CN208646650U - A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge - Google Patents
A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge Download PDFInfo
- Publication number
- CN208646650U CN208646650U CN201820874512.4U CN201820874512U CN208646650U CN 208646650 U CN208646650 U CN 208646650U CN 201820874512 U CN201820874512 U CN 201820874512U CN 208646650 U CN208646650 U CN 208646650U
- Authority
- CN
- China
- Prior art keywords
- switch
- bus
- parallel
- battery
- mosfet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000007599 discharging Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
The utility model relates to the equalizing circuits of a kind of charged in parallel and selective single battery equalization discharge, and the utility model is by battery pack, DC/DC converter, Mosfet switch, bus switch K with anti-paralleled diode1, bus switch K2, bus switch P1, bus switch P2, switch Q1, switch Q2, switch Q3, switch Q4It constitutes.Charged in parallel may be implemented in the utility model, the single battery is just isolated into charging circuit when any one single battery reaches the blanking voltage of setting, charge cutoff voltage of the final all single batteries all set by reach due to stops charging to reach the balanced purpose of pressure.Equalization discharge is carried out using a battery pack DC/DC converter in parallel to SOC in battery pack minimum single battery balanced, and when electric discharge can effectively reduce the inconsistency between each single battery.
Description
Technical Field
The utility model relates to a parallelly connected balanced circuit that charges and selectivity battery cell balanced that discharges belongs to power electronic technology and the balanced management technical field of storage battery energy.
Background
With the development of the times and the progress of science and technology, the environmental problems and the energy crisis become more serious, especially the greenhouse effect is intensified due to the excessive exploitation and use of fossil fuels such as petroleum, coal and the like, and the primary energy is non-renewable and faces the problem of exhaustion. Human sustainability faces a great challenge. In the era of rapid economic development, automobiles become main vehicles, and meanwhile, the consumption of fossil energy is accelerated, and the deterioration of the environment is aggravated. In order to solve these problems, various countries seek renewable energy and clean energy. In the automotive field, electric vehicles such as tesla, bmi, audi, BYD, and the like are being vigorously developed. However, the most critical technology for electric vehicles is energy storage, and the storage capacity of electric energy directly restricts the development of the electric vehicle industry. With the rapid development of batteries and battery management technologies, lithium ion batteries have advantages of high energy density, relatively high nominal voltage, no memory effect, no pollution and the like, are favored by the market, and are widely applied to energy storage of electric vehicles.
In order to meet the voltage and current requirements for driving the motor of the electric automobile, a large number of single lithium ion batteries have to be connected in series for use. However, in the manufacturing process of the battery 1, the capacity, the internal resistance and the like of the battery in the same batch are different due to the process and the like; 2. the self-discharge rate of the batteries is different, and the long-time accumulation causes the difference of the battery capacity; 3. during the use of the battery, the use environment (temperature, difference of circuit boards, etc.) causes the difference of the battery capacity. And the like, can cause inconsistencies between the individual cells in the battery pack. The capacity of the series battery pack is affected by the capacity of the minimum single battery, in short, imbalance among the single batteries not only reduces the stored electric quantity, but also shortens the service life of the battery pack, so that energy balance management has to be performed on the battery pack, the balance efficiency of the existing balance method is generally low, and non-energy dissipation type balance control is complex.
Disclosure of Invention
The inconsistent problem of energy between the lithium ion battery cell to a large amount of series connections in the on-vehicle lithium ion power battery system of electric automobile, the utility model provides a parallelly connected balanced circuit that charges and selectivity battery cell balanced that discharges.
The technical scheme of the utility model is that: an equalizing circuit for parallel charging and selective single battery discharge equalization is composed of battery pack, DC/DC converter, Mosfet switch with anti-parallel diode, and bus switch K1Bus switch K2Bus switch P1Bus switch P2Q switch1Q switch2Q switch3Q switch4Forming;
the battery pack consists of n single batteries CiThe Mosfet switch with the anti-parallel diodes consists of n Mosfet switches M with the anti-parallel diodesiN Mosfet switches N with antiparallel diodesiN-1 Mosfet switch S with antiparallel diodesjComposition is carried out; wherein j is 1,2,3, n-1, i is 1,2,3, n;
the single battery CiAnd a Mosfet switch M with an antiparallel diodeiWith antiparallel diodes, Mosfet switch MiIs connected with the positive bus L of the battery pack1Upper and lower bus switch K1Bus switch P1Control bus L1Make-and-break; single battery CiCathode and Mosfet switch N with anti-parallel diodeiWith antiparallel diode, and a Mosfet switch NiIs connected with the cathode bus L of the battery pack2Upper and lower unionLine switch K2Bus switch P2Control bus L2Switching on and off; mosfet switch S of n-1 anti-parallel diodesjSource electrode and single battery CjAnd a Mosfet switch N with an antiparallel diodejIs connected with the drain electrode of the switching element, and n-1 anti-parallel diodes are connected with the Mosfet switch SjDrain electrode of and single cell Cj+1Anode of and Mosfet switch M with anti-parallel diodej+1The source electrodes of the two-way transistor are connected; positive pole of DC/DC converter input and in the first single battery C1And by a switch Q1Controlling on-off, negative pole of DC/DC converter input and in last single battery CnOn the negative pole and by a switch Q2The on-off is controlled, and the positive pole of the output of the DC/DC converter is connected with n single batteries CiPositive bus L of assembled battery1Upper and lower by a switch Q3The on-off is controlled, the negative pole of the output of the DC/DC converter is connected with the n single batteries CiNegative electrode bus L of the assembled battery2Upper and lower by a switch Q4Controlling on-off; bus switch K1Mosfet switch M with anti-parallel diode1Between the drain of the switch and the positive side of the external power/load connection, a bus switch P1Mosfet switch M with anti-parallel diode1Between the source of (a) and the positive side of the external power/load connection; bus switch K2Mosfet switch N connected with anti-parallel diode1Between the source of (A) and the negative terminal of the external power/load connection, a bus switch P2Connected to the last single battery CnThe negative electrode is connected to the negative terminal of an external power/load connection.
When the equalizing circuit performs charge equalization, all the single batteries are directly connected in parallel on the power supply, and if a certain single battery CiWhen the set charge cut-off voltage is reached, the single battery C is controllediSeries Mosfet switch M with anti-parallel diodeiMosfet switch N with anti-parallel diodeiIs disconnected, thereby the single cell C isiIsolating the charging circuit.
When the equalization circuit performs discharge equalization, the equalization circuit performsDuring charge equalization, if a certain single battery CiVoltage V ofiAnd average voltage V of battery packavWhen the difference △ V is not less than β, the single battery C is controllediSeries Mosfet switch M with anti-parallel diodeiMosfet switch N with anti-parallel diodeiIs turned on, and the single battery C is supplied through a DC/DC converteriBalancing so as to keep the consistency of each single battery;
wherein,△V=Vav—Viand β denotes a threshold value.
The utility model has the advantages that: the utility model discloses can realize parallelly connected charging, just keep apart charging circuit with this battery cell when arbitrary battery cell reaches the cutoff voltage of settlement, thereby finally all battery cells stop charging and reach and force balanced purpose because of reaching the cutoff voltage of setting for of charging. In the discharge equalization, the battery pack is connected with a DC/DC converter in parallel to equalize the single batteries with the lowest SOC (state of charge, also called residual capacity, which represents the ratio of the residual capacity of the batteries after being used for a period of time or left unused for a long time to the capacity of the batteries in a full charge state, and the common percentage represents the minimum SOC, so that the inconsistency among the single batteries can be effectively reduced during discharge. The equalizing circuit can obviously improve the charging speed, does not need an additional equalizing circuit to keep the consistency of each single battery during charging, and selectively supplies the voltage of the single battery in the battery pack and the average voltage V of the battery pack in a discharging equalizing wayavSingle battery C with difference value greater than or equal to set threshold value βiEqualization is performed. The equalizing circuit has the advantages of simple principle, easy control, no need of high-frequency pulse width modulation and high equalizing efficiency. The battery pack is formed by n single batteries, and the parity of n does not influence the battery pack structure, thereby facilitating the expansion of the circuit structure.
Drawings
Fig. 1 is a schematic diagram of an equalizing circuit based on parallel charging and selective cell discharge equalization according to the present invention;
fig. 2 is a schematic diagram of a charge equalization circuit for n cells;
fig. 3 is a schematic diagram of a discharge equalization circuit for n cells;
FIG. 4 is a schematic diagram of a charge equalization circuit for 5 cells;
FIG. 5 is a charging equalization equivalent circuit diagram for 5 cells;
FIG. 6 is a schematic diagram of a discharge equalization circuit for 5 cells;
FIG. 7 is a discharge equalization equivalent circuit diagram of 5 cells;
as shown in the figure, the gray portion is in an off state, and the black portion is in an on or operating state.
Detailed Description
Example 1: as shown in figure 1, the equalizing circuit for parallel charging and selective single battery discharge equalization consists of a battery pack, a DC/DC converter, a Mosfet switch with an anti-parallel diode, and a bus switch K1Bus switch K2Bus switch P1Bus switch P2Q switch1Q switch2Q switch3Q switch4Forming;
the battery pack consists of n single batteries CiThe Mosfet switch with the anti-parallel diodes consists of n Mosfet switches M with the anti-parallel diodesiN Mosfet switches N with antiparallel diodesiN-1 Mosfet switch S with antiparallel diodesjComposition is carried out; wherein j is 1,2,3, n-1, i is 1,2,3, n;
the single battery CiAnd a Mosfet switch M with an antiparallel diodeiWith antiparallel diodes, Mosfet switch MiIs connected with the positive bus L of the battery pack1Upper and lower bus switch K1Bus switch P1Control bus L1Make-and-break; single battery CiCathode and Mosfet switch N with anti-parallel diodeiWith antiparallel diode, and a Mosfet switch NiIs connected with the cathode bus L of the battery pack2Upper and lower bus switch K2Bus switch P2Control bus L2Switching on and off; mosfet switch S of n-1 anti-parallel diodesjSource electrode and single battery CjAnd a Mosfet switch N with an antiparallel diodejIs connected with the drain electrode of the switching element, and n-1 anti-parallel diodes are connected with the Mosfet switch SjDrain electrode of and single cell Cj+1Anode of and Mosfet switch M with anti-parallel diodej+1The source electrodes of the two-way transistor are connected; positive pole of DC/DC converter input and in the first single battery C1And by a switch Q1Controlling on-off, negative pole of DC/DC converter input and in last single battery CnOn the negative pole and by a switch Q2The on-off is controlled, and the positive pole of the output of the DC/DC converter is connected with n single batteries CiPositive bus L of assembled battery1Upper and lower by a switch Q3The on-off is controlled, the negative pole of the output of the DC/DC converter is connected with the n single batteries CiNegative electrode bus L of the assembled battery2Upper and lower by a switch Q4Controlling on-off; bus switch K1Mosfet switch M with anti-parallel diode1Between the drain of the switch and the positive side of the external power/load connection, a bus switch P1Mosfet switch M with anti-parallel diode1Between the source of (a) and the positive side of the external power/load connection; bus switch K2Mosfet switch N connected with anti-parallel diode1Between the source of (A) and the negative terminal of the external power/load connection, a bus switch P2Connected to the last single battery CnThe negative electrode is connected to the negative terminal of an external power/load connection.
The utility model discloses a control process is:
the method comprises the following steps of charge equalization and discharge equalization control:
charging equalization: switch on bus switch K1Bus switch K2Current-running charging loop for controlling bus switch P1Bus switch P2Is in a disconnected state; control switch Q1Q switch2Q switch3Q switch4In the off state, the DC/DC converter switch is completely isolated out of the circuit; the single cell C is charged during the whole charging process1、C2、C3...CnAll are in parallel state: when a certain single battery CiWhen the set charge cut-off voltage is reached, the single battery C is controllediSeries Mosfet switch M with anti-parallel diodeiMosfet switch N with anti-parallel diodeiIs disconnected, thereby the single cell C isiIsolating the charging circuit until all the single batteries reach a charging cut-off voltage, and isolating the charging circuit from all the single batteries at the moment, wherein the charging circuit is in a disconnected state; finally, all the single batteries stop charging due to the fact that the set charging cut-off voltage is reached, and the purpose of forced equalization is achieved;
discharge equalization: interrupt bus switch K1Bus switch K2When the current goes through the load loop, the bus switch P is turned on1Bus switch P2(ii) a Mosfet switch S connected with band-pass anti-parallel diode1、S2、S3...Sn-1Switching off the Mosfet switch M with the antiparallel diode1、M2、M3、...MnSwitching off the Mosfet switch N with antiparallel diodes1、N2、N3、...Nn(ii) a Switch on switch Q1Q switch2Q switch3Q switch4(ii) a If a certain single battery CiVoltage V ofiAnd average voltage V of battery packavWhen the difference △ V is not less than β, the single battery C is controllediIn series with reversalsShunt diode Mosfet switch MiMosfet switch N with anti-parallel diodeiIs turned on, and the single battery C is supplied through a DC/DC converteriBalancing so as to keep the consistency of each single battery;
wherein,△V=Vav—Viand β denotes a threshold value.
For a battery pack consisting of n individual cells (fig. 1), the battery pack switches on the bus switch (K) during charging (fig. 2)1、K2) At this time, since it is in a charging state (i.e., the external power source charges the battery pack), the current flows through the charging loop to control the bus switch (P)1、P2) Is in an off state. No extra equalizing circuit is needed in the charging process, so the switch (Q) is controlled1、Q2、Q3、Q4) In the off state, the DC/DC converter is completely isolated from the circuit. The single cell C is charged during the whole charging process1、C2、C3...CnAre all in parallel, when a certain single battery CiWhen the set charge cut-off voltage is reached, the single battery C is controlledi(i 1,2,3.., n) two Mosfet switches M with anti-parallel diodes connected in seriesi(i=1,2,3...,n)、Ni(i ═ 1,2,3.., n) is disconnected, and the unit cell C is disconnectediThe charging circuit is isolated, and the purpose of protecting the single battery is achieved. When another single battery CxWhen the set charge cut-off voltage is reached, the single battery C is controlledx(x ═ 1,2,3.., n) two Mosfet switches M with anti-parallel diodes in seriesx(x=1,2,3...,n),Nx(x ═ 1,2,3.., n) is cut off, and the unit cell C is thereby operatedxAnd isolating the charging circuit until all the single batteries reach the charging cut-off voltage finally, and isolating the charging circuit from all the single batteries at the moment, wherein the charging circuit is in a disconnected state. Finally, all the single batteries stop charging due to the fact that the set charging cut-off voltage is reached, and the purpose of forced equalization is achieved。
The battery pack disconnects the bus switch (K) during discharge (see FIG. 3)1、K2) At this time, since the battery pack is in a discharge state (i.e., the battery pack discharges to the load), the current flows through the load circuit, and the main on switch (P) is turned on1、P2). Requiring the individual cells to be connected in series, so that a Mosfet switch (S) with an antiparallel diode is connected1、S2、S3...Sn-1) Switching off a Mosfet switch (M) with an antiparallel diode1、M2、M3、...Mn)、(N1、N2、N3、...Nn). In order to keep consistency of each single battery in the discharging process, a DC/DC converter is connected for balancing, and a switch (Q) is switched on1、Q2、Q3、Q4). At the moment, the anode of the input end of the DC/DC converter is connected with the anode of the battery pack, and the cathode of the input end of the DC/DC converter is connected with the cathode of the battery pack. Positive pole of output end passes Q3Is closed at the battery bus L1Up, the negative pole of the output end passes through Q4Is closed at the battery bus L2In the discharging process, if a single battery CiA voltage V of (1, 2,3.., n)iAnd average voltage (V) of battery packav,) Difference (Δ V, Δ V ═ V)av-Vi) When the voltage is greater than or equal to the set threshold β (i.e., △ V ≧ β), the control is executed with the single battery Ci(i 1,2,3.., n) two Mosfet switches M with anti-parallel diodes connected in seriesi(i=1,2,3...,n)、Ni(i 1,2,3.., n) is turned on, and the unit cell C is supplied through a DC/DC converteriAnd balancing, thereby maintaining the consistency of each single battery.
Take 5 cells as an example:
in the charging process (as shown in fig. 4 and 5), the sequence of the single batteries reaching the charge cut-off voltage is assumed to be C3、C1、C2、C4、C5Then concretely electricityThe path control process is as follows: switch on bus switch (K)1、K2) At this time, since the battery pack is in a charging state (i.e., the external power source charges the battery pack), the current flows through the charging loop, so that the bus switch (P) is controlled1、P2) Is in an off state. No extra equalizing circuit is needed in the charging process, so the switch (Q) is controlled1、Q2、Q3、Q4) In the off state, the DC/DC converter is completely isolated from the circuit. The single cell C is charged during the whole charging process1、C2、C3、C4、C5Are all in parallel state, (1) when the single battery C3When the set charge cut-off voltage is reached, the single battery C is controlled3Series connection of two Mosfet switches M with anti-parallel diodes3、N3Is disconnected, thereby the single cell C is3The charging circuit is isolated, and the purpose of protecting the single battery is achieved. (2) When the single battery C1When the set charge cut-off voltage is reached, the single battery C is controlled1Series connection of two Mosfet switches M with anti-parallel diodes1、N1Is disconnected, thereby the single cell C is1Isolating the charging circuit. (3) When the single battery C2When the set charge cut-off voltage is reached, the single battery C is controlled2Series connection of two Mosfet switches M with anti-parallel diodes2、N2Is disconnected, thereby the single cell C is2Isolating the charging circuit. (4) When the single battery C4When the set charge cut-off voltage is reached, the single battery C is controlled4Series connection of two Mosfet switches M with anti-parallel diodes4、N4Is disconnected, thereby the single cell C is4Isolating the charging circuit. (5) When the single battery C5When the set charge cut-off voltage is reached, the single battery C is controlled5Series connection of two Mosfet switches M with anti-parallel diodes5、N5Is disconnected, thereby the single cell C is5Isolating the charging circuit. Finally, isolating the charging circuit from all the single batteries, wherein the charging circuit is in a disconnected state; all the single batteries reach the set charging cut-off voltageAnd the charging is stopped to achieve forced equalization.
It is assumed that the single cell C is in the process of discharging (see FIGS. 6 and 7)3Voltage V3And average voltage (V) of battery packavWhen the difference delta V is larger than or equal to the set threshold β, the battery is supplemented with electric energy through a DC/DC converter connected in parallel with the battery pack, so that the energy conversion from the whole to a single battery cell is realized, the consistency of each battery cell in the battery pack is kept, and the aim of balancing is achieved1、K2) At this time, since the battery pack is in a discharge state (i.e., the battery pack discharges to the load), the current flows through the load circuit, and the bus switch (P) is turned on1、P2). Requiring the individual cells to be connected in series, so that a Mosfet switch (S) with an antiparallel diode is connected1、S2、S3、S4、S5) Switching off a Mosfet switch (M) with an antiparallel diode1、M2、M3、M4、M5)、(N1、N2、N3、N4、N5). In order to maintain consistency of each single battery during discharging, a DC/DC converter is connected for balancing, and a switch (Q) is switched on1、Q2、Q3、Q4). At the moment, the anode of the input end of the DC/DC converter is connected with the anode of the battery pack, and the cathode of the input end of the DC/DC converter is connected with the cathode of the battery pack. Positive pole of output end passes Q3Is closed at the battery bus L1Up, the negative pole of the output end passes through Q4Is closed at the battery bus L2In the discharging process, the battery C3Voltage V of3And average voltage (V) of battery packav,) Difference (Δ V, Δ V ═ V)av-V3) When the voltage is greater than or equal to the set threshold β (i.e., △ V ≧ β), controlling the single battery C3Series connection of two Mosfet switches M with anti-parallel diodes3、N3Is turned on, and the single battery C is supplied through a DC/DC converter3Are equalized to thereby maintain eachUniformity of the unit cells.
While the present invention has been described in detail with reference to the embodiments shown in the drawings, the present invention is not limited to the embodiments, and various changes can be made without departing from the spirit of the present invention within the knowledge of those skilled in the art.
Claims (3)
1. An equalizing circuit for equalizing parallel charging and selective cell discharge, comprising: the battery pack, the DC/DC converter, the Mosfet switch with the anti-parallel diode and the bus switch K1Bus switch K2Bus switch P1Bus switch P2Q switch1Q switch2Q switch3Q switch4Forming;
the battery pack consists of n single batteries CiThe Mosfet switch with the anti-parallel diodes consists of n Mosfet switches with the anti-parallel diodesOff MiN Mosfet switches N with antiparallel diodesiN-1 Mosfet switch S with antiparallel diodesjComposition is carried out;
the single battery CiAnd a Mosfet switch M with an antiparallel diodeiWith antiparallel diodes, Mosfet switch MiIs connected with the positive bus L of the battery pack1Upper and lower bus switch K1Bus switch P1Control bus L1Make-and-break; single battery CiCathode and Mosfet switch N with anti-parallel diodeiWith antiparallel diode, and a Mosfet switch NiIs connected with the cathode bus L of the battery pack2Upper and lower bus switch K2Bus switch P2Control bus L2Switching on and off; mosfet switch S of n-1 anti-parallel diodesjSource electrode and single battery CjAnd a Mosfet switch N with an antiparallel diodejIs connected with the drain electrode of the switching element, and n-1 anti-parallel diodes are connected with the Mosfet switch SjDrain electrode of and single cell Cj+1Anode of and Mosfet switch M with anti-parallel diodej+1The source electrodes of the two-way transistor are connected; positive pole of DC/DC converter input and in the first single battery C1And by a switch Q1Controlling on-off, negative pole of DC/DC converter input and in last single battery CnOn the negative pole and by a switch Q2The on-off is controlled, and the positive pole of the output of the DC/DC converter is connected with n single batteries CiPositive bus L of assembled battery1Upper and lower by a switch Q3The on-off is controlled, the negative pole of the output of the DC/DC converter is connected with the n single batteries CiNegative electrode bus L of the assembled battery2Upper and lower by a switch Q4Controlling on-off; bus switch K1Mosfet switch M with anti-parallel diode1Between the drain of the switch and the positive side of the external power/load connection, a bus switch P1Mosfet switch M with anti-parallel diode1Between the source of (a) and the positive side of the external power/load connection; bus switch K2Mosfet switch N connected with anti-parallel diode1Source of (2) is connected with an external power supply/loadA bus switch P connected between the negative terminals2Connected to the last single battery CnThe negative electrode is connected with the negative end of the external power supply/load;
wherein j is 1,2,3, n-1, i is 1,2,3, n.
2. The balancing circuit for parallel charging and selective cell discharge balancing according to claim 1, wherein: when the equalizing circuit performs charge equalization, all the single batteries are directly connected in parallel on the power supply, and if a certain single battery CiWhen the set charge cut-off voltage is reached, the single battery C is controllediSeries Mosfet switch M with anti-parallel diodeiMosfet switch N with anti-parallel diodeiIs disconnected, thereby the single cell C isiIsolating the charging circuit.
3. The balancing circuit for parallel charging and selective cell discharge balancing according to claim 1, wherein: when the equalizing circuit performs discharge equalization and the equalizing circuit performs charge equalization, if a certain single battery CiVoltage V ofiAnd average voltage V of battery packavWhen the difference △ V is not less than β, the single battery C is controllediSeries Mosfet switch M with anti-parallel diodeiMosfet switch N with anti-parallel diodeiIs turned on, and the single battery C is supplied through a DC/DC converteriBalancing so as to keep the consistency of each single battery;
wherein,△V=Vav—Viand β denotes a threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820874512.4U CN208646650U (en) | 2018-06-06 | 2018-06-06 | A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820874512.4U CN208646650U (en) | 2018-06-06 | 2018-06-06 | A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge |
Publications (1)
Publication Number | Publication Date |
---|---|
CN208646650U true CN208646650U (en) | 2019-03-26 |
Family
ID=65780086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820874512.4U Expired - Fee Related CN208646650U (en) | 2018-06-06 | 2018-06-06 | A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN208646650U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108583347A (en) * | 2018-06-06 | 2018-09-28 | 昆明理工大学 | A kind of equalizing circuit and its control method of charged in parallel and selective single battery equalization discharge |
CN114726033A (en) * | 2022-03-28 | 2022-07-08 | 清华大学 | Battery system charging and discharging control method based on dynamic reconfigurable battery network |
-
2018
- 2018-06-06 CN CN201820874512.4U patent/CN208646650U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108583347A (en) * | 2018-06-06 | 2018-09-28 | 昆明理工大学 | A kind of equalizing circuit and its control method of charged in parallel and selective single battery equalization discharge |
CN114726033A (en) * | 2022-03-28 | 2022-07-08 | 清华大学 | Battery system charging and discharging control method based on dynamic reconfigurable battery network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108583347B (en) | Equalization circuit for parallel charging and selective single battery discharging equalization and control method thereof | |
CN110429671B (en) | High-adaptability charging system and method for electric automobile | |
CN106532852B (en) | Battery pack equalization circuit based on LC series energy storage | |
JP3746886B2 (en) | Power storage device | |
CN101826745B (en) | Lithium ion power battery lossless charger | |
JP2009118727A (en) | Hybrid power source | |
CN109690901B (en) | Supercapacitor-based energy storage device | |
CN105140998B (en) | The two-way non-dissipative equalizing circuit of series battery based on inductive energy storage | |
CN108110344B (en) | P-C-C-P equalizer of series lithium ion battery pack and control method thereof | |
CN101976876A (en) | Device and method for equalizing batteries in charging process | |
CN107134599B (en) | Voltage equalization circuit of series battery pack and working method thereof | |
Zheng et al. | Model predictive control based balancing strategy for series-connected lithium-ion battery packs | |
CN102593893A (en) | System for realizing balanced discharging of battery sets | |
US20150069960A1 (en) | Auxiliary Battery Charging Apparatus | |
CN110843606B (en) | Variable-structure storage battery power supply for electric automobile and control method thereof | |
CN202564995U (en) | Multichannel battery pack charge-discharge control device | |
CN102983608A (en) | Composite lithium battery and supercapacitor power supply control device for electromobile | |
CN208646650U (en) | A kind of equalizing circuit of charged in parallel and selective single battery equalization discharge | |
CN106712168A (en) | Parallel battery pack two-way lossless equalization circuit based on inductance energy storage | |
CN106602647B (en) | Parallel battery pack bidirectional lossless equalization circuit based on capacitive energy storage | |
CN204068357U (en) | A kind of 4 joint series battery Bidirectional charging-discharging equalizing circuits | |
CN208508574U (en) | Active battery pack equalization system of 48V system | |
WO2020103273A1 (en) | Battery pack having quick charging function and quick charging method | |
CN106100072A (en) | A kind of low loss series Li-ion batteries piles electric quantity balancing circuit | |
CN112339610B (en) | New energy vehicle power battery charging and discharging control system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190326 Termination date: 20200606 |
|
CF01 | Termination of patent right due to non-payment of annual fee |