[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN205113687U - 带有紧急制动装置的多旋翼无人飞行器 - Google Patents

带有紧急制动装置的多旋翼无人飞行器 Download PDF

Info

Publication number
CN205113687U
CN205113687U CN201520892136.8U CN201520892136U CN205113687U CN 205113687 U CN205113687 U CN 205113687U CN 201520892136 U CN201520892136 U CN 201520892136U CN 205113687 U CN205113687 U CN 205113687U
Authority
CN
China
Prior art keywords
rotor unmanned
many rotor
unmanned aircrafts
flight
emergency braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520892136.8U
Other languages
English (en)
Inventor
杨珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Domain (beijing) Intelligent Technology Research Institute Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55569320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN205113687(U) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to CN201520892136.8U priority Critical patent/CN205113687U/zh
Application granted granted Critical
Publication of CN205113687U publication Critical patent/CN205113687U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种带有紧急制动装置的多旋翼无人飞行器包括多旋翼无人飞行器本体(1)以及设在所述多旋翼无人飞行器本体(1)上的紧急制动装置(2),所述紧急制动装置(2)包括用于监测所述多旋翼无人飞行器本体(1)持续接收飞行控制信号的信号监测器(3)和紧急制动器(4),所述紧急制动器(4)包括飞行状态测量设备(5)和惯性补偿设备(6),所述飞行状态测量设备(5)测量所述多旋翼无人飞行器的飞行状态数据,当所述信号监测器(3)判断所述多旋翼无人飞行器本体(1)没有接收到飞行控制信号时,接收所述飞行状态数据的惯性补偿设备(6)调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。

Description

带有紧急制动装置的多旋翼无人飞行器
技术领域
本实用新型属于航空领域,特别是涉及一种带有紧急制动装置的多旋翼无人飞行器。
背景技术
多旋翼无人飞行器是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。它最早出现于20世纪20年代,当时是作为训练用的靶机使用的。是一个许多国家用于描述最新一代无人驾驶飞机的术语。多旋翼无人飞行器用途广泛,成本低,效费比好;无人员伤亡风险;生存能力强,机动性能好,使用方便。从技术角度定义可以分为:无人直升机、无人固定翼机、无人多旋翼飞行器、无人飞艇、无人伞翼机这几大类。多旋翼式飞行器由于起降灵活,空中可自由悬停,因此被广泛应用于一些对于场地控制更为严格的场合。比如采用传统的固定翼式飞行器能够完成电力巡线,但是对于一座电力塔来说,让固定翼式飞行器围绕该电力塔进行准确飞行,从而实现巡查,是不现实的.
但是,如果利用多旋翼式飞行器对电塔进行巡视也存在一些问题,比如由于电塔附近电磁场强度高,容易因为各种不可预知的电磁干扰,导致多旋翼式飞行器失去控制,而失去控制的多旋翼式飞行器如果保持惯性继续飞行,则很可能在高压电线众多的电塔周边与电线缠绕,从而引发严重的电力事故。这种安全隐患导致了现在对于运用多旋翼式飞行器对电塔等类似设备实施巡检的谨慎态度。
事实上,由于不可预知的信号干扰,导致无人飞行器失联,并导致后续安全事故的报告并不鲜见。比如,有新闻报道,曾经有飞手控制无人飞行器在高压电线附近完成飞行作业,由于突然产生的未知信号干扰使得无人飞行器失控,失控后的无人飞行器撞到了两条高压电线中间,使得高压电线接火短路,导致大面积的电力故障。所以,一方面,技术人员在不断努力提升无人飞行器的飞行控制稳定性,同时,另一方面,有必要针对这种失联情况下,无人飞行器的安全进行针对性的设计与保障。本申请实用新型人注意到,实际上,在可控状态下,多旋翼式飞行器的飞行控制是可靠的,用户控制飞行器的策略就是要远离各种可能导致安全事故的因素,如电线、塔基等。真正的导致安全事故发生,往往是因为用户本来控制飞行器在水平方向上正常飞行,并已经有了心理准备,如何通过转向指令来绕开前方的障碍目标物体,但是突然因为信号干扰而失去了对飞行器的控制,此时飞行器基于原先的飞行惯性继续沿着原轨迹飞行,用户由于无法继续控制飞行器改变方向,从而导致飞行器撞上了空中的障碍目标物体。
所以,实际上只要存在一种设计,能够尽可能的降低飞行器在失联之后的惯性飞行行为,并使其在空中保持悬停的安全策略,就能最大限度的减低飞行器引发空中撞车事件的可能性。
专利文献CN102183955公开了一种基于多旋翼无人飞行器的输电线路巡检系统,其特征在于:包括多旋翼无人飞行器和地面支持系统;多旋翼无人飞行器包含飞行器本体、机载飞行控制系统、机载任务系统和为全机电子设备供电的机载电源;飞行器本体由机身、固连于机身下方的起落架、多个以对称方式分布并安装于机身周边的旋翼组件组成;机载飞行控制系统包含飞行导航与控制部件、输电线路防碰撞预警与控制部件、遥控遥测数据链的机载端;机载任务系统包含减震吊舱、安装于减震吊舱的影像采集设备、无线图像传输链的机载端;机载飞行控制系统、机载任务系统和机载电源以内置或外挂方式固连于机身;地面支持系统包含遥控遥测数据链的地面端、飞行监控系统、无线图像传输链的地面端和影像监控系统。该专利可以输电线路防碰撞预警与控制部件的应用,可对飞行器实施快速的避障控制,从而有效提高线路巡检的安全性。但无法处理因为控制信号失联产生的飞行危险,特别是在高压电磁场环境中,控制信号容易被干扰导致多旋翼无人飞行器的飞行危险。因此,特别需要对应的处理机制。
专利文献CN102538828公开了一种控制旋翼多旋翼无人飞行器的方法,所述旋翼多旋翼无人飞行器具有多个螺旋桨,所述多个螺旋桨分别被独立受控的马达所驱动,用于控制所述多旋翼无人飞行器的高度和速度,所述方法是用于实现以下过渡过程的方法:-从初始时刻的移动状态(16),其中,多旋翼无人飞行器以非零的水平线速度和相对于水平面的非零倾角飞行;-过渡到最终时刻的悬停状态(18),其中,多旋翼无人飞行器的具有零线速度和零倾角;所述方法的特征在于包括以下步骤:a)在初始时刻,获取代表水平线速度分量、倾角和角速度的初始测量数据;b)设定初始时刻和最终时刻之间的制动时间值;c)基于步骤a)中获取的初始测量数据和步骤b)中设定的制动时间,将预先确定的预测函数参数化,所述预先确定的预测函数对从初始时刻的速度开始到设定时间结束时的零速度为止的、因变于时间的水平线速度的最优化连续减小变化进行建模;d)产生用于回路(26-40)的设定值,用于控制多旋翼无人飞行器的马达(34),这些设定值对应于基于步骤c)中所参数化的预测函数的在给定时间的预先计算出的目标水平线速度;e)一旦达到悬停状态,就启动悬停飞行控制回路(26-40,48-58),悬停飞行控制回路适用于将所述多旋翼无人飞行器稳定为具有零水平速度和相对地面零倾角的。该多旋翼无人飞行器可以在受控导航模式切换到自动导航模式的过程中对多旋翼无人飞行器的速度进行调整使得在最短时间内悬停,但该专利不能处理控制信号失联情况下的紧急制动处理,且其不能对其它的飞行状态进行调整,而且该专利步骤较多不利于迅速及时处理突发的失联状况。
因此,在本领域中,急需解决以下技术问题:
1.在判断丢失控制信号的情况下,及时转入紧急制动模式,避免空间范围内继续发生移动。当判断飞行器丢失控制信号的情况下,及时转入紧急制动模式,判断当前飞行姿态,并调用最合理的飞行策略,进行惯性的对冲,并转入空中悬停模式。2.在紧急制动后的悬停模式下,临时关闭GPS信号与控制信号,开启心跳模式等待重新获得连接在空中悬停模式下,以保障空中飞行安全性为首要前提,采用谨慎的策略,来尝试接回控制信号。3.在持续失联的状态下,依据悬停模式,转入安全降落模式,当始终无法接回控制信号的情况下,以悬停模式为基础,结合对下方降落环境的侦测,转入安全降落模式,慢慢降落到地面。
在背景技术部分中公开的上述信息仅仅用于增强对本实用新型背景的理解,因此可能包含不构成在本国中本领域普通技术人员公知的现有技术的信息。
实用新型内容
本实用新型的目的是通过以下技术方案予以实现。
根据本实用新型的第一方面,带有紧急制动装置的多旋翼无人飞行器包括多旋翼无人飞行器本体以及设在所述多旋翼无人飞行器本体上的紧急制动装置。
所述紧急制动装置包括用于监测所述多旋翼无人飞行器本体持续接收飞行控制信号的信号监测器和紧急制动器,所述紧急制动器包括飞行状态测量设备和惯性补偿设备,所述飞行状态测量设备测量所述多旋翼无人飞行器的飞行状态数据。
当所述信号监测器判断所述多旋翼无人飞行器本体没有接收到飞行控制信号时,接收所述飞行状态数据的惯性补偿设备调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
优选地,所述飞行状态测量设备(5)选自由陀螺仪、加速度计、速度传感器和位置传感器组成的组中的一个或多个,所述飞行状态数据相应地选自由角度、加速度、速度和位置数据组成的组中的一个或多个。
优选地,惯性补偿设备(6)为可编程处理器以设置不同的惯性调整方式。
优选地,信号监测器(3)为监测GPS信号的GPS接收器。
根据本实用新型的第二方面,带有紧急制动装置的多旋翼无人飞行器包括多旋翼无人飞行器本体以及设在所述多旋翼无人飞行器本体上的紧急制动装置,所述多旋翼无人飞行器包括用户控制所述多旋翼无人飞行器飞行的飞行控制器,飞行控制器发出持续的心跳信号到所述多旋翼无人飞行器本体。
所述紧急制动装置包括信号监测器和紧急制动器,所述紧急制动器包括飞行状态测量设备和惯性补偿设备,所述飞行状态测量设备测量所述多旋翼无人飞行器的飞行状态数据。
信号监测器监测所述多旋翼无人飞行器本体持续接收所述心跳信号,当所述信号监测器判断所述多旋翼无人飞行器本体没有接收到所述心跳信号时,接收所述飞行状态数据的惯性补偿设备调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
优选地,信号监测器监测所述多旋翼无人飞行器本体持续接收控制信号和所述心跳信号,当所述信号监测器判断所述多旋翼无人飞行器本体没有接收到控制信号和所述心跳信号时,接收所述飞行状态数据的惯性补偿设备调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
优选地,所述多旋翼无人飞行器本体在不同的方向上配置超声波探测传感器。
本实用新型提出的方案能够实时监控多旋翼无人飞行器的状态数据,并根据信号监测器监测的控制信号和/或心跳信号来判断多旋翼无人飞行器是否处于失联状态,惯性补偿设备调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态,然后通过恢复信号连接进一步对多旋翼无人飞行器重新控制,以及在不能恢复连接的情况下,进行避障和安全降落。
附图说明
图1是根据本实用新型一个实施例的带有紧急制动装置的多旋翼无人飞行器的结构示意图。
图2是根据本实用新型另一个实施例的带有紧急制动装置的多旋翼无人飞行器的结构示意图。
以下结合附图和实施例对本实用新型作进一步的解释。
具体实施方式
以下详细描述实际上仅是示例性的而并不意欲限制应用和使用。此外,并不意欲受以上技术领域、背景、简要概述或以下详细描述中呈现的任何明确或暗示的理论约束。如本文使用,术语“器”或“设备”是指任何硬件、软件、固件、电子控制部件、处理逻辑和/或处理器设备单独地或者以任何组合,包括而不限于:专用集成电路ASIC、电子电路、执行一个或多个软件或固件程序的处理器共享、专用或成组的和存储器、组合逻辑电路和/或提供所描述的功能性的其他适合的部件。此外,除非明确地具有相反的描述,否则词语“包括”及其不同的变型应被理解为隐含包括所述的部件但不排除任意其他部件。
本实用新型的实施例描述了一种带有紧急制动装置的多旋翼无人飞行器,如图1所示的根据本实用新型的一个实施例的带有紧急制动装置的多旋翼无人飞行器的示意图,带有紧急制动装置的多旋翼无人飞行器包括多旋翼无人飞行器本体1以及设在所述多旋翼无人飞行器本体1上的紧急制动装置2。
在本领域中,多旋翼无人飞行器是指采用自动控制、具有自动导航的多旋翼无人飞行器。该多旋翼无人飞行器可以是多旋翼式无人飞行器。多旋翼无人飞行器可以是各种类型的多旋翼无人飞行器,包括固定翼、多旋翼等各种能够在空域范围内进行多自由度活动的飞行器。多旋翼无人飞行器还可以包括多旋翼无人飞行器本体1、飞行控制器7和无线通信器。
所述紧急制动装置2包括用于监测所述多旋翼无人飞行器本体1持续接收飞行控制信号的信号监测器3和紧急制动器4,所述紧急制动器4包括飞行状态测量设备5和惯性补偿设备6,所述飞行状态测量设备5测量所述多旋翼无人飞行器的飞行状态数据。
当所述信号监测器3判断所述多旋翼无人飞行器本体1没有接收到飞行控制信号时,接收所述飞行状态数据的惯性补偿设备6调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
惯性补偿设备6通过对接收的飞行状态数据进行调整可以采用惯性补偿方式,该惯性补偿方式可以是根据飞行器在出厂测试时,所得到的经验数据来预先保存的,也可以是根据正常的飞行逻辑数据进行合理推断得来的。比如,根据飞行器在出厂测试时进行飞信训练时的数据,就能够准确得知,当飞行器在最高速度向前飞行的状态下,通过什么样的控制方式能够既安全又迅速的实施急刹车,这种统计方式,可以针对每种飞行器具体的型号、尺寸、动力等个性参数,得出最适于当前飞行器的数据库,并有效的用于紧急制动模式下的惯性补偿。再如,由于飞行器的实际飞行角度、姿态和速度千差万别,没法通过实验来完成对所有飞行速度与角度的惯性补偿速度,此时就可以根据已有的惯性补偿策略,按照逻辑类推的方式,得出相应的惯性补偿飞行策略。惯性补偿的目的是为了最大程度的抵消到无人飞行器的惯性飞行行为,降低无控制环境下的飞行撞击风险。
所述飞行状态测量设备5选自由陀螺仪、加速度计、速度传感器和位置传感器组成的组中的一个或多个,所述飞行状态数据相应地选自由角度、加速度、速度和位置数据组成的组中的一个或多个。
在一个实施例中,所述飞行状态测量设备5由陀螺仪和加速度计组成,该飞行状态测量设备5测量多旋翼无人飞行器的航向角和加速度值,当如信号接收器的信号监测器3在一定时间内没有接收到多旋翼无人飞行器的控制信号时,该信号监测器3判断控制信号持续丢失,该多旋翼无人飞行器处于失联状态,目前的飞行行为属于不受用户控制的行为,如果按照惯性发展下去,可能导致高风险。此时,惯性补偿设备6接收多旋翼无人飞行器的俯仰角和加速度值进行惯性补偿,例如航向角为-5度,加速度为4g时,惯性补偿设备根据预定的惯性补偿策略发出增加航向角5度,降低加速度到-1g的指示到多旋翼无人飞行器本体1,多旋翼无人飞行器根据指示对其飞行状态进行调整,当多旋翼无人飞行器惯性补偿完毕后,惯性补偿设备6发出悬停指示到多旋翼无人飞行器本体1,多旋翼无人飞行器进入悬停状态。惯性补偿设备6为可编程处理器以设置不同的惯性调整方式。例如惯性补偿设备可以针对由角度、加速度、速度和位置数据组成的组中的一个或多个的飞行状态数据进行调整,惯性补偿设备6还可以调整由高度计测量的高度数据。
在一个实施例中,惯性补偿设备可包括处理器和诸如EEPROM(可电擦除可编程只读存储器)、闪存、RAM(随机存储器)的存储器,用以存储惯性补偿策略和/或固件以及用来计算调整飞行状态数据。惯性补偿设备的存储器可以存储有调整飞行状态的多项式函数,例如调整航向角的多项式函数为:
CC=[GR/FMEAS]+[(CGPS-CG)·KC/CFR]+Pf,其中,CC为上述补偿后的航向角;GR是偏航率;FMEAS是陀螺仪测量上述偏航率的频率;CGPS是飞行状态测量设备5测量的航向角;CG是回转航向角;KC是可变滤波值;CFR是航向滤波分辨率变量;Pf为校正参数。通过多次试验可以确定适当的参数,使得航向角补偿更为适合具体型号的多旋翼无人飞行器。
在一个实施例中,信号监测器3为监测GPS信号的GPS接收器。多旋翼无人飞行器采用GPS控制信号控制飞行有利于飞行的精确性,因此,信号监测器监测GPS信号判断多旋翼无人飞行器是否失联。
本实用新型的实施例描述了一种带有紧急制动装置的多旋翼无人飞行器,如图2所示的根据本实用新型的另一个实施例的带有紧急制动装置的多旋翼无人飞行器的示意图,带有紧急制动装置的多旋翼无人飞行器包括多旋翼无人飞行器本体1以及设在所述多旋翼无人飞行器本体1上的紧急制动装置2。所述多旋翼无人飞行器包括用户控制所述多旋翼无人飞行器飞行的飞行控制器7,飞行控制器7发出持续的心跳信号到所述多旋翼无人飞行器本体1。
所述紧急制动装置2包括用于监测所述多旋翼无人飞行器本体1持续接收飞行控制信号的信号监测器3和紧急制动器4,所述紧急制动器4包括飞行状态测量设备5和惯性补偿设备6,所述飞行状态测量设备5测量所述多旋翼无人飞行器的飞行状态数据。
当所述信号监测器3判断所述多旋翼无人飞行器本体1没有接收到飞行控制信号时,接收所述飞行状态数据的惯性补偿设备6调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
信号监测器3监测所述多旋翼无人飞行器本体1持续接收所述心跳信号,当所述信号监测器3判断所述多旋翼无人飞行器本体1没有接收到所述心跳信号时,接收所述飞行状态数据的惯性补偿设备6调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
本实施例通过飞行控制器7发出心跳信号作为基准信号,当信号监测器3很灵敏地判断是否在预定时间内是否持续接收到心跳信号,提高了判断旋翼无人飞行器是否失联的灵敏性。
在另一个实施例中,信号监测器3监测所述多旋翼无人飞行器本体1持续接收控制信号和所述心跳信号,当所述信号监测器3判断所述多旋翼无人飞行器本体1没有接收到控制信号和所述心跳信号时,接收所述飞行状态数据的惯性补偿设备6调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。为了提高判断失联的准确性,本实施例通过同时判断心跳信号和控制信号是否在预定时间内是否持续接收来确定多旋翼是否失联,提高了本实用新型的准确性。
所述惯性补偿设备6还包括存储设备,存储设备可以是易失性存储器或非易失性存储器。存储设备可以包括一个或多个只读存储器ROM、随机存取存储器RAM、快闪存储器、电子可擦除可编程只读存储器EEPROM或其它类型的存储器。惯性补偿设备6可编译、组织或分析在存储设备的存储格式的传感数据以执行对数据的统计分析。惯性补偿设备6可以包括通用处理器、数字信号处理器、专用集成电路ASIC,现场可编程门阵列FPGA、模拟电路、数字电路、及其组合、或其他已知或以后开发的处理器。
在一个实施例中,所述多旋翼无人飞行器本体1在不同的方向上配置超声波探测传感器8。在无人飞行器上的多个侧向设置更多的传感器用来感应无人飞行器的周边是否存在其他障碍物,从而在避开下方障碍物的同时也能避开周边的障碍物,但是对于一些较为简单的情况,可以默认周边环境中并不存在超大面积的障碍物,仅是一些线状或者小块状的障碍物,此时只要超声波探测传感器发现障碍物如果在电塔周围,通常就是电线时,就朝侧向平移3个机身的距离,即可基本确保绕过下方的障碍物。
在一个实施例中,多旋翼无人飞行器本体1上还设有无线通信设备。
所述无线通信设备在所述多旋翼无人飞行器本体1和飞行控制器7之间进行通信,无线通信设备由选自具有不同优先级的无线局域网器、移动通信网络器、平流层通信网络器和卫星网络通信器组成的组中的一个或多个组成。
在一个实施例中,移动通信网络器主要由2G/3G/4G无线通信芯片组构成,负责通过移动通信网络发送状态数据和接收飞行指示。无线局域网器可以是蓝牙、ZigBee或Wi-Fi器中的一个,无线局域网器可通过2.4GHz通信频率建立短距离通信,在室内或低速移动的室外环境会优选该器建立多旋翼无人飞行器与处理设备4之间的通信连接。平流层通信器一般用充氦飞艇、气球作为安置转发站的平台,平台高度距地面17km~22km,多旋翼无人飞行器在大范围野外飞行时,可以优选平流层通信建立所述多旋翼无人飞行器本体1和飞行控制器7之间的通信连接。卫星通信器利用卫星通信信道建立所述多旋翼无人飞行器本体1和飞行控制器7之间的通信连接,一般是在无其他可用无线通信网络的情况下,会使用卫星通信器,作为应急通信。
本实用新型根据控制信号和/或心跳信号判断多旋翼无人飞行器是否失联,在多旋翼无人飞行器经调整进入悬停状态后,无人飞行器尝试与飞行控制器7恢复联系,从而重新实施受控飞行。为了避免这种联系过程中可能发生的意外事故,在恢复联系的过程中,可以关闭依据于GPS信号来控制无人飞行器飞行的模式,而是反复尝试与飞行控制器7的手控模式进行恢复,首先尝试恢复心跳模式的控制信号基础,接下来,尝试转入受控飞行状态;之所以这样,是因为依据于GPS信号而实施的无人飞行器飞行模式,目前来看,其主要是基于GPS坐标而实施的点对点飞行,这种飞行在飞行环境较好的情况下还好,但是对于飞行环境复杂的情况而言,由于GPS本身的精度误差,极易与空中的障碍物产生碰撞,因此为了避免无人飞行器在恢复受控飞行后,由于第一时间接到原有的GPS飞行模式信号,继续实施飞行,而可能导致的飞行撞车事件,因此从安全角度出发,只允许以手动控制模式来恢复与飞行器之间的通信控制。在刚刚恢复控制,并转入受控飞行状态时,保持一段时间内使得飞行器的控制属于限速状态下,所谓限速状态是指,对无人飞行器在各个方向上飞行的最大速度进行成比例的控制,比如原来将油门推到底时,飞行器能够以8米/秒的速度飞行,现在在限速状态下,飞行器的最高飞行速度降到3米/秒。之所以限制最高速度是为了确保飞行器在较为复杂的飞行环境下,能够通过谨慎飞行,缓慢绕过空中可能出现的障碍物,确保安全降落。由于飞行器的信号控制环境的差异,有可能发生,飞行器持续失联,无法恢复与控制端的信号通信的情形,此时如果飞行器持续保持在空中悬停,最终也可能因为电源耗尽,丧失动力,从而坠机。因此,在始终无法恢复控制的情况下,多旋翼无人飞行器又监测到自身的续航能力即将不足的情况下,无人飞行器应转入安全降落模式。惯性补偿设备6发出降落指示后,无人飞行器在保持一个安全降落速度的同时,监测下方周边是否存在障碍物,根据超声波探测传感器8的探测数据完成避障降落。首先,安全降落速度,可以是根据常见的稳定降落速度来设置,比如是1米/秒;另外还可以是根据当前飞行器的飞行性能实际测定得出的既可靠又安全的降落速度。其次,关于飞行避障,主要是基于现有的障碍物感知技术与飞行逻辑,比如依据红外或者超声波信号来感应飞行器向下方向上是否存在障碍物,如果不存在障碍物,则直线下降降落;如果感应到障碍物,则按照向侧方平行飞行一段距离,直至感应到无障碍物之后,再继续下降的飞行模式。由于避障的思路是相对的,在成本提升的情况下,避障的性能也能得到提升。比如,对于更为复杂的障碍环境,避障思路可以是在无人飞行器上的多个侧向设置更多的传感器用来感应无人飞行器的周边是否存在其他障碍物,从而在避开下方障碍物的同时也能避开周边的障碍物,但是对于一些较为简单的情况,可以默认周边环境中并不存在超大面积的障碍物,仅是一些线状或者小块状的障碍物,此时只要在预设的飞行策略中,设计成当下方出现障碍物如果在电塔周围,通常就是电线时,就朝侧向平移3个机身的距离,即可基本确保绕过下方的障碍物。
尽管以上结合附图对本实用新型的实施方案进行了描述,但本实用新型并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本实用新型权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本实用新型保护之列。

Claims (10)

1.一种带有紧急制动装置的多旋翼无人飞行器,其包括多旋翼无人飞行器本体(1)以及设在所述多旋翼无人飞行器本体(1)上的紧急制动装置(2),其中,
所述紧急制动装置(2)包括用于监测所述多旋翼无人飞行器本体(1)持续接收飞行控制信号的信号监测器(3)和紧急制动器(4),所述紧急制动器(4)包括飞行状态测量设备(5)和惯性补偿设备(6),所述飞行状态测量设备(5)测量所述多旋翼无人飞行器的飞行状态数据;
当所述信号监测器(3)判断所述多旋翼无人飞行器本体(1)没有接收到飞行控制信号时,接收所述飞行状态数据的惯性补偿设备(6)调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
2.根据权利要求1所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:所述飞行状态测量设备(5)选自由陀螺仪、加速度计、速度传感器和位置传感器组成的组中的一个或多个,所述飞行状态数据相应地选自由角度、加速度、速度和位置数据组成的组中的一个或多个。
3.根据权利要求2所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:惯性补偿设备(6)为可编程处理器。
4.根据权利要求1所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:信号监测器(3)为监测GPS信号的GPS接收器。
5.根据权利要求1所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:所述多旋翼无人飞行器包括用户控制所述多旋翼无人飞行器飞行的飞行控制器(7),飞行控制器(7)发出持续的心跳信号到所述多旋翼无人飞行器本体(1)。
6.根据权利要求5所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:信号监测器(3)监测所述多旋翼无人飞行器本体(1)持续接收所述心跳信号,当所述信号监测器(3)判断所述多旋翼无人飞行器本体(1)没有接收到所述心跳信号时,接收所述飞行状态数据的惯性补偿设备(6)调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
7.根据权利要求5所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:信号监测器(3)监测所述多旋翼无人飞行器本体(1)持续接收控制信号和所述心跳信号,当所述信号监测器(3)判断所述多旋翼无人飞行器本体(1)没有接收到控制信号和所述心跳信号时,接收所述飞行状态数据的惯性补偿设备(6)调整所述多旋翼无人飞行器的惯性且使得所述多旋翼无人飞行器进入悬停状态。
8.根据权利要求7所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:所述多旋翼无人飞行器本体(1)在不同的方向上配置超声波探测传感器(8)。
9.根据权利要求7所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:所述多旋翼无人飞行器本体(1)还包括无线通信器。
10.根据权利要求7所述的带有紧急制动装置的多旋翼无人飞行器,其特征在于:惯性补偿设备(6)包括可擦写存储器。
CN201520892136.8U 2015-11-10 2015-11-10 带有紧急制动装置的多旋翼无人飞行器 Active CN205113687U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520892136.8U CN205113687U (zh) 2015-11-10 2015-11-10 带有紧急制动装置的多旋翼无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520892136.8U CN205113687U (zh) 2015-11-10 2015-11-10 带有紧急制动装置的多旋翼无人飞行器

Publications (1)

Publication Number Publication Date
CN205113687U true CN205113687U (zh) 2016-03-30

Family

ID=55569320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520892136.8U Active CN205113687U (zh) 2015-11-10 2015-11-10 带有紧急制动装置的多旋翼无人飞行器

Country Status (1)

Country Link
CN (1) CN205113687U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235895A (zh) * 2015-11-10 2016-01-13 杨珊珊 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN108513640A (zh) * 2017-03-21 2018-09-07 深圳市大疆创新科技有限公司 一种可移动平台的控制方法以及可移动平台
CN108871794A (zh) * 2018-07-04 2018-11-23 北京踏歌智行科技有限公司 矿用无人驾驶车辆故障自诊断方法及装置
CN113342052A (zh) * 2021-06-27 2021-09-03 广西翼界科技有限公司 一种超视距作业无人机故障应急降落方法
US11610496B2 (en) 2017-03-21 2023-03-21 SZ DJI Technology Co., Ltd. Monitoring method and system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235895A (zh) * 2015-11-10 2016-01-13 杨珊珊 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN105235895B (zh) * 2015-11-10 2017-09-26 杨珊珊 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN108513640A (zh) * 2017-03-21 2018-09-07 深圳市大疆创新科技有限公司 一种可移动平台的控制方法以及可移动平台
CN108513640B (zh) * 2017-03-21 2022-01-11 深圳市大疆创新科技有限公司 一种可移动平台的控制方法以及可移动平台
CN114253283A (zh) * 2017-03-21 2022-03-29 深圳市大疆创新科技有限公司 一种可移动平台的控制方法以及可移动平台
US11610496B2 (en) 2017-03-21 2023-03-21 SZ DJI Technology Co., Ltd. Monitoring method and system
CN108871794A (zh) * 2018-07-04 2018-11-23 北京踏歌智行科技有限公司 矿用无人驾驶车辆故障自诊断方法及装置
CN113342052A (zh) * 2021-06-27 2021-09-03 广西翼界科技有限公司 一种超视距作业无人机故障应急降落方法

Similar Documents

Publication Publication Date Title
CN105235895A (zh) 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN205113687U (zh) 带有紧急制动装置的多旋翼无人飞行器
CN101176133B (zh) 飞机的地形回避方法及系统
AU2018266655A1 (en) Systems and methods for sensing and avoiding external objects for aircraft
JP2020500763A (ja) 静止及び移動体に対する無人航空機の飛行方法
JP2017501475A (ja) 状況に基づく飛行モード選択
US10407168B2 (en) Spin-landing drone
CN102591357A (zh) 一种电力巡线无人机辅助控制系统及控制方法
CN105217054B (zh) 一种固定翼垂直起降无人机自动检测起降平台
CN105730707A (zh) 一种无人机的手抛自动起飞方法
CN112208747B (zh) 通过主动阵风感测增强起飞/着陆稳定性
CN112068601A (zh) 一种用于固定翼无人机的导航控制系统
CN112000118A (zh) 一种无人机保护方法及无人机
CN110162927A (zh) 基于飞行仿真平台和测风激光雷达的飞机起降预警方法
CN110011032B (zh) 一种机载应急通讯系统天线的收放控制装置及方法
CN103287578B (zh) 一种微型通用无人飞行器
CN104138664B (zh) 模型飞机
CN202574623U (zh) 一种微型通用无人飞行器
CN103869811B (zh) 一种四旋翼飞行器的遥控和伺服信号的监控方法
CN110673638B (zh) 一种无人飞艇避让系统和无人飞艇飞行控制系统
CN104317304B (zh) 基于微波引导的固定翼无人机自主降落控制装置及方法
CN205959071U (zh) 一种无人机着陆引导系统
CN110726851A (zh) 一种利用旋翼无人机测算风速的方法
CN111051921A (zh) 用于基于感测到的空气移动控制飞机的系统和方法
CN108154715B (zh) 一种侧向碰撞监测方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161012

Address after: 100000 Beijing City West Road No. 12 Chaoyang District Building No. 2 (national advertising Industrial Park incubator 25978)

Patentee after: High domain (Beijing) Intelligent Technology Research Institute Co., Ltd.

Address before: 100052 Beijing City, Xicheng District Caishikou Street No. 2 CITIC Qinyuan 3-3-701

Patentee before: Yang Shanshan