Described exciting unit has M, and forming array uses side by side, and the permanent magnet polarity face of housing bottom surface is identical; Described receiving element has N, and forming array uses side by side, and the permanent magnet polarity face of housing bottom surface is identical; M is 1~100, and N is 1~100.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200875155U CN201184875Y (en) | 2007-10-11 | 2007-10-11 | Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200875155U CN201184875Y (en) | 2007-10-11 | 2007-10-11 | Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201184875Y true CN201184875Y (en) | 2009-01-21 |
Family
ID=40272615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007200875155U Expired - Lifetime CN201184875Y (en) | 2007-10-11 | 2007-10-11 | Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201184875Y (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101832974A (en) * | 2010-05-28 | 2010-09-15 | 北京工业大学 | Monomer magnetostrictive sensor used for steel strand detection on basis of pitch and catch technique |
CN102944611A (en) * | 2012-11-20 | 2013-02-27 | 杭州浙大精益机电技术工程有限公司 | Steel tube nondestructive testing system using magnetostriction torsion ultrasonic guided waves |
WO2017009516A1 (en) * | 2015-07-16 | 2017-01-19 | Universidad De Granada | Device for emitting torsional ultrasonic waves and transducer comprising said device |
CN109883484A (en) * | 2019-03-22 | 2019-06-14 | 西安石油大学 | A kind of in-service oil pipeline stress mornitoring of integration and safe operation system |
-
2007
- 2007-10-11 CN CNU2007200875155U patent/CN201184875Y/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101832974A (en) * | 2010-05-28 | 2010-09-15 | 北京工业大学 | Monomer magnetostrictive sensor used for steel strand detection on basis of pitch and catch technique |
CN101832974B (en) * | 2010-05-28 | 2011-11-09 | 北京工业大学 | Monomer magnetostrictive sensor used for steel strand detection on basis of pitch and catch technique |
CN102944611A (en) * | 2012-11-20 | 2013-02-27 | 杭州浙大精益机电技术工程有限公司 | Steel tube nondestructive testing system using magnetostriction torsion ultrasonic guided waves |
CN102944611B (en) * | 2012-11-20 | 2014-12-31 | 杭州浙达精益机电技术股份有限公司 | Steel tube nondestructive testing system using magnetostriction torsion ultrasonic guided waves |
WO2017009516A1 (en) * | 2015-07-16 | 2017-01-19 | Universidad De Granada | Device for emitting torsional ultrasonic waves and transducer comprising said device |
US11161149B2 (en) | 2015-07-16 | 2021-11-02 | Universidad De Grenada | Device for emitting torsional ultrasonic waves and transducer comprising said device |
CN109883484A (en) * | 2019-03-22 | 2019-06-14 | 西安石油大学 | A kind of in-service oil pipeline stress mornitoring of integration and safe operation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101140266B (en) | Device detecting magnetic conduction component defect based on magnetic striction torsion wave | |
CN105445362B (en) | A kind of magnetic striction wave guide detection sensor and detection method based on open magnetic circuit | |
CN108562642B (en) | Electromagnetic transduction device of longitudinal mode ultrasonic guided wave, pipeline detection system and method | |
JP4392129B2 (en) | Method and apparatus for long range inspection of plate-type ferromagnetic structures | |
CN107790363B (en) | Array type multi-angle spiral SH guided wave electromagnetic ultrasonic transducer | |
CN103439418B (en) | A kind of low-order torsional mode electromagnetic acoustic array transducer | |
CN103278558A (en) | Anchoring system nondestructive test apparatus and method based on magnetic induced shrinkage or elongation | |
CN103940911A (en) | Detection device and method for service bridge inhaul cable/suspension cable anchor system | |
CN109444262B (en) | Oblique incidence type electromagnetic acoustic sensor based on oblique static magnetic field | |
CN106768283B (en) | A kind of pipe ultrasonic guided wave on-line measuring device and detection method based on long range waveguide | |
CN201184875Y (en) | Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave | |
CN106641734A (en) | Online high-temperature pipeline ultrasonic guided wave detection device based on L-shaped waveguide structure | |
CN108776178A (en) | A kind of electromagnet ultrasonic changer and its working method for exciting pipeline torsion guided wave | |
CN103235046A (en) | One-way launching electromagnetic ultrasonic surface wave transducer and method adopting transducer to detect metal surface defect | |
CN109406631B (en) | Parallel steel wire pulling sling detection device and method | |
CN103698407A (en) | Magnetostrictive twist guided wave sensor for rail bottom defect detection | |
CN110152963A (en) | A kind of periodic permanent magnet iron formula omni-directional horizontal shear mode Electromagnetic Acoustic Transducer | |
CN102564364B (en) | Electromagnetic ultrasonic transducer for measuring wall thickness of test piece and method for measuring wall thickness of test piece | |
CN202854097U (en) | Magnetostriction sensor for round steel defect detection | |
CN118294535B (en) | Magnetostrictive guided wave sensor for circumference Xiang Gaopin of pipeline | |
CN113176342B (en) | Internally-inserted electromagnetic ultrasonic spiral guided wave transducer and working method thereof | |
CN112147235B (en) | Electromagnetic ultrasonic excitation device for pipeline guided wave mixing detection | |
CN107132283B (en) | Longitudinal wave mode electromagnetic ultrasonic pipeline internal detection spiral guided wave transducer | |
CN111665266B (en) | Pipeline magnetostriction torsional wave sensor and detection method thereof | |
CN1268922C (en) | Electromagnetic guided wave detector and method for sea platform structure defect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20090121 Effective date of abandoning: 20071011 |