CN206402230U - 光组件、采用该光组件的探测设备 - Google Patents
光组件、采用该光组件的探测设备 Download PDFInfo
- Publication number
- CN206402230U CN206402230U CN201720029980.7U CN201720029980U CN206402230U CN 206402230 U CN206402230 U CN 206402230U CN 201720029980 U CN201720029980 U CN 201720029980U CN 206402230 U CN206402230 U CN 206402230U
- Authority
- CN
- China
- Prior art keywords
- optical
- photodetector
- downstream end
- pon
- optical assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Optical Communication System (AREA)
Abstract
本申请提供一种光组件、采用该光组件的探测设备,用以解决现有技术中无法在远程对PON终端的故障状态进行检测的问题。具体地,采用该光组件的探测设备在现有PON光功率计的基础上增加了对PON网络中1490纳米波长下行光信号的反射回波进行检测的光电探测器,并提供了根据上行端光电探测器、下行端光电探测器和反射端光电探测器检测到的光信号功率数据综合确定PON终端故障状态的装置。本申请方案简化了故障检测流程,实现了快速的网络故障定位,提高了故障检测的智能化水平。
Description
技术领域
本申请涉及PON网络技术领域,具体为一种光组件、采用该光组件的探测设备。
背景技术
光纤通信是利用光波在光导纤维中传输信息的通信方式,由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。光纤通信的原理是:在发送端首先要把传送的信息(如语音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,探测器收到光信号后把它变换成电信号,经解调后恢复原信息。光纤通信已经成为现代通信网的主要传输手段。
一般来说,通信网包含骨干网和接入网两大部分。FTTx(Fiber To Thex,光纤接入)是新一代的光纤接入网技术,用于连接电信运营商和终端用户。FTTx的网络可以是有源光纤网络(Active Optical Network,AON),也可以是无源光纤网络(Passive OpticalNetwork,PON),由于有源光纤网络的成本相对较高,实际上在接入网中应用很少,所以目前通常所指的FTTx网络应用的都是无源光纤网络。FTTx的网络结构可以是点对点(P2P)也可以是点对多点(P2MP),P2P的成本较高,通常只用于VIP用户或有特殊需求的用户,大多数的FTTx网络采用的是P2MP的结构。
PON技术是目前业内公认的FTTx(Fiber To The x,光纤接入)的最佳解决方案,PON定位在常说的“最后一公里”,也就是在服务提供商、电信局端和商业用户或家庭用户之间的解决方案,这种技术可以使多个用户共享单根光纤,从而使ODN(OpticalDistribution Network,光分配网)中不需要使用其它的有源器件,即不需要光—电—光的转换,这种单点到多点的架构大大降低了网络安装、管理和维护成本。
PON网络安装调试工作中,不仅前期现场布线施工、安装,还是后期维护、检测都需要探测、分析和确定光终端的多种状态,如用户家里的光调制解调器是否正常工作、有无下行信号、光调制解调器是否关机、光调制解调器是否异常故障、用户家里光纤弯曲损耗过大、光纤头脱落等。目前,确认故障状态都需要施工维护人员进入用户家中进行排查,不能实现在远程(如楼道中)对用户PON终端状态的检测。
当前,PON网络的故障检测中使用最普及的是PON光功率计,PON光功率计用于检测上行1310纳米波长光信号和下行1490纳米波长、1550纳米波长光信号的强度,其主要用途是检测PON网络、系统、通信是否正常工作。
图1示出了现有技术的PON光功率计的核心光组件,该PON光功率计核心光组件包括上行端光纤接口1、宽带分光器2、下行端光纤接口3、上行端光电探测器4和下行端光电探测器5。
上行端光纤接口1是用户侧光纤的SC/PC光纤接头,用于串接光网络终端(即ONT)或光网络单元(即ONU)的输入端,用户侧光信号通过上行端光纤接口1进入到PON光功率计;下行端光纤接口3是网络侧光纤的SC/PC光纤接头,用于串接光线路终端(即OLT)的输出端,网络侧光信号通过下行端光纤接口3进入到PON光功率计。
宽带分光器2包括有2个上行光纤接口和2个下行光纤接口,分别与上行端光纤接口1、下行端光纤接口3、上行端光电探测器4和下行端光电探测器5进行连接,用于实现将上行/下行光信号分为两路,分别进入网络侧/用户侧光纤和上行端/下行端光电探测器。
上行端光电探测器4用于探测从上行端传输过来的1310纳米波长光信号的功率强度,下行端光电探测器5用于探测从下行端传输过来的1490纳米波长和1550纳米波长光信号的功率强度。
图2示出了现有技术的PON光功率计,在上述核心光组件之外增加了液晶显示器(即LCD)用于显示PON探测到的上、下行光信号的功率数据。
但是PON光功率计不具备对PON网络终端设备状态进行判断的能力,例如如下两种场景:光纤未连接到光终端和光终端关机,PON光功率计的检测结果都是未检测到1310纳米波长上行光信号,显然,这两种光终端的状态对PON光功率计而言是无法区分的。
实用新型内容
本申请的一个目的是提供一种光组件、采用该光组件的探测设备,用以解决现有技术中无法远程判定PON终端处于哪种网络故障状态的问题。
为实现上述目的,本申请提供了一种光组件,所述的光组件,包括宽带分光器、上行端光电探测器、下行端光电探测器、上行端光纤接口和下行端光纤接口,所述上行端光纤接口与所述宽带分光器的上行光纤接口连接,所述下行端光纤接口与所述宽带分光器的下行光纤接口连接,所述下行端光电探测器与所述宽带分光器的下行光纤接口连接,所述光组件还包括反射端光电探测器和波分复用器,所述宽带分光器的上行光纤接口与所述波分复用器的输入端连接,所述波分复用器的输出端分别与所述上行端光电探测器和所述反射端光电探测器连接。
进一步地,所述宽带分光器包括2个上行光纤接口和2个下行光纤接口。
进一步地,所述的宽带分光器的分光比介于30:70至5:95之间。
进一步地,所述的下行端光电探测器对下行光信号产生的反射回波损耗大于第八阈值。
本申请还提供了一种采用该光组件的探测设备,所述设备包括:判定装置以及光组件,所述判定装置用于根据所述光组件的上行端光电探测器、下行端光电探测器和反射端光电探测器的探测数据进行判定,确定PON终端网络状态;所述光组件,包括宽带分光器、上行端光电探测器、下行端光电探测器、上行端光纤接口和下行端光纤接口,所述上行端光纤接口与所述宽带分光器的上行光纤接口连接,所述下行端光纤接口与所述宽带分光器的下行光纤接口连接,所述下行端光电探测器与所述宽带分光器的下行光纤接口连接,所述光组件还包括反射端光电探测器和波分复用器,所述宽带分光器的上行光纤接口与所述波分复用器的输入端连接,所述波分复用器的输出端分别与所述上行端光电探测器和所述反射端光电探测器连接。
进一步地,所述探测设备还包括显示装置,用于显示所述PON终端网络状态。
与现有技术相比,本申请的技术方案在现有PON光功率计的基础上增加了对PON网络中1490纳米波长下行光信号的反射回波进行检测的光电探测器,并提供了根据上行端光电探测器、下行端光电探测器和反射端光电探测器检测到的光信号功率数据综合确定PON终端故障状态的装置。本申请方案解决了现有PON光功率计只能检测网络系统和通信是否正常工作的不足,简化了故障检测流程,实现了快速的网络故障定位,提高了故障检测的智能化水平。本申请方案创造性地解决了施工维护人员不入户检查就无法判断PON网络终端故障的问题,避免了因需要入户检查而带来的多种损失与工程延期,在PON网络发展极为迅猛的随后几年,具有极大的市场价值。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为现有技术的PON光功率计核心光组件的结构示意图;
图2为现有技术的PON光功率计的结构示意图;
图3为本申请实施例提供的光组件的结构示意图;
图4为本申请实施例提供的采用该光组件的探测设备的结构示意图;
附图标记说明:1、上行端光纤接口,2、宽带分光器,3、下行端光纤接口,4、上行端光电探测器,5、下行端光电探测器,6、反射端光电探测器,7、波分复用器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图3示出了本申请实施例提供的光组件,该光组件包括上行端光纤接口1、宽带分光器2、下行端光纤接口3、上行端光电探测器4和下行端光电探测器5,还包括反射端光电探测器6和波分复用器7,所述上行端光纤接口1与所述宽带分光器2的上行光纤接口连接,所述下行端光纤接口3与所述宽带分光器2的下行光纤接口连接,所述下行端光电探测器5与所述宽带分光器2的下行光纤接口连接,所述宽带分光器2的上行光纤接口与所述波分复用器7的输入端连接,所述波分复用器7的输出端分别与所述上行端光电探测器4和所述反射端光电探测器6连接。
所述反射端光电探测器6用于检测1490纳米波长下行光信号在光终端设备上产生回波的功率强度。光纤到户网络中规定使用的光信号波长只有三种,即1310纳米、1490纳米和1550纳米,其中1310纳米是上行光信号使用的波长,不能用于下行光信号的回波检测,1490纳米和1550纳米是下行光信号可以使用的波长,在实际线路中可能没有使用1550纳米波长的光信号而造成没有反射回波,而1490纳米波长的光信号是一定会使用的下行光信号,故采用对1490纳米波长下行光信号的检测来获得反射回波信号。
所述波分复用器7用于将1310纳米波长上行光信号与1490纳米波长下行回波光信号进行分离。
所述的上行端光纤接口1和下行端光电探测器5都会对1490纳米波长下行光信号产生反射回波,而下行端光电探测器5产生的1490纳米波长回波是一个干扰源,该反射回波会沿着下行端光电探测器5—宽带分光器2—波分复用器7—反射端光电探测器6的通路到达反射端光电探测器6,从而对反射端光电探测器6的探测数据产生干扰。因此,为了降低反射回波的能量,需要控制下行端光电探测器5产生的1490纳米波长下行光信号反射回波的损耗大于50分贝,这样能保证反射端光电探测器探测到的1490纳米波长反射回波是来源于上行端光纤接口1,而不是来源于下行端光电探测器5。因此,所述的第八阈值的取值一般为50dB。
对所述的下行端光电探测器5进行消光处理能降低产生的1490纳米波长回波的反射功率,采用的方式可以是在器件耦合过程中在下行端光电探测器5上镀增透膜和/或在耦合过程中调整耦合角度。在探测器上镀增透膜后,可以增加透射的功率,降低反射功率;耦合过程中调整耦合角度,可以降低回波的反射。
所述宽带分光器2的分光比推荐范围在30:70至5:95为宜。通常而言,考虑到避免测试设备对实际通信链路产生大的影响,故10:90会是一个最优的选择,因这个比例兼顾了较小的插入损耗(对通信链路而言)和适当大小的检测功率。
所述的PON网络状态的光组件中光信号的主要通路是下行端光纤接口3—宽带分光器2—上行端光纤接口1,是大分光比的宽带分光器2的主路部分,保证了较低的插入损耗,保障了正常光纤通信工作。
所述的PON网络状态的光组件中光信号的下行端检测通路是下行端光纤接口3—宽带分光器2—下行端光电探测器5,下行端的1490纳米波长下行光信号的90%通过上行端输出到了光网络单元,仅10%输到了下行端的探测器5,该探测器用于检测下行1490nm的光功率强度,下行端光电探测器5大于50dB的回波损耗设计,有效消除了该探测器回波对光网络单元回波的影响。
所述的PON网络状态的光组件中光信号的上行端检测通路是上行端光纤接口1—宽带分光器2—波分复用器7—上行端光电探测器4,该通路同样将90%的上行光信号送入了通信网络中,仅取10%的上行光信号能量用于检测,因上行端光纤接口1接入了光网络单元,故此时宽带分光器2—波分复用器7通路的光信号中,既有1310纳米波长的上行分光信号,也有1490纳米波长的下行回波光信号,宽带分光器2—波分复用器7—上行端光电探测器4通路将其中的1310纳米波长的上行光信号通过波分复用器7取出,并送入上行端光电探测器4进行探测。
所述的PON网络状态的光组件中光信号的反射端检测通路是上行端光纤接口1—宽带分光器2—波分复用器7—反射端光电探测器6,该通路将1490纳米波长下行光信号的回波反射信号送入反射端光电探测器6进行探测。
图4示出了本申请实施例提供的采用该光组件的探测设备,该探测设备包括:光组件、判定装置和显示装置。
所述的光组件用于对PON网络数据进行探测。
所述的判定装置用于根据所述光组件的上行端光电探测器、下行端光电探测器和反射端光电探测器的探测数据进行判定,确定PON终端网络状态,是对所述PON终端网络状态判定的方法的一种具体实现。
所述的显示装置用于显示所述PON终端网络状态,一种可行的显示装置是液晶显示器(Liquid Crystal Display,LCD)。
应用本申请实施例提供的采用该光组件的探测设备,可生产出PON网络终端测试仪表,只要将楼道中光缆箱中的网络侧光纤插入仪表的下行端光纤接口,将用户侧光纤插入仪表的上行端光纤接口,即可对PON终端光网络单元或光网络终端的状态进行分析和判定。
与现有技术相比,本申请的技术方案在现有PON光功率计的基础上增加了对PON网络中1490纳米波长下行光信号的反射回波进行检测的光电探测器,并提供了根据上行端光电探测器、下行端光电探测器和反射端光电探测器检测到的光信号功率数据综合确定PON终端故障状态的装置。本申请方案解决了现有PON光功率计只能检测网络系统和通信是否正常工作的不足,简化了故障检测流程,实现了快速的网络故障定位,提高了故障检测的智能化水平。本申请方案创造性地解决了施工维护人员不入户检查就无法判断PON网络终端故障的问题,避免了因需要入户检查而带来的多种损失与工程延期,在PON网络发展极为迅猛的随后几年,具有极大的市场价值。
在此,本领域技术人员应当理解,方位词均是结合操作者和使用者的日常操作习惯以及说明书附图而设立的,它们的出现不应当影响本申请的保护范围。
以上结合附图实施例对本申请进行了详细说明,本领域中普通技术人员可根据上述说明对本申请做出种种变化例。因而,实施例中的某些细节不应构成对本申请的限定,本申请将以所附权利要求书界定的范围作为本申请的保护范围。
Claims (6)
1.一种光组件,包括宽带分光器、上行端光电探测器、下行端光电探测器、上行端光纤接口和下行端光纤接口,所述上行端光纤接口与所述宽带分光器的上行光纤接口连接,所述下行端光纤接口与所述宽带分光器的下行光纤接口连接,所述下行端光电探测器与所述宽带分光器的下行光纤接口连接,其中,所述光组件还包括反射端光电探测器和波分复用器,所述宽带分光器的上行光纤接口与所述波分复用器的输入端连接,所述波分复用器的输出端分别与所述上行端光电探测器和所述反射端光电探测器连接。
2.根据权利要求1所述的光组件,其中,所述的宽带分光器包括2个上行光纤接口和2个下行光纤接口。
3.根据权利要求1或2所述的光组件,其中,所述的宽带分光器的分光比介于30:70至5:95之间。
4.根据权利要求1或2所述的光组件,其中,所述的下行端光电探测器对下行光信号产生的反射回波损耗大于第八阈值。
5.一种采用该光组件的探测设备,其中,所述探测设备包括:
权利要求1至4中任何一项所述的光组件;
判定装置,用于根据所述光组件的上行端光电探测器、下行端光电探测器和反射端光电探测器的探测数据进行判定,确定PON终端网络状态。
6.根据权利要求5所述的探测设备,其中,所述探测设备还包括:
显示装置,用于显示所述PON终端网络状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720029980.7U CN206402230U (zh) | 2017-01-11 | 2017-01-11 | 光组件、采用该光组件的探测设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720029980.7U CN206402230U (zh) | 2017-01-11 | 2017-01-11 | 光组件、采用该光组件的探测设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206402230U true CN206402230U (zh) | 2017-08-11 |
Family
ID=59513505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201720029980.7U Active CN206402230U (zh) | 2017-01-11 | 2017-01-11 | 光组件、采用该光组件的探测设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206402230U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070544A (zh) * | 2017-01-11 | 2017-08-18 | 上海嘉慧光电子技术有限公司 | 光组件、采用该光组件的探测设备及判定方法 |
CN108337046A (zh) * | 2018-05-15 | 2018-07-27 | 浙江天创信测通信科技有限公司 | FTTx终端线路测试仪 |
-
2017
- 2017-01-11 CN CN201720029980.7U patent/CN206402230U/zh active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070544A (zh) * | 2017-01-11 | 2017-08-18 | 上海嘉慧光电子技术有限公司 | 光组件、采用该光组件的探测设备及判定方法 |
CN107070544B (zh) * | 2017-01-11 | 2023-06-27 | 上海嘉慧光电子技术有限公司 | 光组件、采用该光组件的探测设备及判定方法 |
CN108337046A (zh) * | 2018-05-15 | 2018-07-27 | 浙江天创信测通信科技有限公司 | FTTx终端线路测试仪 |
CN108337046B (zh) * | 2018-05-15 | 2023-10-24 | 浙江信测通信股份有限公司 | FTTx终端线路测试仪 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8948589B2 (en) | Apparatus and method for testing fibers in a PON | |
CN102957977B (zh) | 无源光网络及其光时域检测仪光模块 | |
EP2313998B1 (en) | Optical fibre networks | |
CN102946270A (zh) | 光频域反射式光纤网络测试方法 | |
CN102098098B (zh) | 一种检测无源光网络光纤故障的系统 | |
CN104426603A (zh) | 光网络检测方法、装置、设备、系统及分光器 | |
CN102412902A (zh) | 带光时域反射功能的光网络单元光电器件 | |
CN107070544A (zh) | 光组件、采用该光组件的探测设备及判定方法 | |
CN110266374A (zh) | 一种可高精度监测tdm-pon二级支路故障的装置及方法 | |
CN102752051A (zh) | 具有光时域反射功能的光网络单元光组件 | |
CN103905112A (zh) | 无源光网络故障检测方法、装置和系统 | |
CN208797950U (zh) | 一种光纤链路功率损耗测试装置 | |
CN206402230U (zh) | 光组件、采用该光组件的探测设备 | |
CN202679371U (zh) | 具有光时域反射功能的光网络单元光组件 | |
CN102447511B (zh) | 光路测试仪 | |
CN203387511U (zh) | 全链路监测遥泵系统 | |
CN105278058B (zh) | 具有光时域信号反射功能的光网络单元三向光组件 | |
CN102761371A (zh) | 具有光时域反射功能的光组件 | |
CN102447512A (zh) | 测试pon光通信质量的手持式终端 | |
US6522434B1 (en) | System and method for determining optical loss characteristics of optical fibers in an optical fiber network | |
CN202455358U (zh) | 带光时域反射功能的光网络单元光电器件 | |
CN202798724U (zh) | 内嵌光时域反射功能的光线路终端光电器件 | |
CN103675974A (zh) | 一种可同时用于合波及双向信号监控的滤波片 | |
CN110289905A (zh) | 利用fp激光器精准监测twdm-pon故障的装置及方法 | |
CN206481303U (zh) | 一种针对备用光纤的光纤检测装置及其应用电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |