[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN204020007U - 3D printer spray silk sectional area adjustable structure - Google Patents

3D printer spray silk sectional area adjustable structure Download PDF

Info

Publication number
CN204020007U
CN204020007U CN201420384850.1U CN201420384850U CN204020007U CN 204020007 U CN204020007 U CN 204020007U CN 201420384850 U CN201420384850 U CN 201420384850U CN 204020007 U CN204020007 U CN 204020007U
Authority
CN
China
Prior art keywords
conveying pipeline
material extrusion
extrusion nozzle
sectional area
inner passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201420384850.1U
Other languages
Chinese (zh)
Inventor
沈震
刘学
熊刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cloud Computing Industry Technology Innovation and Incubation Center of CAS
Original Assignee
Cloud Computing Industry Technology Innovation and Incubation Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cloud Computing Industry Technology Innovation and Incubation Center of CAS filed Critical Cloud Computing Industry Technology Innovation and Incubation Center of CAS
Priority to CN201420384850.1U priority Critical patent/CN204020007U/en
Application granted granted Critical
Publication of CN204020007U publication Critical patent/CN204020007U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

The utility model relates to 3D printing technique field, especially a kind of 3D printer spray silk sectional area adjustable structure.The utility model includes conveying pipeline, material extrusion nozzle; Material extrusion nozzle is positioned at conveying pipeline below; Also include peripheral housing and drive unit, conveying pipeline is embedded in peripheral housing, and material extrusion nozzle is coaxially fixedly connected on conveying pipeline below; Conveying passage is positioned on the same axle of vertical conveying pipeline and material extrusion nozzle inner passage section with the center of gravity of the inner passage section shape of material extrusion nozzle; Conveying pipeline can rotate around aforementioned axis with respect to material extrusion nozzle under the driving of drive unit; Thereby regulate the sectional area of shower nozzle spray silk.The utility model can be controlled speed and the precision of printing, in the situation that guaranteeing required precision, promotes whole print speed; Can be applied to the nozzle structure of 3D printer and control.

Description

3D printer spray silk sectional area adjustable structure
Technical field
The utility model relates to 3D printing technique field, especially a kind of 3D printer spray silk sectional area adjustable structure.
Background technology
3D prints, and as a kind of RP technique, is, by software, 3D mathematical model is carried out to the processing of layering discretization, then uses powdery metal or the plastics etc. can adhesive material, by the mode of successively piling up, constructs entity.3D printing technique is that a kind of formula that adds is manufactured category, is different from traditional formula that subtracts and manufactures category, can better save raw materials for production.Towards personalized and specificity service, manufacturing under the promotion requiring, 3D prints and has started to be applied in the aspects such as mould generates, personalized product is produced, medical, military.Believe in the near future, 3D printer can be come into popular family, is our live and work service.
At present, common 3D printing technique has fuse deposition technique, it is by thread heat-fusible materials heating and melting, by the shower nozzle with a micro-channel, squeeze and gush out, from nozzle ejection, be deposited on workbench, temperature starts to solidify after lower than solidification temperature, and the accumulation layer by layer by material finally forms finished product.During 3D prints, shower nozzle is an one core component; But the material extrusion nozzle inside diameter cross sectional shape of the printing head of conventional 3D printer only has fixing circle, the given volume of unit interval inner nozzle spray silk.Non-adjustable due to nozzle inside diameter area of section, can not control printing precision and the speed of 3D printer; Cannot, for different printing purposes and different print area (different models or same model), realize different printing precision and speed.
Summary of the invention
The technical problem that the utility model solves is that the 3D printer nozzle internal diameter cross sectional shape based on current is all circular, can not accomplish the present situation for different models or the print speed of same model zones of different and the control of precision, a kind of 3D printer spray silk sectional area adjustable structure is provided, can regulates print speed and precision.
The technical scheme that the utility model solves the problems of the technologies described above is:
Include conveying pipeline, material extrusion nozzle; Material extrusion nozzle is positioned at conveying pipeline below; It is characterized in that: also include peripheral housing and drive unit, conveying pipeline is embedded in peripheral housing, material extrusion nozzle is coaxially fixedly connected on conveying pipeline below; Conveying passage is positioned on the same axle of vertical conveying pipeline and material extrusion nozzle inner passage section with the center of gravity of the inner passage section shape of material extrusion nozzle; Conveying pipeline can rotate around aforementioned axis with respect to material extrusion nozzle under the driving of drive unit; Thereby regulate the sectional area of shower nozzle spray silk.
Described drive unit comprises rotating disk and motor; Rotating disk is connected with printer body, and motor is positioned at peripheral housing and can drives dial rotation; Conveying pipeline is fixedly installed in the lower end of rotating disk.
The inner passage section shape of described conveying pipeline and the inner passage section shape of material extrusion nozzle are the regular polygon of triangle, quadrilateral type.
The inner passage section shape of described conveying pipeline and the inner passage section of material extrusion nozzle are shaped as identical rectangle, and wherein the long limit of rectangle is L max, minor face is L min; Conveying pipeline is θ around the anglec of rotation of the axle of the inner passage section shape perpendicular to conveying pipeline and material extrusion nozzle; When the anglec of rotation shower nozzle that is θ carries out work toward a direction, effectively print area width is L maxsin θ+L mincos θ; When Z axis forming height constant in shower nozzle translational speed size, every layer is certain value, in the unit interval, the effective print area area of shower nozzle of different rotary angle is directly proportional to print area width.
In described peripheral housing, include heater, for heating the transmission material of the ABS of conveying pipeline or the easy melting of PLA class, be molten condition.
Beneficial effect:
The utility model is by controlling the rotation of motor, and then control material extrusion nozzle is with respect to the anglec of rotation of conveying pipeline; Thereby realize the control to the actual spray silk of nozzle sectional area; To control printing precision and the speed of printer.Can, for different printing purposes and different print areas, adjust different printing precision and speed.
Accompanying drawing explanation
Below in conjunction with accompanying drawing, the utility model is further illustrated:
Fig. 1 is the utility model printer head front view;
Fig. 2 a is the top view of the utility model shower nozzle when anglec of rotation θ is acute angle;
Fig. 2 b is the top view of the utility model shower nozzle when anglec of rotation θ is right angle;
Fig. 2 c is that the utility model shower nozzle is the top view of 0 o'clock at anglec of rotation θ;
Fig. 3 is the logic chart of the utility model print speed influence factor;
Fig. 4 is the utility model print speed regulator control system figure.
The specific embodiment
As shown in Figure 1, be the utility model printer head front view; , include peripheral housing 602, conveying pipeline 604 and material extrusion nozzle 605.Peripheral housing 602 comprises heating element heater, and the transmission material in heating conveying pipeline, is molten condition.Wherein, material extrusion nozzle 605 is fixedly connected on the below of conveying pipeline 604.Internal channel 603 cross sections of conveying pipeline and internal channel 606 cross sections of material extrusion nozzle are the polygons such as regular triangle, quadrangle, and the center of gravity of internal channel 603 cross sectional shapes of conveying passage and the center of gravity of internal channel 606 cross sectional shapes of material extrusion nozzle are on the axle perpendicular to conveying pipeline internal channel 603 cross sections and material extrusion nozzle internal channel 606 cross sections simultaneously.
Conveying pipeline 604 is fixedly installed in the lower end of rotating disk 601, and rotating disk 601 is connected with printing body simultaneously, and rotating disk 601 can be around the axle rotation perpendicular to conveying pipeline internal channel 603 cross sections and material extrusion nozzle internal channel 606 cross sections.In peripheral housing 602, include the rotation that motor can be controlled rotating disk 601, by the rotation number of turns of motor, regulate and control the anglec of rotation of rotating disk.
In this programme, for describing concisely utility model thinking, internal channel 603 cross sectional shapes of design conveying pipeline and internal channel 606 cross sectional shapes of material extrusion nozzle are identical rectangle, and wherein the long limit of rectangle is L max, minor face is L min.
By the rotation of rotating disk 601, can regulate and control the rotation of shower nozzle.As shown in Figure 2, a, b, c are the inner passage section top view of different rotary angle shower nozzle.When the anglec of rotation shower nozzle that is θ carries out work toward a direction, effectively print area width is L maxsin θ+L mincos θ.Because the translational speed size of shower nozzle when the working position is constant, the Z axis forming height of every layer is certain value, and in the unit interval, the effective print area area of shower nozzle of different rotary angle is directly proportional to print area width.While working for different rotary angle shower nozzle, regulate and control in real time the charging rate of conveying pipeline.As shown in Figure 2, in c, the anglec of rotation of shower nozzle is 0, now shower nozzle effectively print area width be L min, the precision of printing is the highest, and the speed of simultaneously printing is also the slowest, can be applicable to printing in the high situation of required precision.
As shown in Figure 3,4, in the utility model, print speed regulate and control method is:
Print speed V=K*S*L; Wherein S is the sectional area of the actual spray silk of nozzle, and L is unit printing-forming area, and K is the constant relevant with printer;
The actual spray silk sectional area S of nozzle and the printing-forming area L of unit determine charging rate, and affect hot melt speed; Charging rate and hot melt speed determine print speed jointly;
A signal of change formation by S and L is controlled print speed, regulates and controls the charging rate of shower nozzle conveying pipeline.

Claims (7)

1.3D printer spray silk sectional area adjustable structure, includes conveying pipeline, material extrusion nozzle; Material extrusion nozzle is positioned at conveying pipeline below; It is characterized in that: also include peripheral housing and drive unit, conveying pipeline is embedded in peripheral housing, material extrusion nozzle is coaxially fixedly connected on conveying pipeline below; Conveying passage is positioned on the same axle of vertical conveying pipeline and material extrusion nozzle inner passage section with the center of gravity of the inner passage section shape of material extrusion nozzle; Conveying pipeline can rotate around aforementioned axis with respect to material extrusion nozzle under the driving of drive unit; Thereby regulate the sectional area of shower nozzle spray silk.
2. 3D printer spray silk sectional area adjustable structure according to claim 1, is characterized in that: described drive unit comprises rotating disk and motor; Rotating disk is connected with printer body, and motor is positioned at peripheral housing and can drives dial rotation; Conveying pipeline is fixedly installed in the lower end of rotating disk.
3. 3D printer spray silk sectional area adjustable structure according to claim 1, is characterized in that: the inner passage section shape of described conveying pipeline and the inner passage section shape of material extrusion nozzle are the regular polygon of triangle, quadrilateral type.
4. 3D printer spray silk sectional area adjustable structure according to claim 2, is characterized in that: the inner passage section shape of described conveying pipeline and the inner passage section shape of material extrusion nozzle are the regular polygon of triangle, quadrilateral type.
5. according to the 3D printer spray silk sectional area adjustable structure described in claim 3 or 4, it is characterized in that: the inner passage section shape of described conveying pipeline and the inner passage section of material extrusion nozzle are shaped as identical rectangle, and wherein the long limit of rectangle is L max, minor face is L min; Conveying pipeline is θ around the anglec of rotation of the axle of the inner passage section shape perpendicular to conveying pipeline and material extrusion nozzle; When the anglec of rotation shower nozzle that is θ carries out work toward a direction, effectively print area width is L maxsin θ+L mincos θ; When Z axis forming height constant in shower nozzle translational speed size, every layer is certain value, in the unit interval, the effective print area area of shower nozzle of different rotary angle is directly proportional to print area width.
6. according to the 3D printer spray silk sectional area adjustable structure described in claim 1 to 4 any one, it is characterized in that: in described peripheral housing, include heater, for heating the transmission material of the ABS of conveying pipeline or the easy melting of PLA class, be molten condition.
7. 3D printer spray silk sectional area adjustable structure according to claim 5, is characterized in that: in described peripheral housing, include heater, for heating the transmission material of the ABS of conveying pipeline or the easy melting of PLA class, be molten condition.
CN201420384850.1U 2014-07-11 2014-07-11 3D printer spray silk sectional area adjustable structure Expired - Lifetime CN204020007U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420384850.1U CN204020007U (en) 2014-07-11 2014-07-11 3D printer spray silk sectional area adjustable structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420384850.1U CN204020007U (en) 2014-07-11 2014-07-11 3D printer spray silk sectional area adjustable structure

Publications (1)

Publication Number Publication Date
CN204020007U true CN204020007U (en) 2014-12-17

Family

ID=52059914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420384850.1U Expired - Lifetime CN204020007U (en) 2014-07-11 2014-07-11 3D printer spray silk sectional area adjustable structure

Country Status (1)

Country Link
CN (1) CN204020007U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016004642A1 (en) * 2014-07-11 2016-01-14 东莞中国科学院云计算产业技术创新与育成中心 3d printer nozzle capable of adjusting cross-sectional area of extruded material, and speed and precision control method thereof
CN105670917A (en) * 2015-12-30 2016-06-15 四川蓝光英诺生物科技股份有限公司 Bio-printer nozzle assembly and bio-printer
CN107750203A (en) * 2015-06-18 2018-03-02 西门子公司 For coating method and apparatus, extruder, 3D printing head, 3D printer, lathe and the control device of at least one material
US10906241B2 (en) 2015-12-30 2021-02-02 Revotek Co., Ltd Bioprinter spray head assembly and bioprinter
CN114516169A (en) * 2021-12-30 2022-05-20 盐城工学院 Design method of polygon-like filament outlet hole of nozzle of FDM-3D printer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016004642A1 (en) * 2014-07-11 2016-01-14 东莞中国科学院云计算产业技术创新与育成中心 3d printer nozzle capable of adjusting cross-sectional area of extruded material, and speed and precision control method thereof
CN107750203A (en) * 2015-06-18 2018-03-02 西门子公司 For coating method and apparatus, extruder, 3D printing head, 3D printer, lathe and the control device of at least one material
US11141898B2 (en) 2015-06-18 2021-10-12 Siemens Aktiengesellschaft Method and device for applying at least one material, extruder, 3D print head, 3D printer, machine tool and control device
CN105670917A (en) * 2015-12-30 2016-06-15 四川蓝光英诺生物科技股份有限公司 Bio-printer nozzle assembly and bio-printer
US10906241B2 (en) 2015-12-30 2021-02-02 Revotek Co., Ltd Bioprinter spray head assembly and bioprinter
CN114516169A (en) * 2021-12-30 2022-05-20 盐城工学院 Design method of polygon-like filament outlet hole of nozzle of FDM-3D printer

Similar Documents

Publication Publication Date Title
CN104097327A (en) Jet sectional area adjusting structure of 3D printer as well as speed and precision control method thereof
CN104085112A (en) 3D printer head and method for regulating and controlling speed and precision of 3D printer head
CN203974076U (en) A kind of multiinjector 3D printer
CN104085111B (en) Method for controlling printing speed and precision of multi-nozzle 3D printer
CN204020007U (en) 3D printer spray silk sectional area adjustable structure
CN207044697U (en) A kind of near-end wire feed printhead of portable 3D printer
CN105459397B (en) A kind of drip-proof shower nozzle for fused glass pellet 3D printer
CN204622625U (en) A kind of adjustable three-dimensional printer shower nozzle extruding flow
US10500778B2 (en) 3D printer spray nozzle structure and method thereof for controlling speed and precision
CN206614795U (en) A kind of 3D printer
CN204749271U (en) 3D beats printer head
CN204020008U (en) A kind of 3D printer head
US9339975B2 (en) 3D printer with native spherical control
SI1886793T1 (en) Method and device for manufacturing a 3D object and use of a plastifying unit for its manufacture
CN103600078B (en) A kind of screw of injection shaped device
CN208133608U (en) Adaptive more spray head high speed 3D printers
US10471637B2 (en) Side gating hot runner apparatus with continuous valve pin movement
CN108817397B (en) Additive manufacturing device and method
CN103407162A (en) Plastic smelting furnace of 3D (Three-Dimensional) printer
CN105878029A (en) Seamless gelatin pearl preparing method
CN204914595U (en) Ball drive formula parallel arm three -dimensional inkjet printer's frame mounting structure
CN203580346U (en) Multi-head nozzle applied to 3D printer
CN102307717B (en) Method and device for producing endless strands
CN205705343U (en) A kind of scalable Electromagnetic Heating 3D printing head
CN207403099U (en) A kind of sprue bush of anti-wire drawing

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20141217