CN206402114U - A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges - Google Patents
A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges Download PDFInfo
- Publication number
- CN206402114U CN206402114U CN201621452285.3U CN201621452285U CN206402114U CN 206402114 U CN206402114 U CN 206402114U CN 201621452285 U CN201621452285 U CN 201621452285U CN 206402114 U CN206402114 U CN 206402114U
- Authority
- CN
- China
- Prior art keywords
- switching tube
- diode
- switch pipe
- unit
- source electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
The utility model discloses a kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges, it includes:Input rectifying filter unit;PFC boost unit;Isolated form two-transistor forward converter, include first switch pipe, second switch pipe, first diode, second diode, 3rd diode, 4th diode, transformer and filter inductance, the source electrode of first switch pipe is connected to the first end of primary winding, second end of primary winding connects the drain electrode of second switch pipe, the grid of first switch pipe and the grid of second switch pipe are used to access identical pwm signal, the first end of primary winding is connected to the anode of the 3rd diode, the rear end of filter inductance as isolated form two-transistor forward converter output head anode, the anode of 4th diode as isolated form two-transistor forward converter negative pole of output end;Inversion reversed phase unit.The utility model can improve PF values and output voltage quality.
Description
Technical field
The utility model is related to voltage conversion circuit, more particularly to a kind of intelligent amendment ripple based on PFC normal shock half-bridges
Voltage conversion circuit.
Background technology
In the prior art, it is otherwise known as travelling insert row by the AC intelligent boost-buck conversion equipments for turning AC, in the device, amendment
Wave voltage change-over circuit is its Key Circuit, be it is a kind of can realize AC-AC conversion circuit, can AC-AC conversion in realize
The function of buck and burning voltage and frequency.But just most of meaningful formula equipment Market is non-isolation type to current AC-AC
Topological circuit, and PF values are low, output voltage quality is low, security reliability is poor.
Utility model content
The technical problems to be solved in the utility model is, can improve voltage there is provided one kind in view of the shortcomings of the prior art
The PF values of conversion equipment, output voltage quality, and the safe and reliable intelligent amendment ripple based on PFC normal shock half-bridges can be improved
Voltage conversion circuit.
In order to solve the above technical problems, the utility model is adopted the following technical scheme that.
A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges, it includes:One input rectifying is filtered
Unit, its input connection power network, for carrying out rectification and filtering to line voltage;One PFC boost unit, is connected to input whole
The output end of filter unit is flowed, boost conversion is carried out for the output voltage to input rectifying filter unit;One isolated form is two-tube
Forward converter, includes first switch pipe, second switch pipe, the first diode, the second diode, the 3rd diode, the 4th
Diode, transformer and filter inductance, the drain electrode of the first switch pipe are connected to the output end of PFC boost unit, described
The source electrode of one switching tube is connected to the first end of primary winding, the second end connection second of the primary winding
The drain electrode of switching tube, the source electrode connection front end of the second switch pipe, the negative electrode of first diode is connected to first and opened
The drain electrode of pipe is closed, the anode of first diode is connected to the second end of primary winding, second diode
Negative electrode is connected to the first end of primary winding, and the anode of second diode is connected to the source electrode of second switch pipe,
The grid of the first switch pipe and the grid of second switch pipe are used to accessing identical pwm signal, the primary around
With being connected to rear end, the first end of the primary winding is connected to the anode of the 3rd diode, institute to the centre tap of group
The negative electrode for stating the 3rd diode is connected to the front end of filter inductance, and the rear end of the filter inductance becomes as isolated form double tube positive exciting
The output head anode of parallel operation, the second end of the primary winding is connected to the negative electrode of the 4th diode, the described 4th 2
The anode of pole pipe as isolated form two-transistor forward converter negative pole of output end;One inversion reversed phase unit, is connected to isolated form double
The output end of pipe forward converter, the inversion reversed phase unit is used to carry out the output voltage of isolated form two-transistor forward converter
Alternating current is exported after inversion conversion.
Preferably, the input rectifying filter unit includes socket, insurance, lightning protection resistance, common mode inhibition inductance, safety
Electric capacity and rectifier bridge, the insurance are serially connected with the zero line of socket or live wire, and the front end of the common mode inhibition inductance is parallel to slotting
Seat, the lightning protection resistance is parallel to the front end of common mode inhibition inductance, and the input of the safety electric capacity and rectifier bridge is parallel to
The rear end of common mode inhibition inductance, the output end of the rectifier bridge is parallel with filter capacitor.
Preferably, the PFC boost unit includes boost inductance, the 3rd switching tube, the first commutation diode and second
Electrochemical capacitor, the front end of the boost inductance is connected to the output end of input rectifying filter unit, the rear end of the boost inductance
The drain electrode of the 3rd switching tube is connected to, with connecing front end, the grid of the 3rd switching tube is used for the source electrode of the 3rd switching tube
Access pwm control signal all the way, the anode of drain electrode the first commutation diode of connection of the 3rd switching tube, first rectification
The negative electrode of diode as PFC boost unit output end, and first commutation diode negative electrode connect the second electrochemical capacitor
Positive pole, the negative pole of the second electrochemical capacitor is with connecing front end.
Preferably, also include a MCU control unit, the grid of the first switch pipe, the grid of second switch pipe and
The grid of 3rd switching tube is connected to MCU control unit, and the MCU control unit is used to distinguishing output pwm signal to the
One switching tube, second switch pipe and the 3rd switching tube, to control first switch pipe, second switch pipe and the 3rd switching tube break-make shape
State.
Preferably, an AC sampling unit is also included, the AC sampling unit is connected to input rectifying filter unit
Input and MCU control unit between, the AC sampling unit is used to gather the electricity of input rectifying filter unit AC
Press and feed back to MCU control unit.
Preferably, the AC sampling unit includes amplifier, and two inputs of the amplifier pass through current limliting electricity respectively
The input of input rectifying filter unit is hindered and is connected to, the output end of the amplifier is connected to MCU control unit.
Preferably, the first sampling resistor is connected between the source electrode and front end ground of the 3rd switching tube, the described 3rd opens
The source electrode for closing pipe is connected to MCU control unit, makes MCU control unit gather the 3rd switching tube by first sampling resistor
The electric signal of source electrode.
Preferably, a D/C voltage sampling unit is also included, the D/C voltage sampling unit includes be sequentially connected in series
Two sampling resistors and the 3rd sampling resistor, the front end of second sampling resistor are connected to the rear end of filter inductance, the described 3rd
The rear end of sampling resistor is connected to MCU control unit, and MCU controls are made by second sampling resistor and the 3rd sampling resistor
The electric signal of unit collection filter inductance rear end.
Preferably, the inversion reversed phase unit includes the 4th switching tube, the 5th switching tube, the 3rd electrochemical capacitor and the 4th
Electrochemical capacitor, the drain electrode of the 4th switching tube is connected to the output head anode of isolated form two-transistor forward converter, the described 4th
The source electrode of switching tube is connected to the drain electrode of the 5th switching tube, and the source electrode of the 5th switching tube is connected to the change of isolated form double tube positive exciting
The negative pole of output end of parallel operation, the grid of the 4th switching tube and the grid of the 5th switching tube are respectively used to access two-way phase phase
Anti- pwm pulse signal, the positive pole of the 3rd electrochemical capacitor is connected to the drain electrode of the 4th switching tube, the 3rd electrochemical capacitor
Negative pole connection rear end, the negative pole of the 3rd electrochemical capacitor is also attached to the positive pole of the 4th electrochemical capacitor, the 4th electricity
The negative pole of solution electric capacity is connected to the source electrode of the 5th switching tube, and the source electrode of the 4th switching tube and the negative pole of the 3rd electrochemical capacitor are made
For the output end of inversion reversed phase unit.
Preferably, first resistor is connected between the grid and source electrode of the 4th switching tube, the 5th switching tube
Second resistance is connected between grid and source electrode.
In intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges disclosed in the utility model, input is utilized
Rectification filtering unit carries out output ripple DC voltage after rectification and filtering to line voltage, and PFC boost unit pair is utilized afterwards
Pulsating dc voltage carries out boosting processing, in isolated form two-transistor forward converter, the grid and second switch of first switch pipe
The grid of pipe is used to access identical pwm signal, when first switch pipe is simultaneously turned on second switch pipe, the primary line of transformer
The heterodoxy of a Same Name of Ends and another coil that circle is bonded in secondary two coils, secondary two coils by magnetic core lotus root is connected in
Together, by forming positive and negative busbar voltage after the 3rd diode, the 4th diode rectification, giving filter inductance, to be filtered into direct current defeated
Go out and give inversion reversed phase unit;When first switch pipe and second switch pipe are turned off, in order to keep the primary current of transformer
Direction is identical, and now the first diode and the second diode are started working, and carry out magnetic reset to magnetic core, by changing transformer
The turn ratio of primary and secondary can make secondary voltage be below or above primary input voltage, reach buck or boost purpose.This practicality is new
Type not only realizes the isolation transmission of voltage, effectively improves the PF values of step-up/down conversion equipment, while also improving output electricity
Press quality so that voltage conversion process is more safe and reliable.
Brief description of the drawings
Fig. 1 is the circuit theory diagrams of input rectifying filter unit and PFC boost unit.
Fig. 2 is the circuit theory diagrams of isolated form two-transistor forward converter and D/C voltage sampling unit.
Fig. 3 is the circuit theory diagrams of inversion reversed phase unit.
Fig. 4 is the circuit theory diagrams of AC sampling unit.
Fig. 5 is the circuit theory diagrams of MCU control unit.
Embodiment
The utility model is described in more detail with reference to the accompanying drawings and examples.
The utility model discloses a kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges, with reference to Fig. 1
Shown in Fig. 5, it includes:
One input rectifying filter unit 10, its input connection power network, for carrying out rectification and filtering to line voltage;
One PFC boost unit 20, is connected to the output end of input rectifying filter unit 10, single for being filtered to input rectifying
The output voltage of member 10 carries out boost conversion;
One isolated form two-transistor forward converter 30, includes first switch pipe Q6, second switch pipe Q7, the first diode
D3, the second diode D2, the 3rd diode D5, the 4th diode D8, transformer T1 and filter inductance L3, the first switch pipe
Q6 drain electrode is connected to the output end of PFC boost unit 20, and the source electrode of the first switch pipe Q6 is connected to transformer T1 primary
The first end of winding, the second end connection second switch pipe Q7 of transformer T1 armature windings drain electrode, the second switch
Pipe Q7 source electrode connection front end, the negative electrode of the first diode D3 is connected to first switch pipe Q6 drain electrode, described first
Diode D3 anode is connected to the second end of transformer T1 armature windings, and the negative electrode of the second diode D2 is connected to transformation
The first end of device T1 armature windings, the anode of the second diode D2 is connected to second switch pipe Q7 source electrode, described first
Switching tube Q6 grid and second switch pipe Q7 grid are used to access identical pwm signal, the transformer T1 armature windings
Centre tap with being connected to rear end, the first end of the transformer T1 armature windings is connected to the 3rd diode D5 anode,
The negative electrode of the 3rd diode D5 is connected to filter inductance L3 front end, and the rear end of the filter inductance L3 is double as isolated form
The output head anode of pipe forward converter 30, the second end of the transformer T1 armature windings is connected to the 4th diode D8 the moon
Pole, the anode of the 4th diode D8 as isolated form two-transistor forward converter 30 negative pole of output end;
One inversion reversed phase unit 60, is connected to the output end of isolated form two-transistor forward converter 30, the inversion paraphase list
Member 60 is used to export alternating current after carrying out inversion conversion to the output voltage of isolated form two-transistor forward converter 30.
In above-mentioned amendment wave voltage change-over circuit, rectification and filter are carried out to line voltage using input rectifying filter unit 10
Output ripple DC voltage after ripple, carries out boosting processing, in isolated form using PFC boost unit 20 to pulsating dc voltage afterwards
In two-transistor forward converter 30, first switch pipe Q6 grid and second switch pipe Q7 grid are used to access identical PWM letters
Number, when first switch pipe Q6 is simultaneously turned on second switch pipe Q7, transformer T1 primary coil is bonded to secondary by magnetic core lotus root
The heterodoxy of a Same Name of Ends and another coil in two coils, secondary two coils connects together, and passes through the 3rd diode
Positive and negative busbar voltage is formed after D5, the 4th diode D8 rectifications, filter inductance L3 is given and is filtered into direct current output and give inversion paraphase
Unit 60;When first switch pipe Q6 and second switch pipe Q7 is turned off, in order to keep transformer T1 primary current direction
Identical, now the first diode D3 and the second diode D2 starts working, and carries out magnetic reset to magnetic core, by changing transformer
The turn ratio of T1 primary and secondaries can make secondary voltage be below or above primary input voltage, reach buck or boost purpose.This practicality
The new isolation transmission for not only realizing voltage, effectively improves the PF values of step-up/down conversion equipment, while also improving output
Quality of voltage so that voltage conversion process is more safe and reliable.
As a kind of preferred embodiment, Fig. 1 is refer to, the input rectifying filter unit 10 includes socket, insurance F2, prevented
Thunder and lightning resistance RV1, common mode inhibition inductance L1, safety electric capacity CX1 and rectifier bridge DB1, the insurance F2 be serially connected with socket zero line or
On live wire, the front end of the common mode inhibition inductance L1 is parallel to socket, and the lightning protection resistance RV1 is parallel to common mode inhibition inductance L1
Front end, the input of the safety electric capacity CX1 and rectifier bridge DB1 are parallel to common mode inhibition inductance L1 rear end, described whole
Stream bridge DB1 output end is parallel with filter capacitor C1.
In the present embodiment, the PFC boost unit 20 includes boost inductance L2, the 3rd switching tube Q5, the first rectification two
Pole pipe D1 and the second electrochemical capacitor C2, the boost inductance L2 front end are connected to the output end of input rectifying filter unit 10,
The rear end of the boost inductance L2 is connected to the 3rd switching tube Q5 drain electrode, the source electrode of the 3rd switching tube Q5 with connecing front end,
The grid of the 3rd switching tube Q5 is used to access pwm control signal all the way, the drain electrode connection first of the 3rd switching tube Q5
Commutation diode D1 anode, the negative electrode of the first commutation diode D1 as PFC boost unit 20 output end, and this
One commutation diode D1 negative electrode connects the second electrochemical capacitor C2 positive pole, and the second electrochemical capacitor C2 negative pole is with connecing front end.
In above-mentioned PFC boost unit 20, if filter capacitor C1 exports half-wave alternating voltage, PFC enters boost mode, to carry
High AC turns the PF values that AC is intelligently depressured conversion topologies circuit, is by the second filtered voltages of electrochemical capacitor C2 after boosting
400V, specific boosting principle is as follows:When 3rd switching tube Q5 is turned on, the boosted inductance L2 of electric current on filter capacitor C1, the
Three switching tube Q5 to GND formation loop, boost inductance L2 storage energy;When the 3rd switching tube Q5 is turned off, meeting on boost inductance
The induced electromotive force more much higher than input voltage is formed, induced electromotive force forms unidirectional pulse electricity after carrying out rectification through continued flow tube D1
Pressure gives the second electrochemical capacitor C2 electric capacity and enters filtering again, is filtered into 400V DC voltage.And the 3rd switching tube Q5 is basis
Input AC sine wave that control chip is adopted changes to increase or reduce the 3rd switching tube Q5 ON time so that electric current with
Voltage-phase becomes unanimously to improve PF values.
As a kind of preferred embodiment, Fig. 5 is refer to, the present embodiment also includes a MCU control unit 80, and described first opens
Grid, second switch pipe Q7 grid and the 3rd switching tube Q5 grid for closing pipe Q6 are connected to MCU control unit 80, institute
Stating MCU control unit 80 is used to distinguish output pwm signal to first switch pipe Q6, second switch pipe Q7 and the 3rd switching tube Q5,
To control first switch pipe Q6, second switch pipe Q7 and the 3rd switching tube Q5 on off operating modes.
For the ease of monitoring the electric signal of AC, Fig. 4 is refer to, also includes an AC sampling unit 70, it is described to hand over
Stream sampling unit 70 is connected between the input of input rectifying filter unit 10 and MCU control unit 80, the AC sampling
Unit 70 is used to gather the voltage of the AC of input rectifying filter unit 10 and feeds back to MCU control unit 80.
Further, the AC sampling unit 70 includes amplifier U9B, the amplifier U9B two inputs difference
The input of input rectifying filter unit 10 is connected to by current-limiting resistance, the output end of the amplifier U9B is connected to MCU controls
Unit 80 processed.
For the ease of being gathered in real time to electric current, is connected between the source electrode and front end ground of the 3rd switching tube Q5
One sampling resistor R2A, the source electrode of the 3rd switching tube Q5 is connected to MCU control unit 80, by first sampling resistor
R2A and make MCU control unit 80 gather the 3rd switching tube Q5 source electrodes electric signal.
As a kind of preferred embodiment, in order to be acquired to DC side electric signal, the present embodiment also includes a D/C voltage
Sampling unit 40, the D/C voltage sampling unit 40 includes the second sampling resistor R13 and the 3rd sampling resistor being sequentially connected in series
R15, the second sampling resistor R13 front end are connected to filter inductance L3 rear end, the rear end of the 3rd sampling resistor R15
MCU control unit 80 is connected to, MCU control unit 80 is made by the second sampling resistor R13 and the 3rd sampling resistor R15
Gather the electric signal of filter inductance L3 rear ends.
On Converting Unit, Fig. 3 is refer to, the inversion reversed phase unit 60 includes the 4th switching tube Q2, the 5th switch
Pipe Q4, the 3rd electrochemical capacitor C3 and the 4th electrochemical capacitor C4, it is two-tube just that the drain electrode of the 4th switching tube Q2 is connected to isolated form
The output head anode of exciting converter 30, the source electrode of the 4th switching tube Q2 is connected to the 5th switching tube Q4 drain electrode, described
Five switching tube Q4 source electrode is connected to the negative pole of output end of isolated form two-transistor forward converter 30, the grid of the 4th switching tube Q2
Pole and the 5th switching tube Q4 grid are respectively used to access the pwm pulse signal of two-way opposite in phase, the 3rd electrochemical capacitor
C3 positive pole is connected to the 4th switching tube Q2 drain electrode, the negative pole connection rear end of the 3rd electrochemical capacitor C3, the described 3rd
Electrochemical capacitor C3 negative pole is also attached to the 4th electrochemical capacitor C4 positive pole, and the negative pole of the 4th electrochemical capacitor C4 is connected to
Five switching tube Q4 source electrode, the source electrode of the 4th switching tube Q2 and the 3rd electrochemical capacitor C3 negative pole are used as inversion reversed phase unit
60 output end.
Further, first resistor R17 is connected between the grid and source electrode of the 4th switching tube Q2, the described 5th opens
Second resistance R23 is connected between the grid and source electrode that close pipe Q4.
In above-mentioned inverter circuit, after filtering inductance L3 filter inductances filter into DC voltage through the 4th switching tube Q2, load,
4th electrochemical capacitor C4 formation loop powering loads formation, first half period amendment ripple level;Second half period corrects string
Level is so formed one completely by the 5th switching tube Q4, load, the 3rd electrochemical capacitor C3 formation loop in load
Power frequency amendment alternating current wave pressure.The pwm signal that control chip is exported sends out PWM2H, PWM2L to the respectively after drive circuit
Four switching tube Q2, the 5th switching tube Q4 GATE poles.Phase in inversion phase inverter and frequency inside control chip according to setting
Fixed pattern is operated.The 3rd electrochemical capacitor C3, the 4th electrochemical capacitor C4 also have the effect of filtering simultaneously, can be with filtered electrical
Feel L3 composition filter circuits.The control of this inverter circuit is simple, and circuit is with low cost only with two metal-oxide-semiconductors.
Intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges disclosed in the utility model, it has high PF
Value, can be achieved power network and isolates with output end, and security is very high.Output can be automatically adjusted in input full voltage range
Voltage, can fix output frequency, and output voltage is exported with correcting ripple, and automatic shaping function is pressed with to alternating current, in addition,
The utility model circuit is simple, easy to control, and containing voltage and current sampling circuit, can anti-surge voltage and electric current.
Simply the utility model preferred embodiment described above, is not limited to the utility model, all in this practicality
Modification, equivalent substitution or improvement made in new technical scope etc., should be included in the model that the utility model is protected
In enclosing.
Claims (10)
1. a kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges, it is characterised in that include:
One input rectifying filter unit, its input connection power network, for carrying out rectification and filtering to line voltage;
One PFC boost unit, is connected to the output end of input rectifying filter unit, for the output to input rectifying filter unit
Voltage carries out boost conversion;
One isolated form two-transistor forward converter, include first switch pipe, second switch pipe, the first diode, the second diode,
3rd diode, the 4th diode, transformer and filter inductance, the drain electrode of the first switch pipe are connected to PFC boost unit
Output end, the source electrode of the first switch pipe is connected to the first end of primary winding, the primary winding
The second end connect the drain electrode of second switch pipe, the source electrode connection front end of the second switch pipe, first diode
Negative electrode is connected to the drain electrode of first switch pipe, and the anode of first diode is connected to the second end of primary winding,
The negative electrode of second diode is connected to the first end of primary winding, and the anode of second diode is connected to
The source electrode of two switching tubes, the grid of the first switch pipe and the grid of second switch pipe are used to access identical pwm signal, institute
State the centre tap of primary winding with being connected to rear end, the first end of the primary winding is connected to the three or two
The anode of pole pipe, the negative electrode of the 3rd diode is connected to the front end of filter inductance, the rear end of the filter inductance as every
The output head anode of release two-transistor forward converter, the second end of the primary winding is connected to the moon of the 4th diode
Pole, the anode of the 4th diode as isolated form two-transistor forward converter negative pole of output end;
One inversion reversed phase unit, is connected to the output end of isolated form two-transistor forward converter, and the inversion reversed phase unit is used for pair
The output voltage of isolated form two-transistor forward converter exports alternating current after carrying out inversion conversion.
2. the intelligent amendment wave voltage change-over circuit as claimed in claim 1 based on PFC normal shock half-bridges, it is characterised in that
The input rectifying filter unit includes socket, insurance, lightning protection resistance, common mode inhibition inductance, safety electric capacity and rectifier bridge, institute
State insurance to be serially connected with the zero line of socket or live wire, the front end of the common mode inhibition inductance is parallel to socket, the lightning protection resistance
The front end of common mode inhibition inductance is parallel to, the input of the safety electric capacity and rectifier bridge is parallel to after common mode inhibition inductance
End, the output end of the rectifier bridge is parallel with filter capacitor.
3. the intelligent amendment wave voltage change-over circuit as claimed in claim 1 based on PFC normal shock half-bridges, it is characterised in that
The PFC boost unit includes boost inductance, the 3rd switching tube, the first commutation diode and the second electrochemical capacitor, the liter
The front end of voltage inductance is connected to the output end of input rectifying filter unit, and the rear end of the boost inductance is connected to the 3rd switching tube
Drain electrode, with connecing front end, the grid of the 3rd switching tube is used to access PWM controls letter all the way to the source electrode of the 3rd switching tube
Number, the anode of drain electrode the first commutation diode of connection of the 3rd switching tube, the negative electrode conduct of first commutation diode
The output end of PFC boost unit, and the positive pole of negative electrode the second electrochemical capacitor of connection of first commutation diode, the second electrolysis electricity
The negative pole of appearance is with connecing front end.
4. the intelligent amendment wave voltage change-over circuit as claimed in claim 3 based on PFC normal shock half-bridges, it is characterised in that
Also include a MCU control unit, the grid of the grid of the first switch pipe, the grid of second switch pipe and the 3rd switching tube
MCU control unit is connected to, the MCU control unit is used to distinguish output pwm signal to first switch pipe, second switch
Pipe and the 3rd switching tube, to control first switch pipe, second switch pipe and the 3rd switching tube on off operating mode.
5. the intelligent amendment wave voltage change-over circuit as claimed in claim 4 based on PFC normal shock half-bridges, it is characterised in that
Also include an AC sampling unit, the AC sampling unit is connected to the input of input rectifying filter unit and MCU is controlled
Between unit processed, the AC sampling unit is used to gather the voltage of input rectifying filter unit AC and feeds back to MCU controls
Unit processed.
6. the intelligent amendment wave voltage change-over circuit as claimed in claim 5 based on PFC normal shock half-bridges, it is characterised in that
The AC sampling unit includes amplifier, and it is whole that two inputs of the amplifier are connected to input by current-limiting resistance respectively
The input of filter unit is flowed, the output end of the amplifier is connected to MCU control unit.
7. the intelligent amendment wave voltage change-over circuit as claimed in claim 4 based on PFC normal shock half-bridges, it is characterised in that
The first sampling resistor is connected between the source electrode and front end ground of 3rd switching tube, the source electrode of the 3rd switching tube is connected to
MCU control unit, makes MCU control unit gather the electric signal of the 3rd switching tube source electrode by first sampling resistor.
8. the intelligent amendment wave voltage change-over circuit as claimed in claim 4 based on PFC normal shock half-bridges, it is characterised in that
Also include a D/C voltage sampling unit, the D/C voltage sampling unit includes the second sampling resistor and the 3rd being sequentially connected in series
Sampling resistor, the front end of second sampling resistor is connected to the rear end of filter inductance, and the rear end of the 3rd sampling resistor connects
MCU control unit is connected to, makes MCU control unit gather filter inductance by second sampling resistor and the 3rd sampling resistor
The electric signal of rear end.
9. the intelligent amendment wave voltage change-over circuit as claimed in claim 4 based on PFC normal shock half-bridges, it is characterised in that
The inversion reversed phase unit includes the 4th switching tube, the 5th switching tube, the 3rd electrochemical capacitor and the 4th electrochemical capacitor, described
The drain electrode of four switching tubes is connected to the output head anode of isolated form two-transistor forward converter, the source electrode connection of the 4th switching tube
In the drain electrode of the 5th switching tube, the output end that the source electrode of the 5th switching tube is connected to isolated form two-transistor forward converter is born
Pole, the grid of the 4th switching tube and the grid of the 5th switching tube are respectively used to access the pwm pulse letter of two-way opposite in phase
Number, the positive pole of the 3rd electrochemical capacitor is connected to the drain electrode of the 4th switching tube, after the negative pole connection of the 3rd electrochemical capacitor
End ground, the negative pole of the 3rd electrochemical capacitor is also attached to the positive pole of the 4th electrochemical capacitor, the negative pole of the 4th electrochemical capacitor
The source electrode of the 5th switching tube is connected to, the source electrode of the 4th switching tube and the negative pole of the 3rd electrochemical capacitor are used as inversion paraphase list
The output end of member.
10. the intelligent amendment wave voltage change-over circuit as claimed in claim 9 based on PFC normal shock half-bridges, it is characterised in that
First resistor is connected between the grid and source electrode of 4th switching tube, is connected between the grid and source electrode of the 5th switching tube
It is connected to second resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621452285.3U CN206402114U (en) | 2016-12-27 | 2016-12-27 | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621452285.3U CN206402114U (en) | 2016-12-27 | 2016-12-27 | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206402114U true CN206402114U (en) | 2017-08-11 |
Family
ID=59516385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621452285.3U Active CN206402114U (en) | 2016-12-27 | 2016-12-27 | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206402114U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106787800A (en) * | 2016-12-27 | 2017-05-31 | 广东百事泰电子商务股份有限公司 | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges |
CN107834862A (en) * | 2017-12-06 | 2018-03-23 | 深圳南云微电子有限公司 | Control circuit, control method and the control device of asymmetrical half-bridge forward converter |
-
2016
- 2016-12-27 CN CN201621452285.3U patent/CN206402114U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106787800A (en) * | 2016-12-27 | 2017-05-31 | 广东百事泰电子商务股份有限公司 | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges |
CN107834862A (en) * | 2017-12-06 | 2018-03-23 | 深圳南云微电子有限公司 | Control circuit, control method and the control device of asymmetrical half-bridge forward converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018107623A1 (en) | Pfc dual-full-bridge-based smart sine wave voltage conversion circuit | |
WO2018107600A1 (en) | Pfc forward full-bridge based intelligent modified-wave voltage conversion circuit | |
CN106787799A (en) | A kind of intelligent sine voltage change-over circuit based on PFC normal shock half-bridges | |
CN106533195A (en) | Intelligent full-bridge sine-wave voltage switching circuit based on PFC and LLC resonance | |
WO2018107599A1 (en) | Pfc forward full bridge-based intelligent sine wave voltage conversion circuit | |
CN106856378A (en) | Intelligent half-bridge sine voltage change-over circuit based on PFC interleaving inverse excitations | |
WO2018120483A1 (en) | Pfc interleaved flyback full bridge based intelligent sine-wave voltage conversion circuit | |
WO2018107621A1 (en) | Smart sine wave voltage conversion circuit based on pfc flyback full bridge | |
CN106787807A (en) | Intelligent amendment wave voltage change-over circuit based on PFC, full-bridge and half-bridge | |
CN106849690A (en) | Intelligent half-bridge sine voltage change-over circuit based on PFC Yu LLC resonance | |
WO2018107620A1 (en) | Pfc flyback full bridge-based smart correction wave voltage conversion circuit | |
CN106712535A (en) | Intelligent half-bridge correction wave voltage conversion circuit based on PFC interleaved flyback | |
CN206422704U (en) | Intelligent half-bridge sine voltage change-over circuit based on PFC interleaving inverse excitations | |
CN206620058U (en) | Intelligent half-bridge sine voltage change-over circuit based on PFC Yu LLC resonance | |
WO2018107622A1 (en) | Pfc double full bridge-based smart correction wave voltage conversion circuit | |
CN106787754A (en) | Intelligent amendment wave voltage change-over circuit based on PFC interleaving inverse excitation full-bridges | |
CN206364710U (en) | Intelligent half-bridge amendment wave voltage change-over circuit based on PFC Yu LLC resonance | |
CN106787806A (en) | Intelligent sine voltage change-over circuit based on PFC, full-bridge and half-bridge | |
CN206364711U (en) | Intelligent sine voltage change-over circuit based on PFC, full-bridge and half-bridge | |
CN106787800A (en) | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges | |
CN206402114U (en) | A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges | |
CN206364708U (en) | Intelligent amendment wave voltage change-over circuit based on PFC interleaving inverse excitation full-bridges | |
CN106787780A (en) | Intelligent half-bridge amendment wave voltage change-over circuit based on PFC Yu LLC resonance | |
CN208508805U (en) | Intelligent full-bridge sine voltage conversion circuit based on PFC Yu LLC resonance | |
CN206379887U (en) | A kind of intelligent sine voltage change-over circuit based on metal-oxide-semiconductor full-bridge rectification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | "change of name, title or address" | ||
CP03 | "change of name, title or address" |
Address after: No.358 Baotian 1st Road, Tiegang community, Xixiang street, Baoan District, Shenzhen City, Guangdong Province Patentee after: Guangdong best medical equipment Co., Ltd Address before: 518000 east part of the third floor, no.258, Baotian 1st Road, Tiegang community, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province Patentee before: Guangdong BESTEK E-commerce Co.,Ltd. |